多边形的外角教案(精选16篇)
一个好的教案需要经过反复修改和完善,与实际教学相结合,不断改进教学方法和手段。教案的编写应该注重培养学生的主动学习能力和创新精神。下面是一些使用教育技术手段编写的教案实例,希望能对教师们的教学工作有所帮助。
多边形的外角教案篇一
1、在初一旧教材中完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。结合新教材中这一部分内容的编排,所以特意在教学过程中安排了这样一堂活动课,希望对于新课程标准思想有所体现。
2、为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:
(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。
(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的.设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。
(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。
(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。
虽然整堂课下来出现了较多的漏洞,但我想作为一个新教师的一种尝试也未尝不可。只有通过不断地尝试,不断地失败,我们才能到达胜利的彼岸!
多边形的外角教案篇二
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点。
多边形的外角教案篇三
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用,数学教案-多边形的内角和。
难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。
2.教法建议。
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题,初中数学教案《数学教案-多边形的内角和》。
教学目标:
1.使学生掌握四边形的有关概念及四边形的内角和定理;
2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;
3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;
4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想。
教学重点:
教学难点:
四边形的概念。
教学过程:
(一)复习。
在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识。请同学们回忆一下这些图形的概念。找学生说出四种几何图形的概念,教师作评价。
(二)提出问题,引入新课。
利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件。(先看画面一)。
问题:你能类比三角形的概念,说出四边形的概念吗?
(三)理解概念。
1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形。
在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下。其次,要给学生讲清楚“首尾”和“顺次”的含义。
2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念。
3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序。
练习:课本124页1、2题。
4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了。
5.四边形的对角线:
(四)四边形的内角和定理。
定理:四边形的内角和等于.
注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决。
(五)应用、反思。
例1已知:如图,直线,垂足为b,直线,垂足为c.
求证:(1);(2)。
证明:(1)(四边形的内角和等于),
练习:
1.课本124页3题。
小结:
知识:四边形的有关概念及其内角和定理。
能力:向学生渗透类比和转化的思想方法。
作业:课本130页2、3、4题。
多边形的外角教案篇四
知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想。
重点:多边形内角和定理的探索和应用。
教学难点:边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.。
教学过程。
第一环节创设现实情境,提出问题,引入新(3分钟,学生思考问题,入)。
1.多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形.。
2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?
第二环节概念形成(5分钟,学生理解定义)。
第三环节实验探究(12分钟,学生动手操作,探究内角和)。
(以四人小组为单位展开探究活动)。
活动一:利用四边形探索四边形内角和。
要求:先独立思考再小组合作交流完成.)。
(师巡视,了解学生探索进程并适当点拨.)。
(生思考后交流,把不同的方案在纸上完成.)。
……(组间交流,教师展示几种方法)。
进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。
活动二:探索五边形内角和。
(要求:独立思考,自主完成.)。
第四环节思维升华(5分钟,教师引导学生进行推算)。
教学过程:
探索n边形内角和,并试着说明理由。
(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)。
n边形的内角和=(n—2)180°。
正n边形的一个内角==。
第五环节能力拓展(12分钟,学生抢答)。
抢答题:
1.正八边形的内角和为_______.
3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.
应用发散:
第六环节时小结:(3分钟,学生填表)。
第七环节布置作业:习题4、10。
b组(中等生)1。
c组(后三分之一生)1。
教学反思:
多边形的外角教案篇五
教学目标。
知识与技能。
掌握多边形内角和公式及外角和定理,并能应用.
过程与方法。
2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.
情感态度价值观。
通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.
