最新三角形的中位线教案(热门18篇)
在教学过程中,教案起到了重要的指导作用,能够提高教学效果。教案的编写过程中需要合理安排教学资源的利用。教案范文精选,为教师们提供一些编写教案的思路和方法。
三角形的中位线教案篇一
活动内容:小鱼游(认识三角形)。
活动目标:
1、知道三角形的主要特征,即三角形有三条边三个角。
2、根据三角形的特征在图中找出形状与三角形相似的小鱼。
3、乐意动手操作,提高幼儿的观察力和空间想象力。
活动重点、难点:
知道三角形的主要特征是三角形由三条边和三个角组成。
活动准备:
三角板、小黄兔2只、萝卜1个、蘑菇1个、三角形、正方形、圆形若干、正方形纸每人一张、幼儿每人一个三角形积木活动过程:
1.故事导入:小黄兔过生日。
师:今天是小黄兔的生日,早晨小黄兔高高兴兴地从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小黄兔拔起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。
2、观察小黄兔的出行路线。
请小朋友将路线用线连起来,观察是什么图形(三角形)3、引导幼儿观察比较图形,幼儿每人一个三角形。
(1)通过自己数一数,试一试,感知图形特征,充分让幼儿表述,得出图形的特征。
(2)教师小结:三角形有三条边,三个角组成。
三角形的特征:有三条边,三个角4、引导幼儿动手操作。
幼儿每人一张正方形纸,通过自己对三角形的认识,用正方形的纸折叠成三角形。
(2)观察图形拼图,找出三角形,数一数用了几个三角形?(3)请幼儿在周围环境中找出三角形物品。
(4)完成课本20页《小鱼游》找出小河里三角形的小鱼,并把三角形的小鱼圈出来。
活动延伸:
让幼儿回家后和爸爸、妈妈一起运用各种材料制作一个三角形。课后小结:本节课以《小黄兔过生日》的故事引入课题,通过连接小黄兔所走的路线游戏以及其它操作活动让幼儿认识三角形的特征,知道三角形由三条边三个角组成。
三角形的中位线教案篇二
活动目标:
1、能将三角形组合拼贴成各种图形,并添画成各种物体。
2、发展幼儿的想象力,创造力,观察能力和操作能力。
3、巩固复习三角形的特征。和使用浆糊的方法。
4、让幼儿体验自主、独立、创造的能力。
5、鼓励幼儿乐于参与绘画活动,体验绘画活动的乐趣。
活动准备:
各种大小,形状,颜色不同的三角形每组若干;浆糊每组一盘;棉签每组若干支;水彩笔,图画纸人手一份。教师作品若干。
活动过程:
1、出示一个拟人大三角形,引导幼儿想象三角型的特点,像什么。幼儿边说,教师边用三角形在黑板上演示出来。并进行添画。让幼儿感受图形的变化。引起幼儿对拼贴画的兴趣。
2、欣赏教师用三角形拼贴的作品。说一说发现了什么。有什么感受。引导幼儿发现可以使用不同大小,不同颜色。多片三角形进行拼贴。并通过添画是画面更生动。
3、介绍材料。重点在三角形的颜色大小。
4、请小朋友们进行活动,重点讲解示范抹奖糊,贴三角形的方法(让幼儿先想一想要拼贴什么。再进行操作。)。
5、教师巡回指导,重点指导幼儿可将两个以上的三角形进行组合添画。
6、展示幼儿作品。可请个别幼儿上来介绍自己的作品。教师适当的提出建议。
三角形的中位线教案篇三
《三角形的特性》是人教版小学数学四年级下册第五单元中第一课时的内容。
1、知识目标:理解三角形的定义,知道三角形各部分的名称,理解三角形稳定性的特征,并学会给三角形画高。
2、能力目标:培养学生的观察分析和动手操作能力以及对数学知识应用的能力,进一步发展空间观念。
3、情感目标:体验数学与生活的联系,培养学生学习数学的兴趣。
教学重点:理解三角形的定义,三角形稳定性的特征。
教学难点:掌握三角形高的画法。
(一)导入。
2、三角形在我们的生活中有着广泛的应用,这节课我们就来探究一下三角形的特性。(板书课题:三角形的'特性)
(二)操作感知,理解概念。
1、发现三角形的特征。
(1)师生每人画出一个三角形。
小组内展示画的三角形,你发现它们有什么共同点?
