实际问题与二元一次方程组教案(通用21篇)
教案需要考虑到学生的认知特点和能力水平,设计合适的教学方法和教学活动。教案的课堂组织要活跃有序,注重学生的参与和互动。好的教案对于教学的顺利进行起到了至关重要的作用,下面是一些经典教案案例供大家学习参考。
实际问题与二元一次方程组教案篇一
解二元一次方程组”是“二元一次方程组”一章中很重要的知识,占有重要的地位、通过本节内容的教学,使学生会用代入消元法和加减消元法解二元一次方程组;了解“消元”思想。
教学后发现,大部分学生能掌握二元一次议程组的解法,教学一开始给出了一个二元一次方程组。
提问:含有两个未知数的方程我们没有学习过怎样解,那么我们学过解什么类型的方程?
提问:那可怎么办呢?
这时,学生通过交流,教师只要略加指导,方法自然得出,这其中也体现了化归思想,教学的最后给出了一个二元一次方程组,同样也没有学过它的'解法,那学过什么类型的方程组,这时又怎么办呢?与教学开始时方法一样,但这时不需点拔、指导,学生按“消元”“化归”的思想,化“三元”为“二元”,化“二元”为“一元”,这对学生今后独立解决总是无疑是种好的方法。
从学生作业反馈,对两种消元法的步骤和方法能很好的掌握。但是学生解题中错误较多。问题出现在进行代入消元后的一元一次方程解错了。如去分母时忘了用最小公倍数乘遍每一项,移项要变号,数与多项式相乘要乘遍每项。这样导致整个方程组的解错。看来需要对一元一次方程的解法进行次回顾,尤其是解方程中的易错点。而对于加减法应让学生明确方程组如果既能用加法消元又能用减法消元的情况下尽量用加法。毕竟加法不容易出错。对于减法尤其是减数是负号时是学生解题的易错点,除了用正面的解题进行板演讲解外,还应该设置改错题,让学生找出错误所在,加深印象。
实际问题与二元一次方程组教案篇二
1、会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2、知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3、引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点。
2、彻底理解题意。
教学难点。
教学过程。
一、情境引入。
二、建立模型。
1、怎样设未知数?
2、找本题等量关系?从哪句话中找到的?
3、列方程组。
4、解方程组。
5、检验写答案。
三、练习。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2、p38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
p42习题2.3a组第1题。
后记:
实际问题与二元一次方程组教案篇三
知识与技能。
过程与方法。
能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组。
情感、态度与价值观。
培养学生分析问题,解决问题的能力,体验学习数学的快乐。
重点:
难点:
选择合适的方法解方程组;并能把相应问题转化为解方程组。
教学手段。
多媒体,小组评比。
教学过程。
一、知识梳理。
设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础。
二、基础训练。
教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。
设计意图:
基础知识达标训练。
教学手段与方法:
毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。
实际问题与二元一次方程组教案篇四
在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。
这一节共安排了三个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些。这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。
所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的'背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。基于以上原因,这节课的设计我选择了“学案导学”法,就是是以学案为载体,导学为方法的教学活动,其显著优点是发挥学生的主体作用,突出学生的自学行为,倡导学生自主学习,自主探索,自我发现,是学生学会学习,学会合作的有效途径。其操作要领主要表现为先学后教、问题教学、导学导练、当堂达标。
课前预习阶段:教师将学案精心编写好后,于课前发给学生,让学生在课前明确学习目标,并在学案的指导下对课堂学习内容进行自主的预习。同时教师要对学习方法进行适当的指导,如要控制自己的预习时间,以提高效率;可以要求学生用红笔划出书中的重点、难点内容;带着学案上的问题看书,并标出自己尚存的疑问,带着问题走进课堂;逐步掌握正确的自学方法,有意识地培养自主学习的能力等等。教师要有意识地通过多种途径获得学生预习的反馈信息,以使上课的讲解更具针对性。
课后巩固深化阶段:课后教师要指导学生完成预习时有疑问而课堂上未能完成的问题,对学案进行及时的消化、整理、补充和归纳。同时教师要将希望生的学案收起,仔细审阅。对学案上反映出的个性问题及课堂上未解决的共性问题及时安排指导和讲解。做到教学一步一个脚印,以收到实效。
体现学案的人文性:名人名言、建议的口气、温馨的提示等等,我想这些对于创设民主、和谐的课堂氛围,激发学生探究的积极性都是十分必要的。
实际问题与二元一次方程组教案篇五
1、本节课是一堂概念课,设计时按照“实例研究、初步体会―类比分析,把握实质――归纳概括,形成定义――应用提高,发展能力”的思路进行,让学生体会到因为“需要”而学习新知识,逐步渗透应用意识。
