苏科版初中数学教学设计(精选16篇)
总结是对工作、学习、生活等方面的一个及时概括。在总结中,我们可以用统计数据来支持和证明自己的观点。以下是小编为大家收集的总结范文,希望能够给大家一个参考和启发。
苏科版初中数学教学设计篇一
学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标分析。
教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:
1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、能利用尺规作角的和、差、倍。
3、能够通过尺规设计并绘制简单的图案。
4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
1、回顾与思考。
活动内容:
(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?
(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c。
活动目的:
通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。
2、情境引入,探索发现。
活动内容:如图2。
苏科版初中数学教学设计篇二
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标。
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标。
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点。
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
创设问题情景,激发学生的求知欲望,导入新课。
学生:26米。
教师:能写出算式吗?学生:……。
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。
苏科版初中数学教学设计篇三
全期共有六章。新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算、轴对称图形、数据的分析与比较。
本学期是本年级学生初中学习阶段的第二学期。通过上期的学习,大多数学生对学习数学产生了浓厚的学习兴趣。更有像陈琦、严细毛、瞿俐纯等同学更是对数学探究活动情有独衷。上期期末考试中,0901整体水平稍高于兄弟班级,但有两极分化的趋势。0902班的及格率稍高于兄弟班,但低分段学生高于10%,而且这部分学生对学习缺乏应有的热情和自信,有自暴自弃之嫌。
本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期中、期末考试中力争生均分70分左右,合格率60%以上,优秀率30%以上,并将低分率控制到10%以下。
1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。
2、把握学生思想动态,及时与学生沟通,搞好师生关系。
3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。
4、改进教学方法,用多媒体课件,实物等创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。
5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。
6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。
苏科版初中数学教学设计篇四
忠实地执行教材,教材上怎么写,教师就怎么讲,即使发现教材的内容有不合理的地方,也不敢随便处理。虾米事小编整理的关于初中数学教学设计,欢迎大家参考!
1、 本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、 等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、 新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
1、 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、 本班为自己任课的`班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
教学目标: 知识目标: 等腰三角形的相关概念,两个定理的理解及应用。 技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。 情感目标: 体会数学的对称美,体验团队精神,培养合作精神。 |
重点: 1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点: 1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
教学手段: 1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作: 1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、 教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
苏科版初中数学教学设计篇五
1、学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己以后的证明打下基础。
3、学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作课的操作、探究成为可能。
4、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验5、教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6、教学过程(略)。
教学步骤教师活动学生活动教学媒体(资源)和教学方式。
7、反思小结。
提炼规律。
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和展学生个性思维。
按照三角形“边、角”元素进行分类,师生共同归纳得出:。
1、一个条件:一角,一边。
2、两个条件:两角;两边;一角一边。
3、三个条件:三角;三边;两角一边;两边一角。
按以上分类顺序动脑、动手操作,验证。教师收集学生的作品,加以比较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比学生得出结论后,再举例体会一下。举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否板演:三边对应相等的两个三角形全等,简写为“边边边”或“sss”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确实物演示:
