长方体和正方体教学设计理念(热门17篇)
通过总结,我们可以发现自己的优点和不足。写总结时,要注意客观公正,对不足之处要实事求是地进行反思。以下是一些成功人士总结经验的范文。
长方体和正方体教学设计理念篇一
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
一、复习引入。
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课。
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)。
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。
三、议一议。
如果用s表示底面积,上面的公式可以写成:
v=sh。
四、巩固练习。
计算下面图形的体积。
正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。
v=a3v=sh。
长方体和正方体教学设计理念篇二
1、知识与技能:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。
2、过程与方法:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。
3、情感态度价值观:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。
1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!
2、小组合作,利用长、正方形纸板动手制作长方体纸盒。
3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。
生1:长方体有6个面、12条棱、8个顶点。
生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。
生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。
生4:拿着长方体指出它的长、宽、高。
师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)。
师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用"上"、"下"、"左"、"右"、"前"、"后"标明六个面。
师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?
生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。
师:有几组面积相等的长方形?
生:总共有三组面积相等的长方形。
师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)。
师:展开后的每个面是什么形状的?有几个相等的面?
生:每个面是正方形的,有6个相等的面。
师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。
生合作探究计算方法,汇报如下:(预设)。
生1:我们组列式是6×5+6×5+6×3+6×3+5×3+5×3,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。
生2:我们组列式为6×5×2+6×3×2+5×3×2。我用6×5×2求上下两个面的面积;用6×3×2求出前后两个面的面积;用5×3×2求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。
生3:我们组列式是(6×5+6×3+5×3)×2。我用6×5求出上面;6×3求出前面;5×3求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。
生4:我们组列式是(5+3+5+3)×6+5×3×2。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;5×3×2求的是左右两个面的面积。最后再求出它们的和。
生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:6×3×4+3×3×2,我用6×3×4求的是上下、前后四个面的面积;用3×3×2求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。
师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?
生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。
生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长×棱长×6。
1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。
2、生独立计算。
3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)。
简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。
2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)。
3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)。
师:这节课你有什么收获?
长方体和正方体教学设计理念篇三
教学内容:
人教版教材数学五年级下册29页到30页教学目标:
1、探究、推导长方体和正方体体积的计算公式
2、理解掌握并运用长方体和正方体体积公式解决实际问题
3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力
教学重点:
理解掌握长方体和正方体体积的计算公式
教学难点:
长方体和正方体体积公式的推导
教具准备:
学生准备小正方体(多个)ppt
教学过程:
1、填空
(1)()叫做物体的体积。
(2)常用的体积单位有()()()
2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。
1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)
2、出示学习目标:
(1)探究总结长方体和正方体的体积的计算方法
(2)运用长方体和正方体体积的计算公式解决实际问题
1、回顾“以旧学新”的几何问题研究方法
以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。
2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示
(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)
(2)把不同的长方体的相关数据填入下表(29页表格)
(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?
6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3 a3读作“a的立方”,表示3个a相乘。
1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)
2、一块棱长30厘米的正方体冰块,它的`体积是多少立方厘米?(33页第9题)
3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)
这节课你有什么收获?
板书设计:
长方体和正方体体积
长方体体积=长×宽×高
v=abh正方体体积=棱长×棱长×棱长
v=a×a×a=a3
长方体和正方体教学设计理念篇四
2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。
掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。
每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。
(一)、创设情境。
师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)。
师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)。
师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?
生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。
师;看来同学们都是生活中的.有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)。
(二)、认识特征。
1、师出示长方体模型。
师:(师拿模型)关于长方体,你还知道些什么?
生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)。
师:再看一看两个面相交处有什么?
生:有一条边。
师:我们把两个面相交的这条边叫做棱。(板书:棱)。
师:请同学们看一看三条棱相交处有什么?
生:尖。(或点)。
师:三条棱相交的点叫做顶点。(板书:顶点)。
师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。
学生按要求摸一摸。
生:长方体有6个面。
师:你们同意吗?谁来说一说你是怎样数的?
生1:我是转圈数,再数左、右两边的两个面,共6个面。
(边说边演示)。
生2:我是按上面、下面、前面、后面、左面、右面的顺序数的,共6个面。
(边说边演示)。
生可能回答:
生1:这6个面都是长方形。
生2:上、下两个面大小相等。
生3:左、右两个面大小相等。
生4:前、后两个面大小相等。
生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的(师拿着展示)。
学生同桌合作交流并集体汇报:
生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。
生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。
师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。
下面我们来看一下大屏幕,(师用课件演示)。
通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)。
师:(师拿物体说)这是一种比较特殊的长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。
3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?
生:8颗珠子。
师:这些珠子就是长方体的(顶点)。
师:那么长方体有几个顶点?
生:长方体有8个顶点。
师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。
师:再数一数这个长方体用了几根小棒?
生:用了12根小棒。
师:这些小棒就是长方体的(棱)。
师:谁来说一下长方体有几条棱?
生:长方体有12条棱。
师:长方体的棱有什么特点?
生1:这12条棱可以分成3组,相对的棱长度相等。
生2:这12条棱可以分成3组,每组4条棱长度相等。
师指名一生到前面演示。
(师用课件演示说明)。
师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。
4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)。
学生观察,讨论。
5、师:谁来说一说正方体有哪些特征?
生1:正方体也有6个面,6个面都是正方形的。
生2:正方体所有的面完全相等,
生3:它有12条棱,所有的棱的长度都相等。
生4:有8个顶点。
师:同学们真聪明,下面咱们一起来看大屏幕。
长方体和正方体教学设计理念篇五
2、通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和长方体表面积计算方法,培养学生的动手操作、观察、抽象概括、探究问题的能力和初步的空间观念。
3、使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
理解长方体、正方体表面积的意义和掌握长方体表面积计算方法。
确定长方体每一个面的长和宽。
第一课时。
1、什么是长方体的长、宽、高?
2、指出长方体纸盒的长、宽、高,并说出长方体有什么特征?正方体有什么特征?
同学们,在我们的日常生活中有许多精美的包装盒,工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。
板书课题“长方体和正方体的表面积”:当你看了课题以后,你想知道什么?
1.初步认识长方体的表面积。
2.初步认识正方体的表面积。
请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。
深化主题。
1、探索活动:长方体的表面积。
2、集体研讨:学生归纳,
老师板书:长方体表面积:长×宽×2+长×高×2+高×宽×2或:(长×宽+长×高+高×宽)×22。出示例1做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。
3、小结:计算长方体的表面积,关键是要正确找出3组面中每个面的长和宽。同学们真爱动脑筋,我们计算时可以选择最简便的算法。
4、迁移:把高0.4米改为0.5米,怎样计算?学生讨论,交流汇报:
这是一个特殊的长方体,有两个相对的面是正方形,四个完全一样的长方形(只列算式不计算结果)。
勇闯第二关:智力冲浪园。
教后反思:
长方体和正方体教学设计理念篇六
在上这节复习课时,我专门翻开了“24字教学模式”操作手册,网上也查阅了四种课型的特点。就复习课和练习课而言:两者不同,复习课是学生对已有知识的再现和梳理,对学生已经建构的知识进行巩固、深化、扩展,使知识系统化、条理化,针对学生的弱点,查漏补缺。要充分发挥复习课的作用,避免将复习课上成重复课,复习课应当选择恰当的教学策略。能通过复习,使学生对所学知识连成线,铺成面。而练习课则是上几节新学课后需要巩固知识、提升学生能力的一种课型。它是新学课的拓展延伸,是新学知识的巩固和提升、拔高和提炼,要上出高效的练习课,教师课前得精选习题,备课是关键。