2、二元一次方程及其解的意义类比一元一次方程进行学习,一方面加深学生对方程中“元”与“次”的理解,另一方面易于理清一元一次方程组有关概念的学习扫清障碍。
3、分层递进,循环上升,学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目设计从单一知识点的直接用,逐渐对多个知识点的灵活运用,给学生设置必要的'台阶,使其一步步向前,最终达到教学目标,充分尊重学生的认识规律。
4、教师始终把自己放策划者,引志者,引导者,促进者的位置,注重学法指导,把学生推向前台,使学生以探索者,研究者的身份穿梭于课堂,充分突出其主体地位,让学生在学习中获得成功,收获自信,使其德智双赢。
实际问题与二元一次方程组教案篇六
难点:正确发找出问题中的两个等量关系
课前自主学习
1.列方程组解应用题是把“未知”转化为“已知”的`重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()
2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:
(1)方程两边表示的是()量
(2)同类量的单位要()
(3)方程两边的数值要相符。
3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )
4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )
新课探究
看一看
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)()
(2)()
解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg
根据题意列方程,得
解这个方程组得
答:每只母牛和每只小牛1天各需用饲料为( )和( ),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有”)
练一练:
小结
用方程组解应用题的一般步骤是什么?
8.3实际问题与二元一次方程组(2)
1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;
2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力
难点:正确发找出问题中的两个等量关系
课前自主学习
1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。
2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个。
实际问题与二元一次方程组教案篇七
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
内容:
1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
内容:
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
探究方程与函数的相互转化。
内容:
例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是.
内容:
1.已知一次函数与的图像的交点为,则.
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为.
(a)4(b)5(c)6(d)7。
3.求两条直线与和轴所围成的三角形面积.
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;。
(2)两条直线的交点坐标是对应的方程组的解;。
(1)代入消元法;。
(2)加减消元法;。
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
实际问题与二元一次方程组教案篇八
含有两个未知数,并且所含未知数的项的次数都是1的.整式方程叫做二元一次方程。
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
(1)代入(消元)法(2)加减(消元)法。
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
初中数学平行线知识点。
平行线及其判定。
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质。
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
1要重视计算。
做数学题就是要注重计算,很多孩子成绩丢分在计算上,解题步骤没有错,但是计算的过程中出现失误,导致丢分,影响整体成绩,所以要重视计算的作用,初一阶段刚开学就会学到有理数,绝对值,倒数,相反数,一元一次方程,单项式和多项式等基本的计算问题,每一个知识点都脱离不了计算的考察。整式,方程,不等式等后续重要知识点都基于有理数的计算。后续的分式计算更凸显了孩子的计算问题。所以要想提高数学成绩,一定要重视计算。
2细节决定成败。
我们在考试以后会发现有很多不应该做错的题,因为大意失了分数,所以要想提高数学成绩,一定要注意细节,在考试的过程中不该丢的不能丢,分分计较,做到颗粒归仓。解题时即使思路正确,不注意细节也能丢分。考试分分比较,每一分都代表了一个人的素质和水平。这就是细节决定成败。
3善于发现数学规律。
要想提高数学成绩,在做数学题的过程中要善于发现规律。不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,就比如语文一样的话,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个,不过你可以用其他的方法进行解答,所以善于发现数学的解题规律,转变思路也是提高数学成绩的一条有效途径。
4高水平复习很重要。