(2)让学生在自己画的三角形上尝试标出边、角、顶点。(指生上台板演。)
2、概括三角形的定义。
(1)学生动手摆三角形。思考:什么样的图形叫三角形?(可结合课本理解)
(2)学生回答。
(3)你认为定义中哪些词最重要?(理解“三条线段”“围成”。)
3、用字母表示三角形。
为了表达方便,我们通常把三角形的三个顶点分别用字母a、b、c表示,这个三角形可以称作三角形abc。
4、认识三角形的底和高。
(1)复习过直线外一点做已知直线的垂线段。
(2)小组合作学习三角形高的画法。
自学提示:什么是三角形的高?
作三角形的高用什么学具?
怎样作三角形的高?
(3)小组代表展示问题并演示三角形高的作法。
(4)思考:三角形有几条高?应怎样画它们?
(三)实验解疑,探索特性。
1、提出问题。
(课件出示图)同学们,在生活中三角形有着广泛的应用,仔细观察为什么把物体的这些部分做成三角形的,它具有什么特性?为了解决这个问题我们来做个实验吧。
2、实验解疑。
下面,请大家都来做一个实验。
学生拿出三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
(四)巩固运用,提高认识。
指导学生完成练习十五1、2、3题。
(五)课堂小结。
通过这节课的学习,你有什么收获?
三角形的特性;
三角形有三个顶点,三个角,三条边;
由三条线段围成的图形叫做三角形;
三角形具有稳定性。
三角形的中位线教案篇四
有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。通常用以上几种方法来证明三角形相似,另外平行于三角形的一边且和其他两边(或两边的.延长线)相交的直线,所截得的三角形与原三角形相似。
在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论。全等三角形可以看做特殊的相似三角形,这时相似比等于1。
三角形的中位线教案篇五
圆心与三顶点连线分辨平分三角。
半径x三边和/2=三角形面积。
三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。
在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
内切圆的半径为r=2s/c,当中s表示三角形的面积,c表示三角形的周长。
三角形内切圆半径公式。
1、三角形内切圆半径:r=2s/(a+b+c);
2、三角形外接圆的半径:r=abc/4s。
其中,s为三角形的面积,a,b,c分别为三角形的三边。
三角形的中位线教案篇六
“三角形面积的计算”是北师大版小学数学五年级第一学期第二单元第5小节的内容。本课内容编排的最大特点是突出实践性、研究性,加强了动手操作。教材让学生通过一系列的操作、研究,使学生逐渐明白所学图形与已学图形之间的联系,达到将所学图形(三角形)转化为已学会计算面积的图形(平行四边形),从而找出三角形面积的计算方法。教材注重培养学生的迁移、推理的学习方法以及操作实践、探索研究等能力。
三角形的`面积属于“空间与图形”领域,在此之前,学生已经有了平行四边形面积公式的推导基础,因此把三角形转化成已学过的图形,通过拼、摆、剪、叠等实际操作,来探索三角形面积的计算。不过,让学生切实理解三角形的面积公式却不是很容易。如:公式中为什么要用“底×高”除以2?这个“底×高”求出来的是什么?要想让学生完全领悟,需要引导学生在探索活动中,循序渐进、由浅入深地进行操作与观察,讨论与交流,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
1.使学生经历、理解三角形面积公式的推导过程。
2.能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。
2.通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。
情感目标:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:理解三角形面积计算公式,正确计算三角形的面积。
教学难点:理解三角形面积公式的推导过程。
三角形的中位线教案篇七
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,加强了动手实践、自主探索,让学生经历知识的形成过程,自己得出结论。学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。教学目标:
知识与能力:运用已有的知识、转化的数学思想,推导出三角形的面积公式并能正。
1、经历三角形面积公式的推导过程,培养学生分析、归纳、交流、
推理的能力和实际操作的能力。
2、通过动手操作和对图形的观察、比较,培养学生的形象思维和逻辑思维能力,发展学生空间观念。
情感态度与价值观:
1、通过小组合作、交流,培养学生爱学数学,乐学数学的情感。
2、在解决实际问题的过程中体验数学与生活的联系。
教学重点:理解并掌握三角形面积的计算公式,正确计算三角形的面积。
教学难点:动手操作推导三角形面积计算公式的过程学情分析在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的'能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。
教学用具:教师准备课件与三角形教具。
学生准备同样大小的直角三角形两个、锐角三角形两个、钝角三角形两个。
活情境引出问题,激发学生学习的兴趣。然后从学生已有的知识和经验出发,利用三角形与学生熟知的平行四边形之间的联系,把学习的主动权交给学生,让学生通过小组合作动手操作,自主探究,发现新知识,解决新问题,在获得知识的过程中发展了能力。
一、创设情境,生成问题。
1、创设情境:
师:老师遇到了一个问题,同学们愿意帮助老师解决吗?生:愿意。
生:一条红领巾的大小。
师:也就是一条红领巾的什么?