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性。
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习(略)。
3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理由,并能说明每一步的根据。)教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?画一画:
剪一剪:
把所画的三角形分别剪下来。
比一比:
学生举例说明。
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。
鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生练习。
学生在教师引导下回顾反思,归纳整理。
z+z平台演示。
z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。
苏科版初中数学教学设计篇六
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
1教学目标的制定。
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
2教法学法的制定。
制定教法学法应结合各层次学生的具体情况而定,如对a层学生少讲多练,注重培养其自学能力;对b层学生,则实行精讲精练,注重课本上的例题和习题的处理;对c层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
3教学重难点的制定。
教学重难点的制定也应结合各层次学生的具体情况而定。
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的b层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
5练习与作业的设计。
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使a层学生有练习的机会,b、c两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
苏科版初中数学教学设计篇七
全期共有六章。新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算、轴对称图形、数据的分析与比较。
二、学情分析。
本学期是本年级学生初中学习阶段的第二学期。通过上期的学习,大多数学生对学习数学产生了浓厚的学习兴趣。更有像陈琦、严细毛、瞿俐纯等同学更是对数学探究活动情有独衷。上期期末考试中,0901整体水平稍高于兄弟班级,但有两极分化的趋势。0902班的及格率稍高于兄弟班,但低分段学生高于10%,而且这部分学生对学习缺乏应有的热情和自信,有自暴自弃之嫌。
三、目标任务。
本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期中、期末考试中力争生均分70分左右,合格率60%以上,优秀率30%以上,并将低分率控制到10%以下。
1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。
2、把握学生思想动态,及时与学生沟通,搞好师生关系。
3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。
4、改进教学方法,用多媒体课件,实物等创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。
5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。
6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。
苏科版初中数学教学设计篇八
一、教材依据。
《代数式》是江苏科学技术出版社七年级《数学》(上)中第三章的重点内容之一,在教材的编排中起着至关重要的作用。本节课的主要内容是了解代数式的定义,能辨别代数式,并能正确地书写代数式以及理解代数式在生活中的应用。
二、设计思想。
2、设计理念。
1、依据创新型学习原则,以建构主义学习论为支点,以学习者为中心,在活动中主动探索,主动发现,主动构建知识的意义,通过自主、合作学习完成学习目标,体现数学课程的基础性、普及性,激发学生兴趣,促进思维的发展。
2、利用多媒体教学课件与学生活动有机地结合,可以为数学教学提供满足不同层次需要,信息含量丰富的课堂学习材料,并通过优良的交互性对学生的学习进行及时辅导和及时反馈、评价,以调整学习方法和策略,便于让学生都掌握有用的数学知识,让每个层次的学生都各有所得。
3、通过“朗诵儿歌”,“概念发展法”、“人人来当老师”等活动来激发学生学习兴趣和好奇性,再通过开放例题中的条件,去拓展学生的开放思维,让学生自己编数学题,让每个学生走近数学、走进生活,培养想象和创新能力与同学的合作能力,把所学知识的理解和应用推向高潮。
3、教材分析。
在上节课中我们已经学习了用字母表示数或数量关系有了这样的基础本节教材首先就给出”代数式”描述性的概念同时说明单独一个数或或单独一个字母也是代数式.议一议中再次感受用字母表示数或数量关系得出0.9a0.8b2a2a215×1.5m这些代数式在此基础上引入单项式、单项式的系数、多项式、整式的概念。做一做后,给我们带来了思考,通过与同学的交流,我们可以发现5a8b这个代数式在不同的背景中,有着不同的意义,这也就说明用字母表示数具有任意性和抽象性,我们还可以对代数式5a8b给出其它背景下的含义。在此基础上我们对给出抽象的代数式2xy赋予一个实际意义,从另一个方面来对字母表示数有更深入的理解。代数中列代数式是中考中的考点,列代数式也是学习其他知识的基础,所以要深入理解代数式及其含义。
4、学情分析本班学生具有好奇、好强、男生积极踊跃参与性高,女生内秀害羞不善言谈但踏实认真,班级中已形成了合作交流、主动探索、敢于实践、勇于发现的良好学风,学习气氛浓厚。
三、教学过程课题代数式课型新授课。
1、知识与技能了解代数式、单项式、单项式的系数和次数、多项式、多项式的次数、整式的概念。能用代数式表示简单问题的数量关系。
2、过程与方法教学目标通过具体例子感受“同一个代数式可以表示不同的实际意义”,“理解符号所代表的数量关系”。会列代数式,并能解释一些简单代数式的实际背景或几何意义。
一、情论,操声跳下水;林斯曾经说过:如果教师不想方境导作、思2只青蛙2张嘴,4只眼睛8条腿,扑通2设法使学生进入情绪高昂和智力入声跳下水;考,合振奋的内心状态,就急于传授知3只青蛙3张嘴,6只眼睛12条腿,扑通3作探究识,那么这种知识只能使人产生声跳下水;…………………………冷漠的态度,而不动感情的脑力劳动就会带来疲惫。
问题:
问题一:和上一节紧密联系,起。
1、你能发现儿歌中的数字规律吗?到知识前后连贯的作用。
2、你能流利快速地将这首儿歌续唱下去吗?