要想提高数学成绩,在考试前一定要有高水平高效率的复习。一道题,刚开始你不熟悉,那么,你需要做十遍甚至更多遍,把整个题目做到滚瓜烂熟。这个时候,如果你还在不断地重复做这道题,那么就是低水平重复,高手们会当这道题熟悉了,他就开始放弃了,把大把时间拿来,去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。他们也在重复,但是,是高水平重复。
实际问题与二元一次方程组教案篇九
本节内容是在学生掌握了二元一次方程组的解法,能列二元一次方程组解较简单的应用题的基础上安排的,其中的“牛饲料问题”“种植计划问”“成本与产出问题”是具有一定综合性的问题,涉及到估算与精确计算的比较、开放地探索设计方案、根据图表信息列方程组等问题形式。由于本节需要探究的问题比较复杂,所以在教学的过程中,一方面需要设置部分台阶减小坡度、分散难点,另一方面需要用一些具体的方法引导学生学会分析和表达,还要留给学生充足的思考、交流、整理、反思的时间。在解决问题的过程中,使学生体会到方程组应用的广泛性与有效性,提高分析解决问题的能力。
根据我校农村学校学生的具体学习情况和认知特点,本节内容设计为3个教学课时,第一课时主要引导学生探索列方程组解应用题的步骤和基本思路;第二课时主要进行综合性应用问题的探索;第三课时主要进行思维拓展和巩固提高。
(一)知识与技能
1、会用二元一次方程组解决生产生活中的实际问题;
2、用方程组的数学模型刻画现实生活中的实际问题。
(二)过程与方法
1、培养学生应用方程解决实际问题的意识和应用数学的能力;
2、将解方程组的技能训练与解决实际问题融为一体,进一步提高解方程组的技能。
(三)情感态度与价值观
1、体会方程组是刻画现实世界的有效模型,培养应用数学的意识。
2、在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。
3、结合实际问题,培养学生关注生产劳动、热爱生活的意识,让学生重视数学知识与实际生活的联系。
教学重点:根据题意找出等量关系,列二元一次方程组。
教学难点:正确找出问题中的两组等量关系。
4.1第一学时
教学活动
公园一角三个学生的对话:甲:昨天,我们一家8个人去公园玩,买门票花了34元。乙:哦,那你们家去了几个大人?几个小孩呢?丙:真笨,自已不会算吗?成人票5元每人,小孩3元每人啊!
(设计说明:利用学生熟悉的公园购票设计一个简单的问题,在解决这个问题的同时,使学生熟悉列方程解应用题的一般步骤,以及解二元一次方程组常用的方法,为下一步的探究做好准备。)
解:设大人为x人,小孩为y人,依题意得
x+y=8 ①
5x+3y=34 ②
解得
x=5
y=3
答:大人5人,小孩3人。
注:对列出的不同形式的方程组及其解法作简要的比较说明,有意识的引导学生体会解决问题方法的多样性及方法选择的重要性。
(教学说明:以此活动创设一个学生感兴趣的情景,教师提出问题,学生尝试解答,两名学生板演,结合板演订正,提醒学生注意选择简单的方法解方程组,避免重列轻解现象的发生。)
问题1:怎样判断李大叔的估计是否正确?
(设计说明:引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用学生在比较探究后发现用方法二较简便,思路明确之后进一步考虑具体解答问题)
判断李大叔的估计是否正确的方法有两种:
1、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。
2、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确。
(教学说明:教师提出问题,让学生讨论交流,在此过程中可以逐步理解题意,找到解决问题的方法)
问题2 思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?
(设计说明:利用思考中的问题,引导学生分析题目中的数量关系,逐步将学生的思维引向问题的核心,从而顺利解决问题。)
分析:本题的等量关系是
(1)30只母牛和15只小牛一天需用饲料为675kg
(2)(30+12)只母牛和(15+5)只小牛一天需用饲料为940kg
(教学说明:教师先让学生自己阅读思考,然后同学之间互相交流,最后师生共同得出结论)
问题3 如何解这个应用题?
(设计说明:在学生正确理解题意,把握题中数量关系的基础上写出解答过程,一方面可以进一步梳理思路,熟悉解答过程,另一方面把想和做统一起来,在做的过程中发展计算、表达等多种能力。)
解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程组,得
30x+15y=675 ①
(30+12)x+(15+5)y=940 ②
化简得
2x+y=45
2.1x+y=47
解这个方程组得
x=20
y=5
答:每只母牛和每只小牛1天各需用饲料为20kg和5kg,因此,饲养员李大叔对大牛的食量估计较准确,对小牛的食量估计偏高。
(教学说明:学生在写解答过程时,教师重点关注学习有困难的学生,同时平时做事不认真规范的同学也是重点关注对象。完成之后针对出线的问题及时点评,使学生形成良好的学习习惯。)
问题3 总结:列方程组解应用题的一般步骤及需要注意的问题。
(设计说明:问题解决之后及时回顾反思,能更清晰的发现存在的问题及需要改进的地方,便于学生自查、自悟,找到适合自己的学习方法)
审:弄清题目中的数量关系;
设:设出两个未知数;
列:分析题意,找出两个等量关系,根据等量关系列出方程组;
解:解出方程组,求出未知数的值;
验:检验求得的值是否正确和符合实际情形;
答:写出答案(有时要分别作答)。
(设计说明:通过不同形式的情境设置,从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,形成初步技能。针对学习后进的学生降低了解方程组的难度,有利于这部分学生把主要精力用于学习列方程组的方法步骤上。)
那2米和1米的各应多少段?