师:红领巾是什么形状的?
2、导入课题:
师:怎样才能算出三角形的面积呢?这节课我们就来共同探究三角形面积的计算方法。(板书:三角形的面积)。
二、探索交流,解决问题。
师:同学们还记得我们学过的平行四边形的面积公式吗?生:s=ah。
师:回忆一下是怎样推导出来的?(学生口述)。
(1)第一次探索操作。
师:好,我们先来试试三角形能不能转化成我们已学会的计算面积的图形,请同学们拿出准备的三角形,四人一小组,利用手中的学具进行操作。动手前,注意老师提出的这几个问题:
你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)好,开始。
(学生小组合作操作,教师参与到小组中进行指导。)。
师:三角形能转化成我们已学会的计算面积的图形吗?
生:能。
师:那你们是怎样转化的?哪个小组上来说说,他们汇报的时候,其他小组的同学要认真听,听听他们的结果与你们的有什么不同,如果有疑问可以向他们提出。
生1、我们小组用两个直角三角形拼成一个长方形。
师:我这儿也有两个直角三角形,可是拼不成,你用的是两个什么样的三角形?(师演示)。
生1、我们用的是两个完全一样的直角三角形。
师:你怎么知道是两个完全一样的三角形?
生2、我们组用两个完全一样的锐角三角形拼成了一个平行四边形。
师:你们是怎么拼的?
生2、把两个三角形重合,找到相等的边,再把两个三角形反方向对齐,就可以拼出平行四边形。
生2、三条边。
生3、我们用两个完全一样的钝角三角形拼成一个平行四边形。生4、我们用两个完全一样的直角三角形还可拼成一个平行四边形。
生5、我们用两个完全一样的等腰直角三角形可拼成一个正方形。师:好,同学们有这么多的拼法,都贴到黑板上。
【设计意图:学生在前面学习的基础上,运用转化的数学思想,通过动手操作,将三角形转化成已学过的计算面积的图形上。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。
三角形的中位线教案篇八
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;。
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态。
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
直尺、微机。
互动式,谈话法。
1、创设情境,自然引入。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)。
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1观察:三个内角拼成了一个什么角?
问题2此实验给我们一个什么启示?
问题3由图中ab与cd的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?
问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
引导学生分析并严格书写解题过程。
三角形的中位线教案篇九
重难点分析。
本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.
本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的.情况对比有一定的难度.
教法建议。
教学设计示例。
一、教学目标。
1.掌握中位线的概念和三角形中位线定理。
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力。
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力。
5.通过一题多解,培养学生对数学的兴趣。
二、教学设计。
画图测量,猜想讨论,启发引导.
三、重点、难点。
1.教学重点:三角形中位线的概论与三角形中位线性质.
