高中数学教案教案及教案(优质14篇)
教案可以帮助教师深入思考教学内容和教学方法,提高教学质量和效果。编写教案时应注意时间的分配和课堂教学的节奏掌控。这些教案范文还包含了一些教学活动的具体设置和教学资源的应用。
高中数学教案教案及教案篇一
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.。
(一)导入新课。
(教师活动)提出下列思考问题,打出字幕.。
[字幕]一条铁路线上有6个火车站。
(1)需准备多少种不同的普通客车票?
(学生活动)讨论并回答。
答案提示:
(1)排列;
(2)组合。
[评述]问题。
(二)新课讲授。
[提出问题创设情境]。
(教师活动)指导学生带着问题阅读课文。
[字幕]。
1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.。
(教师活动)对照课文,逐一评析.。
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境。
【归纳概括建立新知】。
(教师活动)承接上述问题的回答,展示下面知识.。
(学生活动)倾听、思索、记录。
(教师活动)提出思考问题。
[投影]与的关系如何?
(师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:
第1步,先求出从这个不同元素中取出个元素的组合数为;
第2步,求每一个组合中个元素的全排列数为。
根据分步计数原理,得到。
[字幕]公式1:
公式2:
(学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票。
(三)小结。
(师生活动)共同小结。
本节主要内容有。
1.组合概念。
2.组合数计算的两个公式。
(四)布置作业。
1.课本作业:习题103第1(1)、(4),3题。
3.研究性题:
(五)课后点评。
3.能组成(注意不能用点为顶点)个四边形,个三角形.。
探究活动。
解设四人分别为甲、乙、丙、丁,可从多种角度来解。
高中数学教案教案及教案篇二
理解数列的概念,掌握数列的运用。
理解数列的概念,掌握数列的运用。
【知识点精讲】。
1、数列:按照一定次序排列的一列数(与顺序有关)。
2、通项公式:数列的.第n项an与n之间的函数关系用一个公式来表示an=f(n)。
(通项公式不)。
3、数列的表示:。
(1)列举法:如1,3,5,7,9……;。
(2)图解法:由(n,an)点构成;。
(3)解析法:用通项公式表示,如an=2n+1。
5、任意数列{an}的前n项和的性质。
高中数学教案教案及教案篇三
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点.难点。
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标。
1.知识与技能。
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法。
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观。
使学生感受到学习集合的必要性,增强学习的积极性.
1.教学方法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。
2.教学手段:在教学中使用投影仪来辅助教学。
(一)创设情景,揭示课题。
1.教师首先提出问题:
(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价。
2.活动:
(1)列举生活中的集合的例子;
(2)分析、概括各实例的共同特征。
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫。
(二)研探新知,建构概念。
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母a,b,c,d表示,元素常用小写字母a,b,c,d表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神。
(三)质疑答辩,发展思维。
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性、互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流.让学生充分发表自己的建解。
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价。
4.教师提出问题,让学生思考。
b是(1)如果用a表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。
如果a是集合a的元素,就说a属于集合a。
如果a不是集合a的元素,就说a不属于集合a。
(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正。
教师投影学习。
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合a。
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象。
(五)归纳小结,布置作业。
1.小结:在师生互动中,让学生了解或体会下例问题:
本节课我们学习了哪些知识内容?
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:
1.课后书面作业:第13页习题1.1a组第4题。
高中数学教案教案及教案篇四
1.理解流程图的选择结构这种基本逻辑结构.。
2.能识别和理解简单的框图的功能.。
3.能运用三种基本逻辑结构设计流程图以解决简单的问题.。
一、问题情境。
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为。
其中(单位:)为行李的重量.。
试给出计算费用(单位:元)的.一个算法,并画出流程图.。
二、学生活动。
学生讨论,教师引导学生进行表达.。
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.。
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.。
在上述计费过程中,第二步进行了判断.。
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种。
操作的结构称为选择结构.。
2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判。
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执。
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和。
两个退出点.。
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
高中数学教案教案及教案篇五
三角函数的诱导公式是普通高中课程标准实验教科书(人教b版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。
通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.
以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。
借助单位圆探究诱导公式。
能正确运用诱导公式将任意角的三角函数化为锐角三角函数。
诱导公式(三)的推导及应用。
诱导公式的应用。
多媒体。
1.诱导公式(一)(二)。
2.角(终边在一条直线上)。
3.思考:下列一组角有什么特征?()能否用式子来表示?