解:设2米的有x段,1米的有y段,根据题意,得
x+y=10 ①
2x+y=18 ②
解得
x=8
y=2
答:小明估计不准确,2米长的8段,1米长的2段。
(说明:通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。要求学生自主解决,以此检验学生掌握情况和本堂课的教学效果,为第二课时教学奠定基础。)
1、本节课你学习了什么?(利用列二元一次方程组解决实际问题。)
2、列二元一次方程组解决实际问题的主要步骤是什么?(审、设、列、解、验、答。)
3、列二元一次方程组解决实际问题应注意哪些问题?
(1)认真审题,用数学语言或式子表示题目中的数量关系。
(2)解出方程组时要选择适当的方法,运算速度要快,准确度要高。
(3)要按要求写出答案。
课外作业:p101复习巩固第1题、第2题、第3题。
在这节课之前的学习中,学生已经了解了一些用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。因此,这一节课共安排了四个贴近实际问题的情境活动:活动一:逛公园,提起学生兴趣导入实际问题,数量关系较为简单;活动一:参观农场,帮助李大叔计算验证,数量关系的难度有所提高,活动中总结列二元一次方程组解决实际问题的主要步骤,同时含有关注农业生产的思想;活动三:工厂锻炼——知识应用和活动四:大显身手——拓展提高。主要通过从不同的角度帮助学生进一步加深对列方程组解决应用问题的认识,巩固初步形成的技能。
这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。
在此教学过程中,要熟练掌握多媒体课件的使用流程,充分发挥图片资料创设情境和提高学生学习兴趣的作用。
实际问题与二元一次方程组教案篇十
学生的知识技能基础:七年级时,学生已经学习了一元一次方程及其应用。本章中,学生又学习了二元一次方程、二元一次方程组、列二元一次方程组解应用题等,能熟练地解二元一次方程组,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。
学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些编题活动,同时也具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的'合作学习经验,具备了一定的合作与交流的能力。
地位和作用:本节内容是在学生学习了二元一次方程组的解法和部分二元一次方程组的应用后,紧接着学习的有关数字问题的应用题。这部分内容的学习,有助于加深学生对数字问题的理解,进一步掌握列方程组解应用题的方法(相等关系),提高学生解决实际问题的能力。本节课的教学目标为:
2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型。
3.在解决问题过程中,学会借助图表分析问题,感受化归思想。
4.让学生体验把复杂问题化为简单问题策略的同时,培养学生克服困难的意志和勇气。
本节课的重点是教学生会用图表分析数字问题。难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。
教学准备。
flah播放器;若flash不能播放,请按绝对路径重新插入后播放。
本课设计了六个教学环节:第一环节:知识回顾;第二环节:情境引入,新课讲解;第三环节:练习提高;第四环节:合作学习;第五环节:学习反思;第六环节:布置作业。
1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.
2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.
3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.
4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:
1000a+b.
设计意图:通过复习,为本节课的继续学习做好铺垫。
实际效果:提问学生,教师加以点评,这样经过知识的回顾,学生基本能熟练地用代数式表示有关数字问题。
动画,情景展示。
12:00是一个两位数,它的两个数字之和为7;。
13:00十位与个位数字与12:00所看到的正好颠倒了;
14:00比12:00时看到的两位数中间多了个0.
小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数。小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”
那么,你能回答以下问题吗?
(1)他们取出的两张卡片上的数字分别是几?
(2)第一次,他们拼出的两位数是多少?
(3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!