四、课时安排。
1课时。
五、教具学具准备。
投影仪、胶片、常用画图工具。
六、教学步骤。
【复习提问】。
2.说明定理的证明思路.。
4.什么叫三角形中线?(以上复习用投影仪打出)。
【引入新课】。
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.。
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)。
三角形的中位线教案篇十
1、教材的地位及作用:教材首先引出中位线的概念,进而探索研究它的性质,最后利用性质定理进行有关的论证和计算,步步衔接,层层深入,形成知识的链条。本课内容可以为今后证明线段平行和线段倍份关系提供重要的方法和依据。可见,三角形中位线在整个知识体系中占有相当重要的作用。另外,本课是通过探究推理得到定理的,所以通过本课教学,对探究数学问题能力的培养及创新思维训练也有着十分重要的作用。
根据新课标要求,结合学生的实际情况,我制定了如下的学习目标:
知识与技能:理解并掌握三角形中位线的概念、性质,会利用性质解决有关问题。
过程与方法:经历探索三角形中位线性质的过程,感受三角形与四边形的联系,培养学生分析问题和解决问题的能力。
情感态度价值观:通过对问题的探索研究,培养学生大胆猜想、合理论证的科学精神。
我认为本课的教学重点是三角形中位线定理及其应用,这是因为:
1、《新课程标准》明确规定要求学生掌握三角形中位线定理,能运用它进行有关的论证;
3、学习定理的目的在于应用,而三角形中位线定理的应用相当广泛,它是几何学最基本、最重要的定理之一。
教学难点是三角形中位线定理的推证,原因在于补充三角形中位线定理的证法中,还利用了数学中的化归思想,这正是学生的薄弱环节。
依据本书教学内容及学生知识建构的特点,尚需依赖于直观形象的学习方法,我选用了合作探究式教学法,通过设计活动、问题序列,引导学生动脑、动手、动口、主动探究,参与整个教学过程,体现学生的自主性和合作精神主动愉快地进行创造性学习。
同时,根据图形的特点,充分利用多媒体提高教学效率,增大教学容量,通过动态的演示,激发学生学习兴趣,启迪学生解题思路的蒙发。
“授人以鱼,不如授人以渔”.我体会到,必须在给学生传授知识的同时,教给他们好的学习方法,就是让他们“会学习”。通过本节课的学习使学生学会猜想法、测量法、模仿法、自主学习法等。
(一)、创设问题情境,引入新课.
今天这堂课我们就要来探究其中的学问。三角形中位线。
借助多媒体演示引例,创设悬念——如何测算被建筑物隔开的a、b两地的距离吸引学生的注意,激发了学生的兴趣和求知欲。
(二)、引导学生,探究新知:
1、概念教学:
直接认识概念。
老师结合图形演示所做线段区别是三角形的中线和中位线。
明确:三角形中位线定义是什么?一共几条?引导学生自己给三角形中位线下定义,从而培养学生归纳概括的能力。
观察区别:三角形的中位线与三角形的中线有什么区别?又有什么联系?加深学生对三角形的中线和中位线认识,从而培养学生对比学习的能力。
2、自学交流:
引导学生猜想,鼓励学生仔细观察,说出他们自。
己的猜想。使学生在学习过程中学会猜想。
做一做:
方法一(测量法)。
2、量出中位线和第三边的长度;
3、你发现了什么?
教师给学生提供操作步骤,引导学生通过动手测量、推理检验自己猜想的合理性。教师参与学生探究解决问题的'过程中,与学生交流,获取信息,了解学生实际,从而有针对性地引导学生进行证明。
学生说自己的证法(实物投影仪),最后由教师借助幻灯片演示完整的过程。
总结定理:(幻灯片)。
三角形的中位的性质定理:三角形的中位线平行于第三边,并且等于它的一半。
让学生总结定理,(教师强调)一个题设两个结论,(一个是位置关系,一个是数量关系,根据需要选用相应的结论)它提供了一种证明直线平行和线段数量关系的新方法,应用定理的关键是找出(或构造出)符合定理的基本条件,加强学生对定理的理解,培养了学生归纳概括的能力。
3.定理应用:(幻灯片)为了进一步巩固定理,加深对定理用途的认识,我选择教科书上的例题,放手发动学生自主学习。对学生的疑惑教师进行点拨。通过此题学会运用定理进行推理运算,发挥例题的示范,提高学习的效率与学生自学能力。
4.当堂检测。
5、归纳小结。
让学生自己总结并谈收获,培养归纳能力,围绕教学目标,教师补充强调,通过小结,使学生进一步明确学习目标,使知识成为体系。
6、布置作业。
教材68页2题巩固运用定理解决问题。
7、板书:
1.定义:连接三角形两边中点的定理的证明:
三边,并且等于它的一半。
通过板书呈现教学重难点,进一步明确学习目标。
总之,在设计教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究、合作学习,培养学生良好的数学素养和学习习惯,让学生学会学习。
三角形的中位线教案篇十一
1、例2。教学目标:
2、通过实验,使学生知道三角形的稳定性及其在生活的运用。
3、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4、体会数学与生活的联系,培养学生学习数学的兴趣。教学重点、难点。
师:同学们,生活中处处有数学。今天老师就给大家带来一个生活中的小片段,请看大屏幕。(播放为晃动的窗户加防风栓的片段)。
这是什么原因呢?