重点。
多边形的外角教案篇六
过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。
情感态度与价值观目标:养成实事求是的科学态度。
教学重点:多边形的内角和公式
教学难点:多边形内角和公式
讲解法、练习法、分小组讨论法
结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、
生成新知、深化新知、巩固新知、小结作业。
1. 导入新知
首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的
内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。
通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。
2. 生成新知
接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此
得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。
验证:七边形验证
在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。
3. 深化新知
再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求
内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。
本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。
4. 巩固提高
我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,
我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。
我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。
5. 小结作业
先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。
多边形的外角教案篇七
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用,数学教案-多边形的内角和。
难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。
2.教法建议。
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题,初中数学教案《数学教案-多边形的内角和》。
教学目标:
1.使学生掌握四边形的有关概念及四边形的内角和定理;
2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;
3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;
4.讲解四边形的`有关概念时,联系三角形的有关概念向学生渗透类比思想.
教学重点:
教学难点:
教学过程:
(一)复习。
在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.
(二)提出问题,引入新课。
利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。
问题:你能类比三角形的概念,说出四边形的概念吗?
(三)理解概念。
1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.
在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.
2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.
3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.
练习:课本124页1、2题.
4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.
注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.
(五)应用、反思。
例1已知:如图,直线,垂足为b,直线,垂足为c.
求证:(1);(2)。
练习:
1.课本124页3题.
小结:
能力:向学生渗透类比和转化的思想方法.
作业:课本130页2、3、4题.
多边形的外角教案篇八
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用,数学教案-多边形的内角和。
难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。
2.教法建议
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题,初中数学教案《数学教案-多边形的内角和》。
教学目标:
1.使学生掌握四边形的有关概念及四边形的内角和定理;
2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;
3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;
4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.
教学重点:
四边形的内角和定理.
教学难点:
四边形的概念
教学过程:
(一)复习
在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.
(二)提出问题,引入新课
利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)
问题:你能类比三角形的概念,说出四边形的概念吗?
(三)理解概念
1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.
在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.
2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.
3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.
练习:课本124页1、2题.
4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.
5.四边形的对角线:
(四)四边形的内角和定理
定理:四边形的内角和等于 .
注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.
(五)应用、反思
例1 已知:如图,直线 ,垂足为b, 直线 , 垂足为c.
求证:(1) ;(2)
证明:(1) (四边形的内角和等于 ),
练习:
1.课本124页3题.
小结:
知识:四边形的有关概念及其内角和定理.
能力:向学生渗透类比和转化的思想方法.
作业: 课本130页 2、3、4题.
多边形的外角教案篇九
板书设计:
第二节物体分类的教学。
三、教学方法。
(一)、教幼儿把相同名称和物体放在一起。
(二)、教幼儿按物体的外部特征分类。
表格:教幼儿按物体的外部特征分类的教学要求(投影)。
颜色。
教具要求。
教学要求。
形状。
教具要求。
教学要求。
大小、长短、粗细、厚薄、宽窄。
教具要求。
教学要求。
将本文的word文档下载到电脑,方便收藏和打印。
多边形的外角教案篇十
教学目标:
1、通过观察、比较等方法,初步认识四边形、五边形、六边形等平面图形。
2.参与对图形的描、围、折等实践活动,体会图形的变换,发展空间观念。
3.在学习活动中积累对数学的兴趣,培养交往、合作意识。
教学重点:认识四边形、五边形、六边形。
教学难点:理解边的概念明白图形按边的数量分类、命名的意义。
学生准备:文具、钉子板、橡皮筋、正方形纸。
教师准备:多媒体课件、钉子板、橡皮筋、多边形卡片。
教学过程:
一、创设情境,导入新课。
今天我们继续来研究图形。
二、操作活动,探索新知。
(1)师指一个三角形,放大,瞧,这个是?你怎么知道的?
预设一:生:它有三个角。师:怪不得叫三角形的呢?除了三个角,还有什么?生:还有三个(条)边。什么样的边?你能来指一指吗?(学生点1、2、3)师:这条边从哪里到哪里?你能完整地指一指吗?师师范指(从这里开始,一条边,两条边,三条边),这三条边紧紧地_____?(连在一起)师:连,这个字用得十分贴切,在数学上,可以换一个字,围,让我们一起伸出手指围一个三角形。
预设二:生:它有三个(条)边,你能指一指吗?(1)同预设一。
(2)三角形是由几条边围成的图形?(三条边)对,也可以叫它三边形。
(3)机器人身上还有三角形吗?在哪?师:对了,它们都是三角形。看,这是他们的家,走,一起送他们回家吧!
(1)师:两只小手真可爱!它们还是三角形吗?为什么?像这样由四条边围成的图形是四边形。
那一只手是什么图形?为什么?让我们一起来数一数。师:哦,他们都是有四条边围成的图形,就是——四边形。让我们一起把他们送回四边形的家吧。
(2)那机器人身上还有四边形吗?
预设一:长方形,你能上来指一指吗?为什么它是四边形?你能指一指它的四条边吗?那所有的长方形都是四边形吗?为什么?让我们一起送他们回四边形的家吧。
预设二:机器人身上还有四边形吗?哪一种图形也是?正方形,我们把所有的正方形都请出来,他们都能回四边形的家吗?为什么?让我们一起送他们回四边形的家吧。
预设三:这么多图形宝宝都回家了,还有一些图形可着急了,它们该回哪个家?为什么?谢谢你们,在你们的帮助下,这些图形也顺利回到了四边形的家。
(3)师:看,走过来一个高高瘦瘦的图形宝宝,它该住进哪个家?(四边形的家)为什么?因为它有四条边(围成的)那这个矮矮胖胖的呢?(也住四边形的家)又为什么?它也有四条边(围成的)。
小结:不管高矮胖瘦,只要它是四条边围成的图形,它就是四边形。
师:好,加大难度,直接用手势表示:住进三角形房的就用三表示,住进四边形房的就用四表示。明白吗?准备,开始,第一个?不错。第二个?对了。第三个?ok啦!最后一个,太棒了,鼓掌。
师:感谢你们帮这么多图形宝宝找到了家,出示哭脸图形:可是这个图形宝宝找不到家?怎么回事?(出示有一边是弯的图形,让学生辨析)。
生:因为它有一边是弯的。
引出:哦,今天,咱们认识的图形,边都是直直的。怎么变就行了?(把弯的变直)对了,现在开心了,可以进哪个家?(四边形的家)。
哭脸:可是它明明就有4条直直的边呀,为什么不让它进四边形的家呢?
预设一:生:因为那个上面差一条边。师:差一条边?什么意思???
生:就是上面空的。师:空的,什么意思???
生:就是就是上面没封起来(急)……师:哦,我好像有点明白你们的意思了,是说它的边没有围起来?是吧?(恩,恩)。
预设二:因为它的边没有围起来。(最佳答案)师:“围”(停一下,师故作思考)这个字用的好!(大拇指)赶紧的,鼓掌啊!(带头鼓掌)。
师:对了,只有四条边围起来的图形才是四边形。(课件围)现在可以让它进去吗?找你的家人去吧!