实际问题与二元一次方程组教案篇十一
1.树立“以人为本,人人都学有价值的数学,不同的人在数学上得到不同的发展”的理念。
2.通过动手实验、合作交流培养学生自主探索,寻找结论的学习意识。
3.通过本节课教学,加强对学生思维方法的训练,增强小组合作意识。
1.学生分析。
2.教材分析。
本章知识是在学习了一元一次方程即应用后的又一种重要的用来表示数量关系的数学模型,用它解决某些实际问题比用一元一次方程更简捷,但在解法上他们又存在着相互转化的关系,在这节的教学中不仅要让学生充分认识到消元这种思想方法的重要性,更重要的是让他们进一步体会知识的形成过程,提高他们能准确选择模型解决问题的能力。
3.教学重点、难点分析。
4.教学目标。
(2)过程与方法:通过自主探索过程,培养对数学的感情,培养分析问题能力及从实际问题中抽象出数学模型的能力,学会与人合作,交流自己的方法意见。向终身学习型人才发展。
(3)情感与态度:引导学生探索发现,培养学生主动探索,乐于合作交流的品质和素养,让学生先猜测再动手实践加以验证,懂得实践是检验真理的唯一标准的道理。鼓励学生有自己独特见解,培养学生的创新品质。
5.教学方法分析。
本节课采用“探究、讨论、发现”的方法。因为它符合本节课教学内容的特点,从学生年龄来说讨论法虽然更适合于高年级的学生,但这是一节复习课,我认为复习应该是知识的整合和提高的过程,因此也可以。
我的教学过程可分为三个环节一、探索只用二元一次方程也能解决实际问题,但答案不唯一。二、探索要使一的问题答案是唯一的,那么在刚才的基础上应该再添加一个,关于这两个未知数的关系的条件,然后才能列出二元一次方程组解出唯一答案。这个环节是难点。这样设计的目的是通过过程探索加深学生对二元一次方程组的解的理解,即它是两个方程的公共解,同时与列一元一次方程形成对比,即需要两个条件才能得出唯一答案。再者通过对一个问题实施两种列法,一种解法,也体现了二元与一元之间的转化思想。第三个过程是解方程组训练消元法的应用。目的让学生进一步熟炼消元这种数学方法,同时使知识形成一个完整的体系。
我的课领导们已经听了过程就不再赘述。下面我按照教学环节把我这节课分析一下;
一采用刘三姐对歌引入,切近生活,激发兴趣,引起学生注意。提出问题后,学生受定向思维影响,认为答案是唯一的,这种情况下我用提问的方式激发学生思考,如我问一个男孩的困惑在那里,然后给与合理提示,使他们继续讨论得出答案。缺点:备学生不充分,以致引题较难,脱离育才学生实际,今后应注意开讲很重要但要注意所选问题的难易程度。
二突破难点仍然采用讨论法,期间部分学生思维受阻,我请一名同学解释了他的解题过程,又加以适当引导和鼓励,使讨论达到高潮。优点是能鼓励学生用实验的办法寻求解题思路,引导他们通过对比的方法发现二元一次方程组和一元一次方程之间的联系,在考虑到时间不够用的情况下,仍然坚持让学生继续展开讨论,上黑板展示自己的劳动成果,并且我认为,通过这节课的训练这些孩子肯定会喜欢上讨论交流这种形式的,通过这节课教学使他们已经完成了一个从羞于讨论到开始讨论的过程。我在巡视的过程中发现了这种微妙的变化我很高兴。缺点是:引导方向不够明确,浪费了学生的时间。数学是一门精确的学问,不允许教师含糊其辞,不允许让学生猜你要表达什么意思,如:我在第一个问题解决了以后,问孩子们:你们能不能添上一个条件使分法是唯一的呢/实际上这个问法对这些孩子来说还是跳跃性太大,致使他们再次陷入迷惘,我想如果我这样处理是不是更好一些:老师在黑板上把同学们刚才回答的几组解列出来,然后让他们观察每一组解之间的关系,再添条件构造方程。给我的教训是向学生提问不是一件轻而易举的事情,要问得新奇,问得有趣,问得巧妙,问得具有启发性,问得难而有度,问得高而可攀,就非得是前做好充分准备,精心构思不可。学生的时间是宝贵的,因此我要学会提出一个真正称得上是问题的问题。今后备课我应该认真考虑到各个环节,做好各种准备工作。
而我复习的时候把它倒过来也是这个原因。我组织他们讨论解方程组时经常出现的哪些错误,这样能使学生在轻松的过程里接受这些错误从进而改正他们。另外这节课还存在两个问题:小组活动单一化小组,活动结束后应该让他们充分展示自己的劳动成果,增加成就感。小组合作意识不强列,回答问题不积极,原因之一是他们的表达能力根本跟不上,我在巡视时有许多孩子跟我说老师我不知道该怎么说。所以我认为这种自主探究,合作交流的教学形式应该继续搞下去,孩子的表达能力继续锻炼。
大家都知道凯慕柏莉奥立佛近日当选为20xx-年美国年度教师这在美国是一项殊高的荣誉。他曾经说:“好老师不必是那些上出成功课或教出得分最高班的老师。好老师是那些有能力去反思一堂课理解什么是对了什么是错了寻找策略让下次更好的教师,以上是我对我的授课过程的分析,有不当之处恳请各位领导批评指正。
实际问题与二元一次方程组教案篇十二
看一看:课本99页探究2。
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练。
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金。
水稻4人1万元。
棉花8人1万元。
蔬菜5人2万元。
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
实际问题与二元一次方程组教案篇十三