正方形和长方形也能起到固定的作用吗?师:我们来做一个实验。(请两位同学分别拉三角形木架和长方形木架。)。
谈谈你们的感受。
想一想有没有办法使这个长方形木架也变得稳定起来?(生把木架对角固定住)。
师:通过这个实验你们发现了什么?
谁还能举出生活中哪些地方也用到了三角形的稳定性吗?
师:看来,三角形的稳定性对我们的生活帮助很大,今天我们就共同来认识这个生活中无处不在的三角形。(板书课题)。
师:你们会画三角形吗?现在就试着画一画。
互相看一看,再想一想,什么样的图形是三角形呢?学生谈论回答。
师:同学们说了自己不同的想法,下面,老师请大家帮个忙,判断老师下面出事的图形是不是三角形?(出示下面图形)。
请学生判断上面的图形哪些是三角形,哪些不是三角形,并说明理由。请学生根据上图概括出三角形的定义。
自学课本,认识三角形各部分名称。
师:三角形各个部分也象角一样都有自己的名称,请你快速浏览课本p81并且按屏幕上的要求完成题目。要求:了解三角形各部分的名称。
同桌互相指一指、说一说三角形各部分的名称。
尝试操作,学习三角形的底和高。
师:生活中有很多三角形,(课件出示斜拉桥)在这座斜拉桥上你看到了什么?
斜拉桥上有许多的三角形,能起到固定的作用、这些三角形有个共同点,每个三角形都用了同一个顶点。
师:要想知道这座桥从桥面到顶端的高度你准备怎么测量?先想一想,然后在四人小组内说说你的想法。
(学生汇报)师:(边演示边讲解)同学们都想到了从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫三角形的底。
师:请你画出题纸上三角形的高,并标出底。师:旋转一下题纸,你们还能画出其他的高吗?师:大家一共能画几条呢?师:(演示课件)我们为了表达方便,通常用字母a、b、c分别表示三角形的三个顶点,这就是三角形abc。
课后总结。
师:通过这节课的学习你对三角形又有了哪些了解?
三角形的中位线教案篇十二
教学内容:教科书第80、81页,练习十四第l、2、3题。
教学目标:
1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4.体验数学与生活的联系,培养学生学习数学的兴趣。
教学重点:认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
教学难点:会在三角形内三条边上画高。
教具、学具准备:师生分别准备塑料条(或硬纸条)钉成的三角形。
【教学过程】。
一、联系生活,情景导入。
1、展示课本80页情景图:我们的城市日新月异,每天都有新的变化。
瞧,这是正在建设的商业中心,不久的将来就会建成,成为我们南宁市标志性建筑。你在建筑框架上、吊车上发现三角形了吗?请你伸出手指描出几个三角形。
2.建筑框架上、吊车上有三角形,那么在生活中还有哪些物体上有三角形。3.同学们你们都拥有一双善于观察的眼睛。老师也找了一些图片,请看:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形,晾衣架上的三角形等。
4.这么多的物体上都有三角形,三角形在我们生活中有这么广泛的应用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题:三角形的特性)。
二、操作感知,理解概念。
(1)请你画出一个三角形。边画边想:三角形有几条边?几个角?几个顶点?展示学生画的三角形,这些三角形形状、大小都不同,他们有什么共同的特点?讨论结果:三角形有三条边、三个角、三个顶点。让学生在自己画的三角形上尝试标出边、角、顶点。
反馈,教师根据学生的汇报板书,标出三角形各部分的名称。
阅读课本:课本是怎样概括三角形的定义的?[由三条线段围成的图形(每相邻两条线段的端点相连)叫三角形。]你认为三角形定义中哪些词最重要?组织学生在讨论中理解“三条线段”“围成”的确切含义。
3、认识三角形的底和高,并画高.。
出示情景图:长颈鹿和小山羊的家,谁的高些?原来三角形也有高。
前面我们知道平行四边形和梯形都有高,我们也会画它们的高。那么你会画三角形的高吗?(1)出示练习纸画高。
下面我们来学习画三角形的高。
学生在练习纸上画出指定底边上的高。
从学生的汇报中归纳出:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
(3)为了表达方便,用字母分别表示三角形的三个顶点,上面的三角形就可以表示成三角形abc。
学生试着画ab边上的高。试着画ac边上高。
设计意图:本环节让学生积极参与,动手操作,使学生充分理解三角形底和高的一一对应关系,并能画出对应的高。
三、实验解疑,探索三角形的特性。(1)提出问题。
出示教材第81页插图:图中哪儿有三角形?