问题二:训练学生的反应能力及。
问题三:激发学生兴趣,引出课题。知识回顾字母表示数(见课件)。
二、引入新课。
从实际生活背景常见图形、几何学生独体的面积、体积的表示等学生已立完成知的知识入手,引入新知,自然课本感受新知。用抢答的形式调动学p66页生的积极性。为列代数式做铺垫。的议一也为引出代数式的定义及学生探议索代数式的特征作好引例1.观察分析以下各式有什么特点:sb从接触过的知识引入新概念,体n-20.8a2n500abc2ab2ac2b5a会到有的新知识是建立在旧知识c的基础上的。
三、代数式在生活中的应用学生尝试练习通过具体例子巩固新知,同时让例。
意义,4表示数让学生走进生活、走进数学。多少万元?和数量例。
三、拓展开放思维。
五、随堂练习(备用)。
1.请同学们说一说代数式6p可以表示什么?
2.(1)一个两位数的个位数字是a,十位数字独立思。
六、课堂小结学生总。
1、谈谈收获,写出一些代数式,并指出哪结,各课堂小结通过谈收获使学生增加些是单项式,哪些是多项式?说明单项式与多项小组派成功感。
2、你能说出其中一个代数式的实际意义答,其活动来增加学生、师生合作交流作业吗?余互相机会。
3、解疑补充课后作业课本68习题3.2。
1、2、3四、教学反思成功之处:本节课通过富有吸引力、生动有趣的教学过程,充分体现以教师为主导学生为主体的教学原则,以达到新的课标要求。通过探究性教学方法激发学生兴趣和好奇性,加强学生主动探索,敢于发现的科学精神。并重视培养学生语言描述,引导交流形成规范语言和格式。通过“朗诵儿歌”,“概念发展法”、“人人来当老师”等活动来激发学生学习兴趣和好奇性,再通过开放例题中的条件,去拓展学生的开放思维,让学生自己编数学题,让每个学生走近数学、走进生活,培养想象和创新能力与同学的合作能力,把所学知识的理解和应用推向高潮。本人认为在导入和引导学生怎么探究及教态是本节课的最成功之处。整个课的活动设计我立足学生已有的生活经验、初步的数学活动经历以及已经掌握的有关数学内容,从观察和分析生活中的大量存在的代数式加深对数学概念的理解,并且自主解决实际问题。
不足之处:如果我再能注意以下几点效果会更好一些:
1、由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显觉得信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。
2、在学生编题时老师能给以适当点拨,从而充分挖掘出自己的解题能力,效果会更好。
2007年3月20日。
苏科版初中数学教学设计篇九
在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。
(二)学生情况。
我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。
(三)教材情况。
本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。
二、案例内容设计及说明。
环节一:复习引入。
环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。
环节二:新知探究。
活动。
1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。
环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。
2、将判定的题设和结论互换后的探究。
环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。
环节三:巩固和应用。
通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。
环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。
环节四:课堂小结。
在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。
环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。
环节五:拓展练习。
通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。
环节六:作业布置。
通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。
环节说明:作业。
1、重点面向学困生考察其掌握基础的程度。作业。
2、针对待优生夯实基础的基础上,提高其运用能力。作业。
3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。
三、案例分析与反思。
实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。
苏科版初中数学教学设计篇十
1、让学生了解鄂伦春族的服饰特点、生活习性等简单知识。培养学生热爱少数民族的感情。
2、有感情地演唱歌曲《勇敢的鄂伦春》。
重点:演唱歌曲《勇敢的鄂伦春》。
难点:
1、歌曲中“一呀一杆枪”“日夜巡逻”的音准及咬字吐字。
2、用打击乐器敲打节奏并尝试三个声部的敲击并能为歌曲伴奏。
一、情境引入。
教师头戴小鹿头饰:小朋友们,大家好!我是森林里的小鹿,今天,我想邀请大家到森林里去郊游。(课件:出示森林图片,背景音乐《小鹿,小鹿》。)。
师:森林里有许多可爱的小动物,我们来看看都有谁呀!
(课件:逐一出示各种小动物图片。)。
师:我还给大家带来一首好听的儿歌,请小朋友们轻轻拍手为我伴奏好吗?