1.知识与能力目标。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标。
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析。
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点。
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法。
学生操作------自主探索的方法。
实际问题与二元一次方程组教案篇十四
本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。
(知识与技能)。
2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
(过程与方法)。
学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答。
(情感态度与价值观)。
培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题。
(教学难点)确定解题策略,比较估算与精确计算。
教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。
教法设计意图。
1.回顾练习。
内容:
(2)既是方程的解,又是方程的解是。
2.自主探究。
为了解决这个问题,请认真看p.105页的内容.。
思考:判断李大叔的估计是否正确的方法有2种:
(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.。
5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?
学生按照自学指导看书,教师巡视,确保人人学得紧张高效.。
设计意图:引导学生独立思考,培养自主学习的能力。
3.小组交流。
组内成员讨论各自的探究成果,对不足和错误进行补充与更正。
最终提炼出最佳方法.
设计意图:培养合作学习的习惯。
4.成果展示。
各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.
设计意图:培养分析与解决问题能力。
5.疑难点拨。
(2)方法的多样——2种解法。
设计意图:突破难点,打开思考路线,指导规范解题。
6.课堂运用。
捐款(元)。
5
10。
20。
50。
人数。
6
7
设计意图:巩固解决实际问题的方法与步骤。
7.小结发言。
谈出本节课的收获与困惑。
设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.
作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)。
设计意图:从不同层次有效的提高学生对知识的掌握程度。
实际问题与二元一次方程组教案篇十五
首先谈谈我对教材的理解,《二元一次方程组》是人教版初中数学七年级下册第八章第一节的内容,本节课的内容是二元一次方程组的概念以及二元一次方程组的解。在此之前学习了一元一次方程和解方程的步骤,为本节课打下了良好的基础。学了本节课为后面的解二元一次方程的方法做下铺垫。因此本节课有着承上启下的作用。
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,与类比学习能力。而且在生活中也为本节课积累了很多经验。所以,学生对于二元一次方程组概念理解较为容易,找出方程组的解,相对来说有难度,需要教师多引导。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
掌握二元一次方程与二元一次方程组的概念,并了解它们的解,能正确地找出二元一次方程组的解。
(二)过程与方法。
通过类比学习、自主探究、合作交流的过程,提升类比学习的能力、培养探究的意识。
(三)情感态度价值观。
感受数学与生活的密切联系,培养学习数学的兴趣。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二元一次方程与二元一次方程组的概念以及方程与方程组的解。教学难点是:二元一次方程组解的探究。
更多真题及资料请加负责老师微信66746005领取。
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
下面我将重点谈谈我对教学过程的设计。
(一)新课导入。
这样设计的好处是:利用篮球联赛的图片导入,并讲清楚评分规则,不仅可以吸引学生探索的兴趣,还可以培养学生的数学应用意识。
(二)新知探索。
接下来是教学中最重要的新知探索环节,主要通过三个活动展开学习。
活动一:学生尝试列方程解决问题,看看在列方程过程中遇到了什么困难?同桌之间互相交流。
学生分析题意,发现有未知数,可以使用列方程的方法解决问题。当让学生自己动手练习时,他们会发现,胜负的场数都是未知的。
此时教师可以引导学生发现和思考:要求的是两个未知数,能不能根据题意直接设两个未知数,使列方程变得容易呢?学生在这样的提示下会有一定的想法,但对于列出二元一次方程组来说还是比较困难的。