生产、生活中为什么要把这些部分做成三角形,到底三角形它具有什么特性?(2)实验解疑。
要想解开其中的奥秘,我们得先做一个实验:
学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,你有什么发现?
实验结果:三角形具有稳定性。
师问:要使平行四边形不变形,应怎么办?请学生举出生活中应用三角形稳定性的例子。修理椅子(加一条边构成一个三角形)。
四、巩固运用,提高认识。指导学生学生完成练习十四1、2、3题。
五、总结评价,质疑问难。
这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?
边、角、顶点。
底、高。
三角形具有稳定性。
三角形的中位线教案篇十三
1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
三角板、木条钉成的三角形、三角形卡片。
教学过程
教师展示三角板,观察三角形的特点,请学生说说生活中哪些物体上也有三角形。
红领巾、三角架??
引入课题:其实三角形在我们的生活中有着广泛的运用,这节课我们一起来研究三角形。
板书课题:三角形的特性
知识点1 三角形的特性
教学例1。
1.做一做:
请学生动手制作一个三角形。看一看、摸一摸、说一说三角形有什么特点?(几条边、几个角、几个顶点??)
学生讨论,学生代表发言。
小结:三角形有三条边、三个角、三个顶点。
2.画一画:
让学生自己画出三角形,并在三角形上尝试标出边、角、顶点。 教师根据学生的汇报板书,标出三角形各部分的名称。
3.说一说:概括三角形的定义。
大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?
学生回答:
小结:由三条线段围成的封闭图形(每相邻两条线段的端点相连)叫三角形。
4.做一做:请学生动手用三支笔拼成一个三角形,并说说三角形的顶点、边、角。
知识点2 认识三角形的底和高
学生讨论发言。
小结:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
老师根据学生的回答在刚才的三角形中画出一条高,并标出它所对应的底。学生动手画出一个三角形,作出它的高,并标出与高相对应的底。
提问:三角形可以作出几条高呢?
为了表达方便,我们通常把三角形的三个顶点分别用字母a、b、c表示,这个三角形可以称作三角形abc,在三角形中标上字母abc。
知识点3 三角形的稳定性
教学例2
做一做:学生拿出预先做好的三角形、四边形边框,分别拉一拉边框,你有
三角形的中位线教案篇十四
1、面向学生:初中学科:数学。
2、课时:1。
3、学生课前准备:
(2)等腰三角形纸片。
(3)完成课后习题。
察、分析、归纳概括,主动获得知识。
(2)组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。
(3)在教学中,向学生渗透数学思想方法,培养学生说理的能力。
1、等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
2、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
3、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
4、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
5、如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
6、本课对学生的动手能力,观察能力都有一定的'要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
7、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
8、课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。
本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的主体意识。
教学目标:
1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。
2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。
3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。
教学难点:证明过程的书写格式,用规范的符号语言描述证明过程。
教学媒体:多媒体。
(一)回顾知识。
1、什么叫证明?什么叫定理?
2、证明与图形有关的命题,一般步骤有哪些?
(二)创设情境。
观察图片。
百度图片搜索_等腰三角形金字塔的搜索结果。
2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?
3、上述性质你是怎么得到的?(不妨动手操作做一做)。
4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?
(三)探索活动。
1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。
2、思考与讨论:说明你所画的是顶角的平分线。
怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。
定理:等腰三角形的两个底角相等,(简称:“等边对等角”)。
等边对等角_百度百科。
bdc4、你能写出上面定理的符号语言吗?