已知由。
可知。
而(课件演示,学生发现)。
所以。
于是可得:(三)。
设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。
由公式(一)(三)可以看出,角角相等。即:
公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。
设计意图:结合学过的公式(一)(二),发现特点,总结公式。
1.练习。
(1)。
设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。
(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)。
例3:求下列各三角函数值:
(1)。
(2)。
(3)。
(4)。
设计意图:利用公式解决问题。
练习:
(1)。
(2)(学生板演,师生点评)。
设计意图:观察公式特点,选择公式解决问题。
四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。
很荣幸大家来听我的课,通过这课,我学习到如下的东西:
1.要认真的研读新课标,对教学的目标,重难点把握要到位。
2.注意板书设计,注重细节的东西,语速需要改正。
3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作。
5.上课的生动化,形象化需要加强。
1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的`,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。
2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。
3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。
4.评议者:引导学生通过网络进行探究。
建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。
(1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好。
(2)这样子的教学可以提高上课效率,让学生更多的时间思考。
(4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来。
(5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少。
(6)让学生多探究,课堂会更热闹。
(7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习。
(8)教学模式相对简单重复。
(9)思路较为清晰,规范化的推理。
高中数学教案教案及教案篇六
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2、过程与方法。
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3、情感态度与价值观。
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
重点、难点:用斜二测画法画空间几何值的直观图。
1、学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2、教学用具:三角板、圆规。
(一)创设情景,揭示课题。
1、我们都学过画画,这节课我们画一物体:圆柱。
把实物圆柱放在讲台上让学生画。
2、学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知。
1、例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2、例2,用斜二测画法画水平放置的圆的直观图。
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的`直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3、探求空间几何体的直观图的画法。
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4、平行投影与中心投影。
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5、巩固练习,课本p16练习1(1),2,3,4。
三、归纳整理。
学生回顾斜二测画法的关键与步骤。
四、作业。
1、书画作业,课本p17练习第5题。
高中数学教案教案及教案篇七
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
教学重点。
1.对圆锥曲线定义的理解。
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程。
教学难点:。
巧用圆锥曲线定义解题。
【设计思路】。
(一)开门见山,提出问题。
一上课,我就直截了当地给出——。
例题1:(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)线段(d)不存在。
(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线。
【设计意图】。
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的.认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】。
入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
(二)理解定义、解决问题。
高中数学教案教案及教案篇八
(2)理解直线与二元一次方程的关系及其证明。
:计算机。
:启发引导法,讨论法。
下面给出教学实施过程设计的简要思路:
(一)引入的设计。
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计。
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。
学生或独立研究,或合作研究,教师巡视指导.。
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…。
思路二:…。
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。
至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式。
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
师生共同讨论,评价不同思路,达成共识:
(1)当时,方程可化为。
这是表示斜率为、在轴上的截距为的直线。
(2)当时,由于、不同时为0,必有,方程可化为。
这表示一条与轴垂直的直线。
因此,得到结论:
在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线。
为方便,我们把(其中不同时为0)称作直线方程的一般式是合理。
【动画演示】。
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。
(三)练习巩固、总结提高、板书和作业等环节的设计。
略
高中数学教案教案及教案篇九
:计算机
:启发引导法,讨论法
下面给出教学实施过程设计的简要思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
学生或独立研究,或合作研究,教师巡视指导.
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.
当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.
当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
综合两种情况,我们得出如下结论:
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.
这样上边的结论可以表述如下:
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?
师生共同讨论,评价不同思路,达成共识:
(1)当 时,方程可化为
这是表示斜率为 、在 轴上的截距为 的直线.
(2)当 时,由于 、 不同时为0,必有 ,方程可化为
这表示一条与 轴垂直的直线.
因此,得到结论:
为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.
【动画演示】
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.
(三)练习巩固、总结提高、板书和作业等环节的设计
略
高中数学教案教案及教案篇十
高中数学趣味竞赛题(共10题)
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?
用16根火柴摆成5个正方形。请移动2根火柴,
使
正形变成4。
把正三角形的纸如图那样折过来时,角?的度数是多少度?
求星形尖端的角度之和。
丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?
用折纸做成45度很简单是吧。那么,请折成15度,你会吗?
高中数学教案教案及教案篇十一
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
(一)创设情景,揭示课题
1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;(2)我国古代的四大发明;
(3)所有的安理会常任理事国; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合a的元素,就说a属于集合a,记作a?a.
如果a不是集合a的元素,就说a不属于集合a,记作a?a.
(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1a组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
高中数学教案教案及教案篇十二
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
高中数学教案教案及教案篇十三
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
难点:识别三视图所表示的空间几何体。
观察、动手实践、讨论、类比。
(一)创设情景,揭开课题
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本p15练习1、2;p20习题1.2[a组]2。
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)布置作业
课本p20习题1.2[a组]1。
高中数学教案教案及教案篇十四
三角函数的诱导公式是普通高中课程标准实验教科书(人教b版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。
通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.
以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。
借助单位圆探究诱导公式。
能正确运用诱导公式将任意角的三角函数化为锐角三角函数。
诱导公式(三)的推导及应用。
诱导公式的应用。
多媒体。
1. 诱导公式(一)(二)。
2. 角 (终边在一条直线上)
3. 思考:下列一组角有什么特征?( )能否用式子来表示?
已知 由
可知
而 (课件演示,学生发现)
所以
于是可得: (三)
设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。
设计意图:结合学过的公式(一)(二),发现特点,总结公式。
1. 练习
(1)
设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。
(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)
例3:求下列各三角函数值:
(1)
(2)
(3)
(4)
设计意图:利用公式解决问题。
练习:
(1)
(2) (学生板演,师生点评)
设计意图:观察公式特点,选择公式解决问题。
四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。
很荣幸大家来听我的课,通过这课,我学习到如下的东西:
1.要认真的研读新课标,对教学的目标,重难点把握要到位
2.注意板书设计,注重细节的东西,语速需要改正
3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作
5.上课的生动化,形象化需要加强
1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。
2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。
3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。
4.评议者:引导学生通过网络进行探究。
建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。
( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好
( 2)这样子的教学可以提高上课效率,让学生更多的时间思考
( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来
( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少
( 6)让学生多探究,课堂会更热闹
( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习
( 8)教学模式相对简单重复
( 9)思路较为清晰,规范化的推理