教师板书表格示意图,引导学生通过题意,发现题干中包含的必须同时满足的条件,得到两组关系式并设出未知数完成表格。
活动二:学生观察两个方程特点,与一元一次方程有什么不同?并试着下定义。
在这里学生通过类比学习,能够归纳出二元一次方程的概念:每个方程都含有两个未知数,并且含有未知数的项的次数都是1。了解了二元一次方程后,对于二元一次方程组的概念就可以很好的展开了,对于本题列了两个二元一次方程解决问题,像这样的方程组叫做二元一次方程组。
列出了二元一次方程组,要解决篮球联赛的问题,就要求出方程组的解,接下来进行第三个活动。
活动三:完成表格,以二元一次方程组中的一个方程为例。小组合作,找出几组整数解,并观察哪一组解也符合另一个方程。
在这里解二元一次方程组,可以先将问题简单化,先研究一个方程的解,找到几组解后,再看哪一组解也符合第二个方程。也就是两个方程的公共解。教师给出表格,小组在进行合作时,教师应引导学生思考结合题意,两个未知数应取正整数。填完表格后,师生共同总结出二元一次方程解的定义。
教师继续追问,哪一组的值也满足第二个方程。师生共同总结出什么叫做二元一次方程组的解。
得到方程组的解,回归情景得出实际问题的答案。
设计意图:通过三个活动展开本节课,不仅符合新课改的理念:学生是学习的主体,教师是教学活动中的组织者、引导者、合作者,还能通过小组活动、类比学习等活动丰富课堂。
(三)课堂练习。
接下来是巩固提高环节。
练习:对下面的问题,列出二元一次方程组,并根据问题的实际意义,找出问题的解。
设计这道题可以让学生感受数学与生活的密切联系,学以致用。教师可以及时掌握学生本节课的学习情况,给予补充纠正。
(四)小结作业。
在课程的最后我会提问:今天有什么收获?
引导学生回顾:二元一次方程组的定义与二元一次方程组的解。
本节课的课后作业我设计为:
思考除了用列表找二元一次方程组的解,还有什么方法能找出解,能不能将它变成我们熟悉的一元一次方程求解。
设计意图:本节课学生通过列表观察得到了方程组的解,作业设计为让学生思考解二元一次方程组的方法,并提示能不能把它变成熟悉的一元一次方程求解,为下节课的学习做下铺垫。
实际问题与二元一次方程组教案篇十六
本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
(1)复习引入。
设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知。
此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的`解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。
(3)例题讲解。
让学生尝试解答。
设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。
预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:
(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)。
(2)选择哪个方程变形比较简便呢?
再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。
1、这节课你学到了哪些知识和方法?
2、你还有什么问题或想法需要和大家交流分享?
xxx。
通过洋葱视频辅助教学,使得学生容易体会到“消元”思想的渗透,学生能够学会规范解题。通过视频的讲解能够准确的选择要变形的方程,如果是传统的教学方式可能会出现很多学生不理解的地方,但通过洋葱数学短小精辟的视频讲解一下子让学生理解透!
实际问题与二元一次方程组教案篇十七
1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
难点:正确发找出问题中的两个等量关系。
一、复习。
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答。
新课:
看一看课本99页探究1。
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg。
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940。
练一练:
实际问题与二元一次方程组教案篇十八
方程组是方程内容的深化和发展,二元一次方程组是方程组的开端,而二元一次方程组在数学学科和实际生活中有着广泛的应用。二元一次方程组是一元一次方程的继续和发展,因此在教学过程中我始终注意与一元一次方程比较,充分利用学生已有的经验,创设利于学生自主探究的课堂氛围,鼓励学生合作探究。提倡用学生的智慧解决问题,让学生体会化归思想和代入消元的方法,培养学生分析问题和解决问题的能力。在本节课中,根据学生的实际情况以及认知规律,合理地、创造性地组织和使用教材。并且注意个体差异,满足不同学生的需要,为了实现教材、教法、学法的有效结合,我在教学设计中主要体现以下3个特点:
1、创设情境,营造课堂氛围,激发学生的创造潜能。
2、适时设疑,激发学生的学习兴趣,促进学生的思维能力。
3、打破常规,养成同学们预习的习惯,培养学生的自习能力。