5、总结。
三角形的中位线教案篇十五
“三角形中位线”这一节中非常重要的内容,为今后进一步学习其他相关的几何知识奠定了基础,下面从五个方面来汇报我是如何钻研教材、备课和设计教学过程的。
一、关于教学目标的确定。
根据“三角形中位线”的地位和作用,我确定了如下三维目标:
(1)知识与技能:使学生理解三角形中位线的概念,掌握三角形中位线定理,同时要会用三角形中位线定理进行有关的论证和计算。
(2)过程和方法:培养学生动手动脑、发现问题、解决问题的能力。
(3)情感、态度及价值观:对学生进行实践------认识-------实践的辩证唯物主义认识论教育。
二、关于教材内容的选择和处理。
这节课所选用的教学内容是:教材中的定义、定理,教材中的例题和习题,对定理的推理有所补充,但抽象思维还不够,由于学生学习知识还是以现象描述为主要方式,而且学习的个性差异也比较大。因此,本着因材施教的原则,我一方面对学生进行基本知识和基本技能的训练,另一方面也能对个别程度较好的学生有所侧重,这与教学目标是相一致的。我认为本节课的教学重点是三角形中位线定理及其应用,这是因为:
1、《新课程标准》明确规定要求学生掌握三角形中位线定理能运用它进行有关的论证。
2、三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述:
3、学习定理的目的在于应用,而三角形中位线定理的应用相当广泛,它是几何学最最基本、最重要的定理之一。
教学难点是三角形定理的推证,原因有两点:
1、教材上所有证法实际上是同一法,这种方法学生未接触过。
2、在补充三角形中位线定理的证法中,还利用了数学中的化归思想,这正是学生的薄弱环节。
三、关于教学方法和教学手段的选用。
根据本节课的内容和学生的实际水平,我采用的是引导发现法和直观演示法。引导发现法属于启发式教学,它符合辩证唯物主义中内因和外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导、启发,充分调动学生学习的主动性。另外,在引出三角形中位线定理后,通过投影仪进行教具的直观演示,使学生在获得感性知识的同时,为掌握理性知识创造条件。这样做,可以使学生饶有兴趣地学习,注意力也容易集中,符合教学论中的直观性和可接受性原则。
四、关于学法的指导。
“授人以鱼,不如授人以渔”。我体会到,必须在给学生传授知识的同时,教给他们好的学习方法,就是让他们“会学习”。通过这节课的教学使学生“会设疑”,“会尝试”、“学习有得必先疑”,只有产生疑问,学习才有动力。在教学过程中学生首先要对“所作的平行线与中位线重合吗”,“为什么会重合”,“重合后能得到什么结论”这些问题产生疑问。问题的解决就使得旧知识的缺陷,得以弥补。从而培养学生发现问题、提出问题、解决问题的能力。在提出问题后,要鼓励学生通过分析、探索尝试确定出问题解决的办法。比如在教学中,推证出三角形中位线定理以后,还应再尝试,用其他方法进行证明看是否可行。通过自己的亲自尝试,由错误到正确。由失败到成功,通过尝试,学生的思维能力得到了培养,当然在教学过程中学生还潜移默化地学到了诸如发现法、模仿法等。
五、关于教学程序的设计。
经过三角形一边中点与另一边平行的直线平分第三边,从而引出“三角形的中位线”这个概念同时板书课题,并提出问题、三角形中位线与三角形中线的区别?以激发学生学习新知识的兴趣。紧接着让学生作出三角形的所有中位线(3条),不仅可以让学生更清楚地认识中位线,而且在不知不觉中分化了这节课的难点,并为下面找中位线与第三边的数量关系作好了准备,然后,教师引导学生自己作图:先画abc的一条中位线de,过ab得中点作bc的平行线。因为线段的中点是唯一的,从而可发现这条平行线与中位线重合。这就证明三角形中位线与第三边是平行的,这样做的同时突破了这节课的难点,因为这个平行关系的证明采用的是“同一法”,学生初次见到,自然会产生疑问,“怎么作了平行线还证平行呢?”通过学生自己动手作图,就可以自然地接受了。这时再回头看刚才画出的图,利用平行关系,可得到三角形中位线与第三边的数量关系,这样通过“回忆-----作图------设疑------探索------发现------论证”而让学生掌握了三角形中位线与第三边的数量关系和位置关系,而且对教材中的论证方法有了较深的印象,突破了本节课的难点。