(教师拍手读两遍歌词,适当做简单律动。)。
二、学唱歌曲。
师:小朋友快瞧,那里有一群我的小伙伴唱着歌向我们跑过来了。
(课件:出示一群奔跑的小鹿,同时播放歌曲录音。)。
师:现在我们来到了森林游乐园,大家看,这只看门的小鹿好象有话要对我们说。
三、游戏创编。
学生戴上各种小动物的头饰。
(课件:小鹿说:“大家先别着急,我还有要求呢,你们要把歌里唱的小鹿是怎么做的跟自己平时玩的游戏结合起来,教给游乐园里的小动物,怎么样,能做到吗?)。
学生分组创编,教师巡视指导。
四、分组展示。
学生依次展示两到三组,每组展示完可由教师和学生进行评价。
五、集体游戏。
师:小朋友们玩的游戏可真精彩,我也想把自己编的游戏跟大家一起玩,谁愿意上来?(挑选10人左右上台)。下面的小朋友,请你拍手为我们伴奏,学会了这个游戏,下课后可以跟你的小伙伴一起玩呢!
教师讲解游戏规则,与学生进行游戏。
六、结束部分。
(课件:小鹿说:“小朋友们,时间过得真快,我们的郊游要结束了,可我看到咱们玩过的地方有许多小朋友留下的垃圾,如果每个人都这样不爱护环境,我的家会变成什么样子呀!”)。
师:小朋友们,我们该怎么办呢?(学生自由说)。
师:那让我们一起行动起来,还小动物们一个美丽的家吧!
将本文的word文档下载到电脑,方便收藏和打印。
苏科版初中数学教学设计篇十一
(2)会解一元一次不等式组,并会用数轴确定解集.(二)目标解析
学生能说出一元一次不等式组的特征.
设问(1):依据题意,你能得出几个不等关系?
设问(2):设抽完污水所用的时间还是范围?
小组讨论,交流意见,再独立设未知数,列出所用的不等关系.
教师追问(3):怎样解不等式,并用数轴表示解集? 学生独立完成.
教师追问(4):通过数轴,怎样得出不等式组的解集? 学生独立完成,老师点评
学生尝试独立解不等式组,老师强调规范格式
学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:
(1)求每个不等式的解集;
(2)利用数轴找出各个不等式的解集的公共部分;
(3)写出不等式组的解集.
设计意图:初步感受解一元一次不等式组的方法和步骤.
例2 x取那些整数值时,不等式5x+23(x-1)与
都成立?
设问1:不等式都成立表示什么意思? 小组讨论
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题
(1)什么是一元一次不等式组?什么是一元一次不等式组的解集?
(2)解一元一次不等式组的一般步骤?
(3)一元一次不等式组解集的一般规律是什么?
设计意图:通过问题归纳总结本节课所学的主要内容.
苏科版初中数学教学设计篇十二
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
电脑显示,带领学生复习全等三角定义及其性质。电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等。但是,是否一定需要六个条件呢?条件能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角”元素进行分类,师生共同归纳得出:
1、一个条件:一角,一边。
2、两个条件:两角;两边;一角一边。
3、三个条件:三角;三边;两角一边;两边一角。
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。举例说明:
再如同是:等边三角形,边长不等,两个三角形也不全等。等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的`两个三角形全等,简写为“边边边”或“sss”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用。
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性。
图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习(略)。
3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)。
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。议一议:
学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件?经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
30,一条边为3cm。
剪一剪:
把所画的三角形分别剪下来。
比一比:
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。鼓励学生自己举出实例,体验数学在生活中的应用。学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生练习。
学生在教师引导下回顾反思,归纳整理。
z+z平台演示。
z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。
苏科版初中数学教学设计篇十三
1学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的.条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6教学过程。
教学步骤。
教师活动。
学生活动。
教学媒体(资源)和教学方式。
复习过渡。
引入新知。
创设情景。
提出问题。
建立模型。
探索发现。
归纳总结。
得出新知巩固运用。
及其推广。
反思小结。
提炼规律。
电脑显示,带领学生复习全等三角定义及其性质。
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
苏科版初中数学教学设计篇十四
1. 设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题。
2. 实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活。