复习的重要目的在于知识的综合化,因此,复习时要注意对知识进行归纳整理。
本节课前我布置给学生的作业是:采用自己喜欢的方式去梳理本单元的知识点。在课前的十分钟时间里,采用小组交流的环节,让学生对自己梳理的知识进行补充及系统化。反馈:每小组里1号或2号学生能用大括号、知识(框架)表格、知识树等形式去归纳,但学生归纳的系统性、条理性欠缺。然后学生又给这棵“树”添加了“绿叶”。如:复习长正方体的特征:8个顶点、12条棱、6个面。计算它的棱长和、表面积、体积,在计算的同时说说计算的依据。这是通过计算,复习长正方体的求积方法,说依据,反过来帮助学生认清了长正方体的特征就是计算方法的根本。根据长正方体的特征,请学生用一句话概括长方体与正方体的关系,为的是让学生理解长正方体间的关系。
在课前做一些调查,学生对这一单元知识点还存在哪些疑问,教师再把这些疑问集中起来,然后进行归纳分类。在课堂上将所有的疑问摆出来,分小组,让学生交流汇报,老师将学生们的闪光的东西总结出来,通过实践活动,把问题一一解决。
复习课不能仅仅停留于巩固和梳理,更要为学生的思维创设条件,搭设一个思维深化的平台,切实提高学生的思维能力。如遇到不规则的立体图形求体积时,我们也可以用底面积乘以高来进行求解。
基本练习采取选择、连线等方式把体积与容积、表面积的几种不同的解答方法柔和在一起,同时渗透表面积的判断方法。学生脑中先呈现出一幅图,这幅图就是学生脑中的“形”;然后连线,就是将脑中的“形”抽象成了数的运算,最后请学生讲算理,就是将“数”又还原成学生脑中的“形”,这时学生脑中的“形”就更为丰满。几何知识的教学是“形”与“数”最好的结合点。创设好的情景,架构起学生“形”与“数”之间的桥梁。
本节课我觉得设计最好的一道题是最后那道鱼缸的题,这道题几乎涵盖了本单元所有的知识点。在选择此题的时候就是看中了它的综合性,在分析时让学生清晰地明确每个问题所求的是什么。比如:求长方体鱼缸一周用了多少米铝合金条?这个时候听到学生在下面七嘴八舌:这是求棱长总和的……本课最遗憾的是学生参与不积极,每次发言总是那几个。结合班情,剖析班状:学生太懒,学习习惯差,缺乏自主学习的能力。今后努力方向,继续抓学习习惯。
长方体和正方体教学设计理念篇七
3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力。
学生准备小正方体(多个)ppt。
1、填空。
(1)()叫做物体的体积。
(2)常用的体积单位有()()()。
2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。
1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)。
2、出示学习目标:
1、回顾“以旧学新”的几何问题研究方法。
以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。
2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示。
(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)。
(2)把不同的长方体的相关数据填入下表(29页表格)。
(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?
6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3a3读作“a的立方”,表示3个a相乘。
1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)。
2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)。
3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)。
这节课你有什么收获?
v=abh正方体体积=棱长×棱长×棱长。
v=a×a×a=a3。
长方体和正方体教学设计理念篇八
1、知识与技能目标:通过学习,让学生知道长方体和正方体的各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
2、过程与方法目标:让学生经历观察,交流,归纳等认识长方体和正方体特征的过程。
3、情感态度与价值观目标:让学生积极主动参与数学活动,在总结和归纳长方体、正方体的特征以及关系的过程中获得积极的学习体验。
教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。
(一)创设情境,导入新课。
用多媒体向学生展示一些基本图形长方形、正方形、三角形、平行四边形、梯形,询问学生:“这些图形我们统称为什么形?”在学生回答称为平面图形。