总之,在教学过程中,我始终注意发挥学生的主体作用。让学生通过自主,探究,合作学习来主动发现结论,实现师生互动,同时,我也认识到教师不仅要教给学生知识,更重要是培养学生良好的数学素养和学习习惯,让学生学会学习,这样才能使自己真正成为一名受学生欢迎的教师。
实际问题与二元一次方程组教案篇十九
(北师大版新课标实验教材八年级上册)。
一、教学目标。
1、知识与技能。
2、过程与方法。
运用代入消元法解二元一次方程;了解解二元一次方程时的“消元”思想,初步体会“化未知为已知”的化归思想。
3、情感、态度、价值观。
在学生了解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。感受学习数学的乐趣,提高学习数学的热情;培养学生合作交流,自主探究的好习惯。
二、教学重、难点。
1、教学重点。
2、教学难点。
“消元”的思想;“化未知为已知”的化归思想。
三、教学设计。
1、复习,引入新课。
上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。下面请同学们回忆一下它们分别是怎样定义的?(同学们说,说不完的教师利用ppt进行展示)。
2、新课讲解。
(1)来看我们课本上的例子:
上次课我们设老牛驮了x包,小马驮了y包,并建立如下的方程组。
现在要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?(学生讨论,教师巡视指导)。
通过同学们的讨论我们已经有了解题思想。首先,由方程(1)将x视为已知数解出y=x-2,由于方程组中相同的字母表示同一未知数,所以可以用x-2代替方程(2)中的y,即将y=x-2代入方程(2)。这样就可以把方程化为我们所熟悉的一元一次方程,进而求解这个一元一次方程得到y的值,带回方程组求出x的'值,方程组的解就求出来了。
好!下面我们一起来解这个方程组(学生说,教师板书)。
(1)?x?y?1?(2)?x?1?2(y?1)。
解:由(1),得y=x-2(3)。
x+1=2[(x-2)-1]。
解得,x=7。
把x=代入方程(3)得y=5。
x7所以,方程组的解为:
y5。
因此,就求出了老牛驮了7个包裹,小马驮了5个包裹。
来看我们的解题过程,首先将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行形求解。这种求解二元一次方程组的方法称为代入消元法。
解题基本思路:消元,化未知为已知。(边说边板书)。
(2)下面再来看一个例子:
(1)?2x?3y?16..........?..(2)?x?4y?13......
解:由(2),得x=13-4y(4)。
将(3)代入(1),得2(13-4y)+3y=16。
26-8y+3y=16。
-5y=-10。
y=2。
将y=2代入(3),得x=5。
x5所以原方程的解为y2。
3、课堂练习。
下面请同学们自己解下列方程组:
(1)?1)1)?x?y?11....(?3x?2y?9....((2)?(2)?x?y?7......?x?2y?3......(2)。
解答(略)。
(让两位同学上黑板做,教师巡视、指导。做完后评讲,给出解题过程)。
4、小结复习。
这节课主要学习了用代入消元法解二元一次方程组,其本思想是消元,将未知转化为已知。主要步骤为将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行求解。
5、布置作业。
课本习题7.2的1、2题。
四、板书设计。
五、教学反思。
进行教学实践后在进行总结、反思、改进。
实际问题与二元一次方程组教案篇二十
1、发现的问题:在学习《二元一次方程组》时,学生对本节课的内容和前面学习的一元一次方程有点类似,学生学习起来感到枯燥无味。课堂气愤涣散,效率不高。
2、解决问题的过程:在学习二元一次方程组时,可以用中国古代著名数学问题“鸡兔同笼”或“百鸡百钱”问题作为引入。学生被这种有趣的问题吸引,积极思考问题的答案,以“趣”引思,使学生处于兴奋状态和积极思维状态,不但能诱发学生主动学习,而且还能增长知识,了解了我国古代的`数学发展,培养学生的爱国主义精神。
3、教学反思:一堂成功的数学课,往往给人以自然、和谐、舒服的享受,在数学教学中,我们要紧密联系学生的生活实际,在现实世界中寻找数学题材,让教学贴近生活,让学生在生活中看到数学,摸到数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。让学生接触与生活有关的数学问题,势必会激发学生的学习兴趣,从而有效的提高课堂教学效率,使学生真正喜欢数学、学好数学、用好数学。
实际问题与二元一次方程组教案篇二十一
2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
正确发找出问题中的两个等量关系。
一、复习。
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答。
新课:
看一看课本99页探究1。
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg。
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940。
练一练: