平面直角坐标系教案(模板17篇)
教师在编写教案时需要考虑学生的学习需求和教学目标。教案的编写需要合理安排教学时间,并注意教学过程中的时间控制。以下是一些优秀教案的分享,供各位教师参考和学习。
平面直角坐标系教案篇一
1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。
2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。
3、给出坐标能判断所在象限。
1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。
2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。
坐标轴上点的坐标的特点。
自主学习合作探究
一自主学习:
1、画一条数轴,在数轴上标出3,—3,0,2
数轴上的点可以用个实数来表示,这个实数叫做___________。
2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的点的位置呢?(例如图7.1—3中a、b、c、d各点)。
3、自学课本第66—67页的内容,然后填空。
(1)我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________。
(2)如何确定点的坐标。(阅读课本第66页最后一段)如图7.1—4写出点b、c、d的坐标_______________________。
思考:原点o的坐标是什么?x轴和y轴上的点的坐标有什么特点?
1、如果点m到x轴和y轴的距离相等,则点m横、纵坐标的关系是()。
a、相等 b、互为相反数 c、互为倒数 d、相等或互为相反数
2、将某图形的横坐标都减去2,纵坐标不变,则该图形()。
a、向右平移2个单位 b、向左平移2个单位
c、向上平移2个单位 d、向下平移2个单位
1、生活中只要你留心,就会发现有许多用数字“代替”目标位置的现象。
(1)一张电影票上写有“7排9号”,进电影院先找,后找,这是一对有序数对;
(2)一张硬座的火车票“10车厢18号”,上火车时你得先找,再在车厢里找号座位。
2、教室内座位,列数在前,排数在后。如果李小刚的座位是(3,4),则(3,4)意义是。
3、某一本书在印刷上有错别字,在第20页第4行从左数第11个字上,如果用数序表示可记为(20,4,11),你是电脑打字员你认为(100,20,4)的意义是。
4、在电影票上将“10排8号”前记为(10,8),那么(25,11)表示的意义是。
5、小亮家住在3号路,门牌是18号,可记为(3,18),那么小琪家在5号路门牌号是49号,可记为。
平面直角坐标系教案篇二
《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
二、教学任务分析。
教学目标设计:
知识目标:
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;。
3.能在给定的直角坐标系中,由点的位置写出它的坐标。
能力目标:
1.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;。
2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
情感目标:
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
教学重点:
2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;。
3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:
1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;。
2.坐标轴上点的坐标有什么特点的总结。
三、教学过程设计。
第一环节感受生活中的情境,导入新课。
同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5-6),回答以下问题:
(1)你是怎样确定各个景点位置的?
第二环节分类讨论,探索新知。
1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。
学生自学课本,理解上述概念。
2.例题讲解。
(出示投影)例1。
例1写出图中的多边形abcdef各顶点的坐标。
平面直角坐标系教案篇三
一、教学目标:
1、通过实例让学生认识有序数对,感受有序数对在确定点的位置中的`作用。
2、通过学习让学生感受数学知识来源于生活,作用于生活。
3、培养学生逻辑思维能力,培养学生拾金不昧的优秀品质。
二、教学重难点:
感受有序数对与点的位置关系。
三、教学思想:
理论联系实际,数形结合。
四、课堂教学过程:
生:开始交流、猜测,把目光集中在第一排的几名同学身上。
生1:王晓洪。
生2:张乐。
生3:云霄。
生4:许婷婷。
师:具体是谁确定吗?可能会有几个人?
生:不确定,可能有六个人。
师:这名同学恰好又在第二行,同学们这回你们知道这位同学是谁了吗?
生:讨论、交流。
平面直角坐标系教案篇四
学习目标:
1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。
2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。
3、给出坐标能判断所在象限。
学习重点:
1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。
2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。
学习难点:
坐标轴上点的坐标的特点。
学习方法:自主学习合作探究。
学习过程:
一自主学习:
1、画一条数轴,在数轴上标出3,-3,0,2。
数轴上的点可以用个实数来表示,这个实数叫做___________。
2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的点的位置呢?(例如图7.1-3中a、b、c、d各点)。
(1)我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________。
(2)如何确定点的坐标。(阅读课本第66页最后一段)如图7.1-4写出点b、c、d的坐标_______________________。
思考:原点o的坐标是什么?x轴和y轴上的点的坐标有什么特点?
平面直角坐标系教案篇五
2、渗透对应关系,提高学生的数感。
[教学重点与难点]。
难点:正确画坐标和找对应点。
[教学设计]。
[设计说明]。
一、利用已有知识,引入。
1.如图,怎样说明数轴上点a和点b的位置,
2.根据下图,你能正确说出各个象棋子的位置吗?
二、明确概念。
由数轴的表示引入,到两个数轴和有序数对。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b)。a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1写出图中a、b、c、d点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?
a(3,4);b(—1,2);c(—3,—2);d(2,—2)。
问题1:各象限点的坐标有什么特征?
练习:教材49页:练习1,2、
三。深入探索。
教材48页:探索:
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
[巩固练习]。
1.教材49页习题6。1——第1题。
2.教材50页——第2,4,5,6。
[小结]。
2.点的坐标及其表示。
3.各象限内点的坐标的特征。
4.坐标的简单应用。
[作业]。
必做题:教科书50页:3题。
(教材51页综合运用7,8,9,10为练习课内容)。
明确点的坐标的表示法。
仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系。
通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征。
平面直角坐标系教案篇六
教学目标:
1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:
教学难点:
能够建立适当的直角坐标系,解决数学问题。
授课类型:
新授课。
教学模式:
启发、诱导发现教学、
教具:
多媒体、实物投影仪。
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动。
学生回顾。
刻画一个几何图形的位置,需要设定一个参照系。
1、数轴它使直线上任一点p都可以由惟一的实数x确定。
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置。
2、确定点的位置就是求出这个点在设定的坐标系中的坐标。
四、数学运用。
例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练。
变式训练。
2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程。
例3已知q(a,b),分别按下列条件求出p的坐标。
(1)p是点q关于点m(m,n)的对称点。
(2)p是点q关于直线l:x—y+4=0的对称点(q不在直线1上)。
变式训练。
用两种以上的方法证明:三角形的三条高线交于一点。
思考。
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小结:本节课学习了以下内容:
六、课后作业:
平面直角坐标系教案篇七
1、基础训练
复习各个知识点及平时解题应注意的地方,进行巩固各知识点的'基础题训练。
2、能力提高
把本章内容和以前的知识点联系起来,解决问题。
3应用拓展(合作探究)
春天到了,七年级二班组织同学们到公园春游,张明王丽李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师说明了他们的位置。
游戏环节(快乐之旅)
7个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你周围的老师或同学.
通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会。
1、必做题:p96—3、4、7
2、选做题:p97—9、10
3、探究题
利用本章的基础知识分析问题,解决问题。
学生思考交流
提出解决问题的策略。
学生先读题独立思考,再通过合作探究,分析问题,得到问题的解决方案,
利用已学的知识分析问题,阐述解题的思路,进而完善问题的答案。
平面直角坐标系教案篇八
1、基础训练
复习各个知识点及平时解题应注意的地方,进行巩固各知识点的基础题训练。
2、能力提高
把本章内容和以前的知识点联系起来,解决问题。
3应用拓展(合作探究)
春天到了,七年级二班组织同学们到公园春游,张明王丽李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师说明了他们的位置。
游戏环节(快乐之旅)
7个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你周围的老师或同学.
通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会。
1、必做题:p96—3、4、7
2、选做题:p97—9、10
3、探究题
利用本章的基础知识分析问题,解决问题。
学生思考交流
提出解决问题的策略。
学生先读题独立思考,再通过合作探究,分析问题,得到问题的解决方案,利用已学的知识分析问题,阐述解题的思路,进而完善问题的答案。
平面直角坐标系教案篇九
2、教师展示知识结构图。
活动2:知识落实。
1、基础训练。
复习各个知识点及平时解题应注意的地方,进行巩固各知识点的基础题训练。
2、能力提高。
把本章内容和以前的知识点联系起来,解决问题。
3应用拓展(合作探究)。
春天到了,七年级二班组织同学们到公园春游,张明王丽李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师说明了他们的位置。
活动3:知识检测。
游戏环节(快乐之旅)。
活动4:小结提升。
通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会。
活动5:布置作业。
1、必做题:p96—3、4、7。
2、选做题:p97—9、10。
3、探究题。
利用本章的基础知识分析问题,解决问题。
学生思考交流。
提出解决问题的策略。
学生先读题独立思考,再通过合作探究,分析问题,得到问题的解决方案,利用已学的知识分析问题,阐述解题的思路,进而完善问题的答案。
平面直角坐标系教案篇十
1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。
新授课。
启发、诱导发现教学、
多媒体、实物投影仪。
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动。
学生回顾。
刻画一个几何图形的位置,需要设定一个参照系。
1、数轴它使直线上任一点p都可以由惟一的实数x确定。
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置。
2、确定点的位置就是求出这个点在设定的坐标系中的坐标。
四、数学运用。
例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练。
变式训练。
2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程。
例3已知q(a,b),分别按下列条件求出p的坐标。
(1)p是点q关于点m(m,n)的对称点。
(2)p是点q关于直线l:x—y+4=0的对称点(q不在直线1上)。
变式训练。
用两种以上的方法证明:三角形的三条高线交于一点。
思考。
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小结:本节课学习了以下内容:
六、课后作业:
平面直角坐标系教案篇十一
2.渗透对应关系,提高学生的数感。
难点:正确画坐标和找对应点。
一。利用已有知识,引入。
1.如图,怎样说明数轴上点a和点b的位置,
2.根据下图,你能正确说出各个象棋子的位置吗?
二。明确概念。
由数轴的表示引入,到两个数轴和有序数对。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1写出图中a、b、c、d点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?
()a(3,4);b(-1,2);c(-3,-2);d(2,-2)。
问题1:各象限点的坐标有什么特征?
练习:教材49页:练习1,2。
三。深入探索。
教材48页:探索:
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
1.教材49页习题6.1——第1题。
2.教材50页——第2,4,5,6。
2.点的坐标及其表示。
3.各象限内点的坐标的特征。
4.坐标的简单应用。
必做题:教科书50页:3题。
(教材51页综合运用7,8,9,10为练习课内容)。
明确点的坐标的表示法。
仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系。
通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征。
平面直角坐标系教案篇十二
一、新课引入:(复习数轴知识和平面内确定点方法)。
“在同一直线上的点可以借助数轴来表示,那么,不在同一直线上的点的位置该如何来确定呢?”由数轴直接引出将要学习的课题,多媒体展示问题情境,让学生对心知识的学习产生思考。课题的因如简捷明快,学生很快进入状态。
二、新课讲授:
这里主要还是以书本上的步骤为主,通过一些多媒体的形象演示让学生更快的掌握基本知识。
1.我搜集了平面直角坐标系的创始人笛卡尔的有关资料,通过介绍伟人来激发学生的学习兴趣,同时用多媒体直接展示给学生阅读,培养学生主动获取知识的能力。
三、新知训练。
欢在动中学,可是我留给他们的时间太少了!这也是我在以后的课堂中需要努力解决的问题之一。
四、实拓展应用中,我设计了在教室内建立平面直角坐标系,指定一位同学为坐标原点,随即确定平面直角坐标系的位置,把每一位同学都当做平边内的一个点,让他们利用今天学过的知识来描述自己所在的位置。因为和自己的位置有关,所以能充分调动学生的积极性,不但巩固了今天所学习的知识,把它应用到实际生活中去,而且为后面知识的学习做好了铺垫。最后还鼓励同学们为“独一无二的我”而努力,渗透了情感教育。
五、课堂总结中,我让学生自己去回顾,并告诉大家本节课你的收获。经过学生的讨论,教师加以归纳补充总结,并利用“人生就是一个坐标,你就是这个坐标中独一无二的一个点。我们应该为这个独一无二的自己而努力奋斗!”及时对学生进行理想教育,有利于学生人格的塑造。
虽然我认真组织教材内容,把多媒体这种新型的技术有效地运用到数学课堂中来,但由于本人对学生评价语言单一,鼓励性语言没有感染力,致使本节课课堂气氛不够活跃。我应该认识到,由于学生的个体差异表现为认知方式与思维策略的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,都应尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。对出现的错误耐心引导他们分析其产生的原因,鼓励他们改进;对学生思维的闪光点及时“亮相”,并予以肯定鼓励。通过对学生参与数学活动的程度、自信心、合作交流的意识,以及独立思考的习惯、发现问题的能力进行评价,以激励性的语言促进他们合作,培养创新能力。
以上是我对本节课的设想,不足之处请多批评指正。谢谢大家!
1
平面直角坐标系教案篇十三
本章需要理解掌握的知识点有:
1、平面直角坐标系的建立(原点重合且互相垂直的两条数轴)。
2、由点找坐标(从已知点分别向横轴、纵轴作垂线,垂足对应的数分别是该点的横纵坐标)。
3、由坐标找点(例p(a,b),先在横轴上找到点的横坐标a,然后过横坐标所在的点作横轴的垂线,则这条垂线上的所有点的横坐标都为a,再在纵轴上找到纵坐标b,然后过纵坐标所在的点作纵轴的垂线,则这条垂线上的所有点的纵坐标都为b,两条直线的交点则为要找的点p)。
4、坐标平面内的点和有序实数对是一一对应关系。
坐标轴上的点不属于任一象限。
6、横轴上的点纵坐标为0,纵轴上的点横坐标为0.
7、点到横轴的距离是纵坐标的绝对值;
点到纵轴的距离是横坐标的绝对值。
若ab与y轴平行,则a等于m,且b不等于n。
点a(a,b),b(m,n)关于y轴对称,则b等于n,且a与m互为相反数。
点a(a,b),b(m,n)关于原点对称,则a与m互为相反数,且b与n互为相反数。
10、数轴上两点间的距离等于它们坐标差的绝对值;
平面内两点间的距离等于它们横、纵坐标分别作差的平方的和的算术平方根。
11、点a(a,b),b(m,n),则线段ab中点的坐标分别是a、b两点横、纵坐标的平均数。
12、横、纵坐标相等的点在一、三象限夹角平分线上,反之亦然。
横、纵坐标互为相反数的点在二、四象限夹角平分线上,反之亦然。
如没有边在坐标轴上或与坐标轴平行,则分别过三个顶点作坐标轴的平行线,得到一个矩形。用矩形的面积减去周边直角三角形的面积即可得到要求三角形面积。
如求四边形的面积,一般都是采用分割的方法,也可考虑补的方法。
14、图形的平移有两个要素:平移方向和平移距离。
图形在坐标系中的平移,可采用坐标的变化来描述。
图形左、右平移,横坐标减、加;
图形上、下平移,纵坐标加、减。
平面直角坐标系教案篇十四
在本节课的设计过程中还存在一些不足,比如:
1、整个教学活动中,老师可以适当进行“一题多变”、“一题多解”、“一法多用”。这样在夯实基础的前提下,善于将学生从思维定势中解脱出来,养成多角度、多侧面分析问题的习惯,以培养思维的广阔性、缜密性和创新性。对于教材中所列举的例题、习题,不能就题做题,要以题论法,以题为载体,阐述试题的条件加强、条件弱化、结论开放、变换结论、与其他试题的联系与区别,将试题的知识价值、教育价值一一解剖,达到做一题、会一片,懂一法、长一智。
2、思考题是为后续学习需要设置的,由于时间关系没有让学生仔细读题,还好这个题事先已经考虑到,而在练习提单中准备。思考题是结合下节课建立直角坐标系的不同点坐标不同而设置的,在多媒体课件中移动的是矩形,而听课后老师们都有不同的意见,有老师建议移动坐标系,经过课后教学思考发现,移动坐标系更能让学生感受到不同坐标系下点坐标的变化。
3、一般意义上的成绩较好的孩子受到的关爱与鼓励较多,成绩后进的孩子受到的批评与压力大些,期待得到帮助的份额大。“好孩子是夸出来的”、“脆弱的禾苗需要多一份阳光与温暖”、“对孩子,多一份期许,少一分责备”借助这些教学名言,教师在教学中能带给孩子们鼓励和自信,但从学生表情和回答问题中,却没有很好的洞察到那些最需要帮助的群体。
平面直角坐标系教案篇十五
平面直角坐标系是今后学习函数的基础,是数形结合的真正体现。尽管课本上只有很少的一部分介绍,但真的弄懂学会还是要下点功夫的。
我们对这部分内容由两课时改为三课时:第一课时了解平面直角坐标系,会由点写出点的坐标,或由坐标确定点的位置;第二课时掌握点在不同位置时的坐标特征,如各象限内、坐标轴上的点的坐标特征,各象限角平分线上的点的坐标特征,关于坐标轴、原点对称点的坐标的关系,与坐标轴平行的直线上的点的坐标特征,以及它们的应用;第三课时点到坐标轴的距离,平面直角坐标系中一些图形的面积的计算等。
从安排可以看出内容比较丰富,但凭记忆肯定是不行的。因此需要学生紧紧抓住平面直角坐标系这个工具,在图形中理解,即数形结合思想的渗透。在培养学生迅速画图上下功夫,围绕图形分析、讲解。课堂上尽量让学生做、说,暴露学生的思维,在讨论中完善自己的方法,丰富自己的知识。
平面直角坐标系教案篇十六
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点p,过p分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
6、角平分线问题。
若点(x,y)在一、三象限角平分线上,则x=y。
若点(x,y)在二、四象限角平分线上,则x=-y。
7、平移:
在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y)。
向左平移a个单位长度,可以得到对应点(x-a,y)。
向上平移b个单位长度,可以得到对应点(x,y+b)。
向下平移b个单位长度,可以得到对应点(x,y-b)。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。
平面直角坐标系教案篇十七
1、理解有序数对的概念,了解平面内的点与有序数对的关系。
2、利用有序数对确定物体的位置。
重点:有序数对难点:用有序数对表示具体位置。
一、阅读教材p39~p40的内容,回答下面问题:二、独立思考:
(1)确定直线上某一点的位置一般需要_________个数据,确定平面内某一点的位置一般需要_________个数据。
(2)某宾馆第四楼第1个房间的门牌为4-1,那么第五楼第10个房间门牌号应为_____。
(3)七年级3班座位有7排8列,王燕同学的座位是第3排第4列,简记作(3,4),张波同学的座位简记作(5,2),则张波坐在第______排第______列。
(4)如果影剧院的座位10排2号用(10,2)表示,那么(8,3)表示_______________。
例1:“怪兽吃豆豆”是一种计算机游戏,如图所。
示的标志“”表示“怪兽”先后经过的几个位置,如。
果用(1,2)表示“怪兽”按图中箭头所指的路线经过。
的第三个位置,那么请你用同样的方法表示图中“怪兽”
经过的其他几个位置。
例2:蚂蚁从a点出发,经过通道线爬回蚁巢b点,若用(0,0)(1,0)。
(1,1)(2,1)(2,2)表示它的一种爬法,请列出其他所有不同的爬法(必须是最短的线路)。
一、课堂练习1、课本p40练习题。
二、作业布置:1、课本p44习题6.1第1题。
2、北京位于东经116.4°、北纬39.9°,我们用有序数。
对(116.4,39.9)表示。某地的位置用有序数对(108,
19.1)表示,则地理位置位于东经____度,北纬_____度。
3、如图(3)所示,如果点a的位置为(3,2),那么点b。
的位置为______,点c的位置为______,点d和点e的。
位置分别为______,_______.
4、中心五楼第一个房间的门牌号是0501,那么六楼第10个房间的门牌号应为_________.
三、自我测评。
(一)选择题。
1、下列数据不能确定物体位置的是。
a、4楼8号b、北偏东30°。
c、希望路25号d、东经118°、北纬40°。
2、如图所示,一方队正沿箭头所指的方向前进,a。
的位置为三列四行,表示为(3,4),那么b的位置是()。
a.(4,5)b.(5,4)c.(4,2)d.(4,3)。
3、如图所示,b左侧第二个人的位置是()。
a.(2,5)b.(5,2)c.(2,2)d.(5,5)。
4、如图所示,如果队伍向西前进,那么a北侧第二个。
人的位置是()。
a.(4,1)b.(1,4)c.(1,3)d.(3,1)。
5、如图所示,(4,3)表示的位置是()。
d
(二)填空题。
6、如图所示,是小刚画的一张脸,他对妹妹说:“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可表示成___________。”
__________________________。
(三)解答题。
8、如图是某教室学生座位平面图。
(1)请说出王明和张强的座位位置;。
(3)请说出(3,3)和(4,8)表示哪两位同学的座位位置;。
10、如图是某次海战中敌我双方舰艇对峙示意图,
对我方舰艇来说:(1)北偏东方向上有哪些目标?
要想确定敌舰b的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?