让学生拿出自己准备的盒子,观察之后告诉他们像盒子这样占有一定空间的图形,叫立体图形,今天我们我们来研究立体图形中的长方体和正方体的特征,并板书课题——长方体和正方体的认识。
(二)探究新知。
1、认识长方体的面、棱、顶点。
首先请学生拿出已准备好的长方体(学具),闭上眼睛摸一摸,想一想:“长方体是由什么围成的?两个面相交处有什么?三条棱相交处有什么?”让学生告诉我他们的发现,然后将拿出长方体,边摸边讲解:什么叫面、棱、顶点。
请学生用手中的学具四人一小组研究长方体和正方体面、棱、顶点的特征,完成表格。
给出了三组小棒,让学生判断哪组可以组成长方体。学生汇报正方体的面、棱、顶点的特征。
让学生总结前面讲到的长方体、正方体的特征,并进行对比,说一说它们相同点和不同点。
(三)多种练习,巩固新知。
(四)课堂小节。
让学生谈一谈体会,概括本节课所学知识。
长方体和正方体教学设计理念篇九
上完《长方体和正方体表面积》这节课后,我的心情并不轻松,有遗憾也有欣慰,遗憾的是在引导新课这一环节中,让学生用受去摸长方体的六个面,由于教师叙述不周,把“表面”说成“面”,再加上学生操作不熟练,造成学生在汇报时,有说摸到棱的、顶点的.、长、宽、高的,就是不重点受六个面的,等教师再引导学生按顺序摸上、下、左、右、前、后6个面并标出来,再展开观察长方体展开平面图,进一步了解长方体的6个面及相对的两个的面积相等,从而引出长方体或正方体表面积的意义。
本节课上完后,我不断思考,问题出在哪儿,最终还是觉得有以下几点不妥:首先教师在设计上有问题,在此环节中不设计让学生去摸长方体的每个面,因为在长方体、正方体的认识中,学生已经通过摸知道了长方体、正方体、面、棱、顶点的特征,在此处再去摸一方面与整个环节衔接不当;另一方面降低学生的认知水平,浪费了学生探究新知的最佳时间,造成这一环节每一步比较生硬,学生纯粹被老师牵着鼻子走,走得很不协调。另一方面是展开教师或学生无法用实物展示的东西。而本节课长方体、正方体,学生手中都有,根本没必要用多媒体展示。
本节课出现上述问题使我发现,教师要想提高课堂效率,教学设计是非常重要的,而在设计时最重要的一点就是了解学生,了解他们的认知前提,了解他们的认知需要,了解他们的认知困难,只有这样教师才能在各个环节时间,加大课堂密度,增加课堂练习量,提高课堂效率。另外,还要注意钻研教材,因材施教,不能盲目地套别人的设计,最终使学生和教师陷入不和谐,反而降低了课堂效率。
长方体和正方体教学设计理念篇十
长方体表面积的计算是在学生认识并掌握了长方体和正方体特征的基础上教学的。本节课让学生自己去尝试,发现长方体表面积的不同计算方法。学生学得轻松、愉快而扎实。让学生经历知识的获得过程,经历思维的形成过程,充分凭借学生的已有知识,提出问题,解决问题。使学生在讨论、探索、思考、表达、交流中得到发展,课后反馈效果很好。
在思考、讨论中步步为营。在教学中,对长方体表面积的计算,教师从学生已有经验长方体的认识引入,先让学生回顾长方体的特征,如:让学生拿出准备的长方体纸盒,按照一定的位置在六个面上分别表明前、后、左、右、上、下;想一想:根据长方体棱的特征,我们可以八长方体的12条棱分成几组?怎么分?为什么?同桌之间互相指一指长方体的长、宽、高等。在每一个细小问题的思考、讨论、交流中都给学生足够的时间和空间,让学生自主地对每个环节知识的掌握都落实到位,并为后面的知识作好循序渐进的铺垫,让学生在这种环环相扣、步步为营的学习过程中,顺其自然地掌握方法、解决问题、获得发展。
长方体和正方体教学设计理念篇十一
生1:饼干盒是长方体。
生2:木箱是正方体。
师:对于长方体和正方体你们已经知道了什么?
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体相对面的面积相等。
生3:长方体的每个面都是长方形,可能有两个相对面是正方形。
生4:正方形的6个面的面积相等。
……
师:同学们知道的可真多,那对于这两个物体你还想知道什么?
生1:我想知道它们的12条棱共有多长?
生2:我想知道它们的面积是多少?
……
师:同学们想知道的可真多,我们今天先来研究长方体和正方体的表面积好吗?(板书课题)
(二)探究
1、表面积的意义
师:那什么叫做长方体和正方体的表面积?
(拿出饼干盒、木箱)谁愿意上来摸一摸,并说说什么是它们的表面积?
生1:(边摸边说)长方体6个面的和是它的表面积。
生2:(边摸边说)正方体6个面的和是它的表面积。
师:(电脑演示长方体、正方体展开的过程)长方体和正方体6个面的总面积叫做它们的表面积。
生1:课本是长方体,它6个面的面积和是它的表面积。(边说边摸)
生2:橡皮的6个面的面积和是它的表面积。(边说边摸)
……
师:老师这里也有两个物体(出示无盖杯子和香皂盒),这两个物体的表面积在哪里?谁愿意上来摸一摸。
(指名学生上来边摸边说)
师:象这些物体几个面的总面积,就叫做它们的表面积。
2、表面积的计算
(1)一般长方体的表面积计算
生1:可能和长方体的棱长有关。
生2:可能和它的长、宽、高有关。
师:那请大家再猜猜它的表面积大概会是多少?