三角形中位线定理证明出来了,那么是否就只有这一种证法呢?引导学生观察中位线与第三边的数量关系,发现它实际上是线段间的倍分问题。在这之前,有关线段间的倍分关系只有在直角三角形中见过。能否把它转化成我们熟知的线段间的相等的问题?通过一个简易的自制教具,借助投影仪来演示,提出“截厂法”和“补短法”这两种添加辅助性的常用方法,通过演示让学生真正体会到这两种方法的精髓所在。
下面再通过一个练习巩固定理的掌握,它是紧紧围绕定理而设置的。通过练习可以看到学生对定理掌握的程度,并要求学生认识三条中位线把三角形化成4个小三角形之间的全等关系,面积关系等。
学生做完练习,把教材中设置的例题投影在屏幕上,指导学生审题,让学生根据题意写出已知、求证,画出图形,再请两位同学尝试着分析证题思路,根据学生的分析进行补充讲解,达到解决问题的目的。证明过程由学生书写,然后,由我进行规范化的板书,以培养学生养成良好的推理习惯。另外,还配备了一道练习题,请一位同学到黑板上来做,做完后,我简单的讲评,并要求学生注意书写格式,通过例题和练习题的配备,使学生将本节所学知识得以具体化,达到应用的目的,这也是本节的重点之一。课堂小组我是通过3个问题的设置,让学生自己理清这节课的知识脉络。
最后布置作业,所布置的作业是紧紧围绕着三角形中位线定理及其应用的,通过作业反馈本节课知识掌握的效果,在课后可以解决学生尚有疑难的地方。在整个教学过程中,我用“先学后导,当堂检测,分布突破,及时反馈”的“四维度”课堂教学模式贯穿全过程,充分体现了“以三维目标为主轴,以学生自学为主体,以教师释疑为主导,以当堂检测为主线”的“四为主”教学思想,取得了良好的教学效果。
三角形的中位线教案篇十六
1.知识目标:通过折叠探索等腰三角形、等边三角形的性质。
2.能力目标:进行操作、观察、分析、比较、交流等教学活动,让学生在亲身经历类似的创造活动过程中学习数学知识。
3.情感目标:培养学生用事实验证事物的能力,而不是用主观臆断事物的属性。
2.师:刚才也有同学谈到其实等腰三角形和等边三角形是对称图形。老师说它们可以称为轴对称图形。
1.师:你能不能把一个等腰
三角形折一折分成2个部分,使这2部分完全重合?
2.师:大家都可以这样做到,那么谁能指一指我们是沿着哪一条线对折才能使图形对折后完全重合的吗?(学生指)
师:我们把这条能使图形对折
后重合的直线称为对称轴。(板书)我们通常用虚线来表示对称轴。(学生用虚线表示)
3.学生探究
师:你能不能用找到等腰三角形对称轴的方法来找一找等边三角形的对称轴?
(学生尝试)学生交流:你是怎样找的?你找到几条?
(图形对折,是否完全重合)
3.小结:等腰三角形有一条对称轴,等边三角形有三条对称轴。而三条边都不相等的三角形却一条对称轴也没有。
1.在生活中还有哪些是轴对称图形,也有对称轴,我请同学们回家去找一下,用剪刀和纸把它剪出来,看谁剪得最多。
2.想不出的同学可以问问现在5年级的同学,他们会给你们帮助的。
三角形的中位线教案篇十七
定理:
三角形的外接圆有关定理:三角形各边垂直平分线的交点,是外心。外心到三角形各顶点的距离相等。外心到三角形各边的`垂线平分各边。
三角形的内切圆有关定理:三角形各内角平分线的交点,是内心。内心到三角形各边的距离相等。三角形任一顶点到内切圆的两切线长相等。三角形顶点到内切圆的切线长,是这点到圆心的距离与它圆外部分的比例中项。
三角形的中位线教案篇十八
4、做一做。
5、练习。
6、小结。
四、课后反思。
本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索―发现―猜想―证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
将本文的word文档下载到电脑,方便收藏和打印。