(1)五边形。你能上来指一指吗?你怎么知道他是五边形的?你能指一指它的五条边吗?哦,原来五边形是由五条边围成的图形。
(2)六边形。大家觉得六边形应该有几条边,那请你上去指一指你找到的六边形,你能带着大家数一数吗,检查一下他是不是六边形。
(3)机器人身上还有其它的五边形和六边形吗?你能像老师那样描出一个五边形和一个六边形吗?要求:尽量不要跟老师描的一样,边要描直。
反馈:谁来介绍一下自己描的作品。生:这是我描的()边形,师:你能带着数一数他的边吗?你们都描对了吗?同桌相互检查检查。描对的小朋友坐正。
多边形的外角教案篇十一
4)在是否存在一个,外角都等于相邻内角的六分之一的问题中,有很多同学都在用180度去除7,而除不尽的时候,都在为得不到整数边而认为不存在的时候,范宇老师却从外角和等于内角和的六分之一的角度,给予学生一种简便方法。
1)当学生进入角色,第一次求外角和的时候,也就是求三角形的外角和的时候,没有一个学生能够很快的考虑到每个顶点处内外角之和为180度这一特点,我觉得出现这一问题的原因可能是,在讲这一问题之前没有复习多边形内角和等于180度这一具有铺垫性的知识点。如果说,在前面增加一个课件复习的环节,把内角和等于180度的结论让学生自己回答一下,那么,在探索三角形的外角和等于多少度的时候,就会有一部分学生的思维能够比较简单的过度到每个顶点处内外角之和等于180度。这样的话学生的探索过程就不会变得难于上青天。学生就会感觉这个台阶刚刚好,自己经过努力奋斗可以上去,可以获得成功的喜悦,可以获得探索的兴趣和勇气,而主动探索的兴趣和勇气正是孩子们今后终身学习的必要武器,也是孩子们今后取得成功的源泉和动力。
2)当讨论到多边形增加一条边,内角增加多少度?外角增加多少度?时,有一部分学生就都回答180度,而忽略了外角和总是等于360度这一问题。我觉得出现这一问题的原因可能是,在小猪跑步的情境中,没有深入的挖掘,没有能够把五边形扩展到六边形、七边形、八边形一百边形、二百边形。如果说,在那一情境中加入前面这一简单的升华,我想学生在回答上面这一问题时,情况可能就会有所改变。
总之,我觉得在这次活动中我学到了很多,希望,在今后的教学工作中能够适当的多开展一些这样的集体备课、集体教研活动。这样,我们的教学能力一定会有更快的提高。
多边形的外角教案篇十二
听了范宇老师的课,给了我很多的启示。
她用几朵多边形小花引入,基于学生的生活经验,设计巧妙,能够引起学生的欲望,从感情上抓住学生,然后设计一系列恰到好处的提问,让学生在很自然的情况下得到三角形、四边形、直到n边形的外角和,遵循由特殊到一般的规律,很愉悦的让学生接受新知识。
小学生数学《多边形的外角和》教学反思:在讲解完外角之后,紧接着出示了几道有关的练习,讲练结合,源于教材,又揉进自己的创意,教师轻松自如,学生兴趣盎然,这一点值得我好好学习。
但“是否存在一个多边形,他的`每一个外角都等于相邻内角的六分之一,简述理由。”学生想法和教师不一致,如果让学生把自己的理由叙述再充分一些,教师再出示解法让学生对比,学生自然会选择省时省力的方法。
总之,范老师充分发挥了导演的作用,给了学生发挥灵感的空间,这一点非常成功。但我有一点困惑,这样是否会让优等生更优,差等生更差呢?以上是我的一点体会和困惑,希望大家批评指正。
多边形的外角教案篇十三
活动。
目标。
1、继续学习对应数量与数字1~10。
2、能将点子和数字进行配对。
活动。
准备。
活动过程。
一、出示小动物图片,引起幼儿兴趣。
师:今天老师请来了几个小动物。(出示十张小动物的图片,并在他们身上编号1~10),来打个招呼!
师:我们一起来数一数有几个小动物呢?(老师与幼儿一起数)看看他们身上写着什么?(认读1~10)。
二、游戏:小矮人找朋友。
1、导语:小朋友你们喜欢小动物吗?今天小动物要和点子娃娃做游戏,(出示点子娃娃),听听,小动物们要说话了(老师以小矮人的口吻说话):“小点子,你们真可爱,可是我们不知道哪个点子娃娃是我的好朋友。”小朋友我们来帮帮他们好吗?(幼儿回答)。小朋友们观察一下小动物和点子娃娃它们之间有什么相同的地方?(幼儿自由回答)。好现在咱们就来帮助小动物找朋友。
2、幼儿帮助动物人找朋友,找完后,找个别幼儿说一说自己的想法。
师:数一数你找了几对朋友。(幼儿回答)。
师:说说为什么他们两个是朋友?你是怎么知道的?(幼儿回答)。
三、小结:今天,帮助小动物找到了朋友,你们真能干,小矮人都非常感谢你们,并让我代他们谢谢你们。
四、作业。
师:请小朋友打开书的第13页,我们一起来数一数。(引导幼儿完成作业)。
多边形的外角教案篇十四
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法。
五、教具、学具。
教具:多媒体课件。
学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影。
七、教学过程:
(一)创设情境,设疑激思。
师:大家都知道三角形的内角和是180?,那么四边形的内角和,你知道吗?