生1:74平方厘米。
生2:90平方厘米。
生3:120平方厘米。
……
师:那这个长方体的表面积到底会是多少呢?你们敢自己去探究它的表面积吗?
生:敢。
师:真勇敢,那请同学们拿出1号物体独立思考一下,求它的表面积需要测量它的哪几条棱,怎样计算3的表面积,好吗?然后再开始研究,研究时做好记录,完成表格,如果自己研究有困难,可以和小组里的同学一起研究。
数据记录计算方法
长方体长:
宽:
高:
(自主探究)
师:接下来我们在小组里交流一下自己的方法,交流时要求每位同学都说说自己的方法,交流结束后各小组准备派两个代表汇报。(生在小组里交流)
生1:我们先算上面的面积10×6,再算左侧面的面积4×6,再算前面面的面积10×4,因为长方体相对面的面积相等,所以把3个面的面积加起来,再把它们的和乘以2,10×6+4×6+10×4(方法一)
积和它相等,它们的和是6×4×2,最后把他们加起来是10×6×2+10×4×2+6×4×2。(方法二)
生3:10×(4+6)×2+4×6×2(方法三)。
师:你是怎样想的?
生3:因为前后两个面的面积是10×4×2,上下两个面的面积是10×6×2,两部分合起来是10×4×2+10×6×2,我再利用乘法分配律把它改写成10×(4+6)×2,再加两个侧面的面积10×(4+6)×2+4×6×2。
师:你真聪明!
师:现在我们来看看刚才的猜测,我们猜得准吗?
生:不准。
生1:我比较喜欢第一种方法。
生2:我喜欢第三种。
……
(2)特殊长方体、正方体的表面积计算
师:接下来,我们就用自己喜欢的方法来解答两个物体的表面积,每个桌上还有两个物体,2号长方体的长是8厘米,宽是5厘米,高也是5厘米,正方体的棱长是5厘米,请你们求出他们的表面积。
生独立计算后交流
师:我们先来看2号物体,说说你是怎样解答的?
生1:8×5×2+8×5×2+5×5×2。
生2:(8×5+8×5+5×5)×2。
生3:8×5×4+5×5×2。
师:说说你是怎样想的?
生3:因为这个长方体的左右两个侧面是正方形,所以中间4个面就相等,先算出一个面的面积8×5,把它乘以4就可以了,再加上两个侧面的面积5×5×2,就是8×5×4+5×5×2。
师:这三种方法,你们比较喜欢哪一种?
生:第三种。
师:我们再来看看这个正方体,你是怎样求它的表面积的?
生1:5×5×6,我是这样想的:因为正方体6个面的面积相等,所以可以先算一个面的面积,再乘以6。
生2:5×5×2+5×5×2+5×5×2。
师:哪种方法比较简便?
生:第一种。
师:看来特殊情况下,我们还要灵活处理,可能回有更好的方法。
……
1、鼓励大胆猜想,诱发探究意识
关于猜想,著名数学教育家波利亚有一段精彩的论述:我想谈一个小小的建议,可否让学生在做题前猜想该题的结果或部分结果。一个孩子一旦表示出某些猜想,他就把自己与该题连在一起,他会急切地想知道他的猜想正确与否,于是他便主动地关心这道题,关心课堂的进展。在教学中,我从学生的生活实际出发,设计问题情境,为学生提供两种生活中常见的几何体(饼干盒、木箱),要学生说说“对于这两个物体,你已经知道了什么?”“还想知道什么?”使他们自发地提出所要探究的问题,然后再鼓励学生用自己的思维方式大胆地猜想:“这个长方体的表面积可能与什么有关?”“它的表面积大概会是多少?”学生凭借自己直觉和自己的数学实际,提出各种看法,虽然有些“猜想”是错误的,但创新的智慧火花瞬间被点燃,同时一种种不同的猜想又激起了学生的探究愿望和进行验证的需要。
2、搭建探究舞台,挖掘思维潜力