3. 体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
4. 培养了学生观察、概括与抽象的能力。
5. 展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。
6. 新课程下的数学活动必须建立在学生已有的认知发展水平及知识经验基础之上。
7. 辅以相应的音乐,为学生创设轻松、愉快、高雅的学习氛围,在学习中感悟生活中的数学美。
8. 从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣。
9. 学生体会到数学来源于实践,同时对新知识的学习有了期待。
10. 通过设疑,引导学生合作学习,逐步启发学生探究―――。
11. 把直观形象的模型作为学生探究的素材,有利于学生对几何体由直观认识过渡到理性认识。
12. 让学生动手、动脑经历实际操作,认真体验,猜想验证的过程,培养学生想象力,发展空间思维。
13. 通过观察、思考、分析,使学生经历概念的归纳和概括的过程,引导学生深层次地参与到概念的形成过程中。
14. 有利于学生参与探索,感受数学学习的过程。
15. 有利于培养学生的语言表达能力,体会数形结合的思想。
16. 学生在探索这个问题的过程中,将自然地体会到―――的必要性,体验到数学与现实生活的紧密联系。
17. 这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习极有帮助。
18. 增强学生探索的信心,体验成功。
19. 学生开展合作探究,采用观察分析、探究归纳、合作学习方法,易使学生体会知识的形成过程,突破难点。
20. 充分让学生参与教学,在合作交流的过程中,获得良好的情感体验。
21. 培养了学生观察问题、发现问题、归纳问题的能力
22. 使学生在参与的过程中得到充足的体验和发展。
23. 为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系。
24. 及时练习巩固,体现学以致用的观念,消除学生学无所用的思想顾虑。
25. 落实新知与方法,增强学生运用数学的能力。
26. 加强学生运用新知的'意识,培养学生解决实际问题的能力和学习数学的兴趣。
27. 调动学生学习积极性,提高学生思维的广度。
28. 进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。
29. 充分发挥学生的主体意识,培养学生的语言概括能力。
30. 以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲。
31. 通过图片和动画展示,贴近学生生活,激发学生的学习兴趣。
32. 利用学生的好奇心,培养学生的创新能力。
33. 多媒体辅助教学,将知识形象化、生动化、具体化。
苏科版初中数学教学设计篇十五
1.经历过一点、两点和不在同一直线上的三点作圆的过程。
2.知道过不在同一条直线上的三个点画圆的方法。
3.了解三角形的外接圆和外心。
重点:经历过一点、两点和不在同一直线上的三点作圆的过程。
难点:知道过不在同一条直线上的三个点画圆的方法。
学生自己探索。
(一)、新授。
1.过已知一个点a画圆,并考虑这样的圆有多少个?
2.过已知两个点a、b画圆,并考虑这样的圆有多少个?
3.过已知三个点a、b、c画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑。
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个。
不在同一直线上的三个点确定一个圆。
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心。
例:画已知三角形的外接圆。
让学生探索课本第15页习题1。
一起探究。
分析:带领学生完成课本第13页的表格,并完成2、3问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题。另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解。
(二)、小结。
p15习题2、3。
后备练习:
1.已知一个三角形的三边长分别是,则这个三角形的外接圆面积等于。
2.如图,有a,,c三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()。
a.在ac,bc两边高线的交点处。
b.在ac,bc两边中线的交点处。
c.在ac,bc两边垂直平分线的交点处。
d.在a,b两内角平分线的交点处。
苏科版初中数学教学设计篇十六
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
引导发现法、讨论法。
教具:多媒体课件。
学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影。
七、教学过程:
(一)创设情境,设疑激思。
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)。
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新。
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补。
1、口答:(1)七边形内角和()。
(2)九边形内角和()。
(3)十边形内角和()。
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
(四)概括存储。
学生自己归纳总结:
1、多边形内角和公式。
2、运用转化思想解决数学问题。
3、用数形结合的思想解决问题。
(五)作业:练习册第93页1、2、3。
八、教学反思:
1、教的转变。
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变。
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变。
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。