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360?。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360?。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
方法1:把五边形分成三个三角形,3个180?的和是540?。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180?的和减去一个周角360?。结果得540?。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180?的和减去一个平角180?,结果得540?。
方法4:把五边形分成一个三角形和一个四边形,然后用180?加上360?,结果得540?。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720?,十边形内角和是1440?。
(二)引申思考,培养创新。
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180?的和,五边形内角和是3个180?的'和,六边形内角和是4个180?的和,十边形内角和是8个180?的和。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
(三)实际应用,优势互补。
(2)一个多边形的内角和是1440?,且每个内角都相等,则每个内角的度数是()。
(四)概括存储。
学生自己归纳总结:
2、运用转化思想解决数学问题。
3、用数形结合的思想解决问题。
(五)作业:练习册第93页1、2、3。
八、教学反思:
1、教的转变。
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变。
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变。
整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
多边形的外角教案篇十五
教学内容:
教学目标:
1、通过观察、比较等方法,初步认识四边形、五边形、六边形等平面图形。
2.参与对图形的描、围、折等实践活动,体会图形的变换,发展空间观念。
3.在学习活动中积累对数学的兴趣,培养交往、合作意识。
教学重点:
教学难点:
理解边的概念明白图形按边的数量分类、命名的意义。
学生准备:
文具、钉子板、橡皮筋、正方形纸。
教师准备:
多媒体课件、钉子板、橡皮筋、多边形卡片。
教学过程:
一、创设情境,导入新课。
今天我们继续来研究图形。
二、操作活动,探索新知。
(1)师指一个三角形,放大,瞧,这个是?你怎么知道的?
预设一:生:它有三个角。师:怪不得叫三角形的呢?除了三个角,还有什么?生:还有三个(条)边。什么样的边?你能来指一指吗?(学生点1、2、3)师:这条边从哪里到哪里?你能完整地指一指吗?师师范指(从这里开始,一条边,两条边,三条边),这三条边紧紧地_____?(连在一起)师:连,这个字用得十分贴切,在数学上,可以换一个字,围,让我们一起伸出手指围一个三角形。
预设二:生:它有三个(条)边,你能指一指吗?(1)同预设一。
(2)三角形是由几条边围成的图形?(三条边)对,也可以叫它三边形。
(3)机器人身上还有三角形吗?在哪?师:对了,它们都是三角形。看,这是他们的家,走,一起送他们回家吧!
(1)师:两只小手真可爱!它们还是三角形吗?为什么?像这样由四条边围成的图形是四边形。
那一只手是什么图形?为什么?让我们一起来数一数。师:哦,他们都是有四条边围成的图形,就是四边形。让我们一起把他们送回四边形的家吧。
多边形的外角教案篇十六
学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。
二、教学任务分析。
本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。
三、教学目标。
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的`思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
四、教学重难。
【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透。
五、教学过程设计。
本节课分成七个环节:
第一环节:创设现实情境,提出问题,引入新课;
第二环节:概念形成;
第三环节:实验探究;
第四环节:思维升华;
第五环节:能力拓展;
第六环节:课时小结;
第七环节:布置作业。
第一环节创设现实情境,提出问题,引入新课。
1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。
2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?
目的:
1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。
2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。
第二环节概念形成。
1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。
2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。
目的:
1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。
2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。