在上面的教学中,在学生独立探究长方体表面积计算的活动中,先引导学生思考“求长方体表面积需要测量哪几条棱?”“怎样计算他的表面积?”这两个问题,再让学生独立思考。在这独立思考的过程中,每个学生都在根据自己的体验,用自己的思维方式自由的、开放地去探究,去发现解决长方体的表面积计算方法。在测量棱长的过程中,有的学生只测量长方体的长、宽、高就可计算,而有的学生其实也测量长、宽、高,但他们需要测量6次,也有的学生测量12次。在探索其计算过程中,有的学生是先算上面的面积10×6,因为相对面的面积相等,所以只用再乘以2,也就是10×6×2+10×4×2+6×4×2,有的是(10×6+10×4+6×4)×2,还有两位学生解决的方法更是出乎意料。在这过程中,我们不难发现学生的活动是自主的,是鲜活生动的,是富有个性和创造的,学生的创造潜力能在这样的活动中得到充分的发挥。学生经过自己的探究,找到了解决的方法,不仅智慧能力得到发展,而且获得了深层次的情感体验。
3、提供交流机会,实现合作互动
长方体和正方体教学设计理念篇十二
教学目标:
知识与技能:知道长方体和正方体的各部分名称以及它们的特征,知道正方体是特殊的长方体。
过程与方法:经历观察、交流、归纳等认识长方体和正方体的特征以及它们之间关系的过程。
情感态度价值观:积极主动参加数学活动,获得进行数学归纳概括的经验和积极的学习体验。
教学重点:认识长方体和正方体面、棱、顶点的特征,知道长方体的长、宽、高和正方体的棱长,了解长方体和正方体的关系。
教学难点:数长方体的12条棱,分成三组,有规律的数出来,理解每一组棱的长度与长、宽、高的关系。
我们都知道,对于那些构建空间观念能力薄弱的学生来说,本单元的学习是有一定难度的。而对长方体正方体特征的充分认识就显得尤为重要了。虽然说长方体在学生的身边随处可见,但是要发现它的特征,并不容易。基于以上的认识,我设计了如下教学过程:
第一个教学环节:炫我两分钟。
首先复习正方形和长方形之间关系的知识,为研究长方体和正方体的关系进行铺垫,其次学生通过自己寻找日常生活一些长方体、正方体的实物,并获得了丰富的感性经验。这些都是学生探索长方体、正方体有关知识的重要基础。并通过动画的形式让学生感知体的形成。激发学生学习的兴趣。
第二个环节认识长方体和正方体的面、棱、顶点。
学生对知识的认知是建立在经验和活动基础之上的,这就需要学生从已有的知识和经验出发,经历由具体到抽象、有特殊到一般的`探索过程,逐步形成数学知识,因此,在教学中设计让学生观察引导学生在具体的活动中,进一步积累空间与图形的学习经验,发展空间观念。我首先设计了一个切土豆的小游戏,让学生通过动手操作更深刻的感知长方体和正方体的面、棱、顶点。
第三个环节:小组合作探究长方体和正方体的特征。
在本环节教学中,我能注意锻炼学生的归纳总结能力,在认识长方体特征时,学生通过数一数、看一看,拆一拆、比一比等活动归纳总结的,我还设置了具体的问题,例如:数一数:1、长方体有几个面,正方体有几个面?你是怎样数的?2、观察长方体和正方体框架各有多少个顶点,多少条棱?这样学生就非常明确,小组内进行交流。在学生弄清长方体和正方体的面、棱、顶点的特征基础上,组织学生比较,发现长方体和正方体的相同点与不同点,使学生认识到正方体是一种特殊的长方体。这样既有利于发展学生的迁移、类推能力,又有利于发展学生的空间观念,培养学生思维的灵活性。接着通过ppt让学生认识了长方体的长、宽、高及正方体的棱长。
第四个环节是挑战自我。
第一题看图说出每个长方体的长、宽、高分别是多少?
主要是面向全体学生,进一步落实知识与技能目标。
这道题设置为以后学习长方体和正方体的体积等知识打基础。
接下来的环节是梳理收获。目的是培养学生的自主反思的建构能力,但是我们可以看出学生在总结收获时往往都是知识上的收获,在这里可以引导学生说说其他方面的收获。
最后一个环节:拓展延伸。
(2)前面的面积是()平方厘米,()面和()面的面积都是90平方厘米,左右两个面的面积都是()平方厘米。
通过这节课的教学,,我发现还存在一些问题,在学生汇报长方体和正方体面、棱、顶点时,应点拨学生在数的时候不能来回翻转应固定好位置,以免遗漏。
长方体和正方体教学设计理念篇十三
《长方体和正方体的表面积》这节课是在学习了长方体和正方体的特征,长方体和正方体的展开图的基础上进行的。也就是学生已经对长方体特征及其展开图有了较深的了解基础上,学习长方体的表面积及其计算的。因此,在本节课的教学中以学生自主探索为主,教师适时点拨。
这节课的重点是理解长方体(正方体)的表面积概念及其计算方法,并能正确计算;难点是正确建立表面积的概念.计算长方体表面积的关键是找出每个面的边长(长和宽)。上课的时候直接揭题并板书本节课的内容。然后学生完成书第8页的第一题,通过这题,学生了解长方体的长、宽、高与各边之间的关系,为计算各个面的面积作了准备。学生已有了一定的知识准备,但不能上升到公式化的高度。这时,通过例4的学习后,学生根据前面的知识,就归纳出长方体的表面的计算,可以用长方体的长、宽、高来表示出来。这节课的`学习达到了本节课的教学要求。但在一些细节方面还需要做改正:如对长方体表面的概念这一环节的教学,在讲完这个概念后,应该让学生拿出他们的长方体纸盒来摸摸以加深理解和印象,有在归纳出长方体表面的公式后,应该回到一开始的图上,让学生说一说每一部分求什么,以达到加深学生理解的目的,这些都是在以后备课和上课中要注意和更细致一些的地方。
长方体和正方体教学设计理念篇十四
本节课教学时我主要运用操作实验法、引探发现法、小组合作学习法等多种方法,给学生提供自主探索的平台,让学生通过小组合作学习,操作实验、观察、猜想、发现推导出长方体体积计算公式,让学生亲身经历知识的形成全过程,从而证明了自己的能力,品尝到成功的喜悦。培养学生的合作意识和实践能力。
体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展。然而此时,学生对立体的空间观念还很模糊,要注意加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体计算公式的理解。教学中,我先通过切开一个长3厘米、宽3厘米、高1厘米的长方体和棱长为2厘米的正方体,看看它们各含有多少个1立方厘米的体积单位,引入计量体积的方法。但是在很多情况下,是不能用切开的方法来计量物体的体积的。于是我给了学生若干个1立方厘米的小正方体,放手让学生摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考,根据记录的长、宽、高,摆这个长方体一排要摆几个小正方体,要摆几排,摆几层,一共是多少个小正方体。再引导学生进一步思考,这个长方体所含小正方体的个数,与它的长、宽、高有什么关系。长方体的体积与长、宽、高的关系这一内容,比较抽象,教材中用6个小正方体让学生摆,只能摆3种,不利于学生找出规律。我大胆地让学生用12个小正方体摆,学生摆到了8种,并记录整理数据,提高学生的兴趣和学习积极性,更有利于学生悟出长方体的体积与长、宽、高的关系,这样做可能有人认为费时,但我认为这样做值得,因为这样做能让他们在认识数学、理解数学的过程中更好地发展认知水平,提高了学习能力。最后,通过学生自己比较、发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。这种实际操作,培养了学生勤于思考和勇于探索的精神,激发学生的探究意识,增强数学的吸引力。
长方体和正方体教学设计理念篇十五
本节课的内容是在学生已经学习了面积和面积单位、长方体和正方体特征的基础上进行教学的,为进一步学习其他立体图形奠定基础。
1、重视表面积概念的教学。在教学中利用在上节课中学生粘贴的长方体和正方体,让学生沿着棱剪开得到它们的展开图,并标出“上、下、前、后、左、右”六个面。这样把长方体和正方体的展开图与表面积的概念结合起来进行教学,便于把展开后的每个面与展开前的每个面的位置对应起来,可以更加清楚地看出长方体相对的面的面积相等,每个面的长和宽与长方体长、宽、高之间的关系,从而得出表面积的概念,即长方体和正方体六个面的总面积,叫做它的表面积。
2、重视表面积计算公式的推导。在例1的教学中,通过结合生活中的情境将知识学习、方法探究和解决问题三者统一起来进行教学,可以使学习内容基于问题学习,让学生进行主动探索表面积的计算方法,从而起到“一石三鸟”的功效。另外在推导长方体表面积计算公式的过程中,得出两种计算方法,教学中充分利用已有知识乘法分配律来沟通两种方法。特别要突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢固进行记忆,避免出现死记硬背计算公式的现象。
1、计算出现错误的现象很严重,主要是学生不细心,对于小数的计算不重视。
2、个别同学对于上下面、前后面、左右面的计算混淆,导致出现有的面不需要计算还是计算在内。
3、对于特殊的长方体进行侧面积计算时应补充为侧面积=底面周长×高,这样对于计算特殊长方体比较简便。
突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢记。
长方体和正方体教学设计理念篇十六
长方体和正方体是最简单的几何体。学生在认识了一些平面图形的基础上,将进一步了解简单几何体的基本特征,是学生对图形认识的一个转折点,是学生认识上的一次飞跃,也是学生学习其它立体图形的基础,它从平面图形过渡到立体图形,对于学生空间观念的发展更是一个质的飞跃。学生在空间方面的认识从二维发展到了三维。虽然说长方体在学生的身边随处可见,但是要发现它的特征,还是不怎么容易的,特别是对于那些构建空间念能力薄弱的学生来说,本节课的学习是有一定难度的。而对长方体正方体特征的充分认识就显得尤为重要了。我在教学《长方体和正方体的认识》这一课时注重做到以下几点:
1、关注学生已有的知识和经验,引导学生在比较中直观感知长方体、正方体与长方形、正方形的区别,从而将面与体区别开来,使学生从整体上初步感知新知识,并且应用亲切、拟人化的口气提问题,激发学生学习兴趣,唤起学生主动探索的欲望。
2、给学生更多的时间与空间动手操作,引导学生通过摸一摸长方体这个新朋友,并谈一谈这个新朋友带给你的感觉,在学生感受的基础上认识长方体的面、棱和顶点,在认识的基础上进行反馈,进行再认识。并且以小组合作的形式,一人指,一人回答,进一步强化对于顶点、面以及棱的巩固。
3、在学生初步感知了长方体以后,我适时组织学生讨论:在观察讨论的过程中,你发现了长方体的什么秘密,记录下来。再请小组代表汇报发言。在这一环节,我注重知识的条理性,培养学生有条理地研究问题。学生在小组内讨论结束后我组织学生有条理地总结,并有条理地板书。
4、让学生对照长方体和正方体模型,小组讨论找出长方体和正方体的相同点和不同点,并进行记录,最后交流总结得出二者之间的联系与区别。通过学生的再观察,讨论、辩析、进一步巩固了对长方体、正方体特征的认识,同时培养了学生思维能力,与此同时,对于特殊的长方体,同样让学生自己先研究再交流,发现这样的长方体有两个面是正方形的,其他四个面都是一样大小的长方形,并通过课件演示,让学生从直观上感受到了正方体是特殊的长方体。
由于时间关系,本节课学生在操作上的时间比较紧张,特别是对于有两个面是正方形的长方体,教师通过自己的拼搭,没有放手让学生去试一试,有些学生还不能完全理解,这在以后的教学中还需改进。
将本文的word文档下载到电脑,方便收藏和打印。
长方体和正方体教学设计理念篇十七
在教学《长方体和正方体的认识》时以“做中学”的思想为指导,通过采用“自主探究、操作内化、直观引导、交流讨论”等不同的教学策略使学生掌握长方体和正方体的特征及关系。
首先,我让学生先对长方体的实物进行观察,找出长方体的特征。
然后通过让学生小组合作动手做长方体框架了解长方体的12条棱怎样分组,每一组棱的长度有什么关系。在认识长方体的基础上再观察正方体物品,抽象概括出正方体的特征。
最后按照面、棱、顶点的次序,引导学生找处它们的相同点和不同点,并利用集合图进一步说明它们的关系。
这样,学生在掌握新知的同时,发展了空间观念,提高了观察能力、操作能力、抽象概括能力。不足的是,由于学生动手操作的时间比较长,导致课后一些有关的辨析练习没有时间完成,在今后的教学中,我会更加注意对学生开展小组合作学习的分工及操作的指导,提高小组学习的有效性。