初一年级数学教案(热门16篇)
优秀的教案能够有助于激发学生的学习兴趣,引导学生积极参与教学活动。教案的编写过程中,教师需要充分考虑学生的学习能力和学习差异。以下是小编为大家收集的优秀教案范例,供大家参考和借鉴,希望对大家的教学工作有所帮助。
初一年级数学教案篇一
1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。
2.能用适当的图形和语言表示自己的思考结果。
本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。
引导活动讨论
引导:意在教师讲解七巧板的历史,七巧板制作的方法。
活动:人人参与制作七巧板,拼摆七巧板的图案。
讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。
启发式教学
先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。
利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。
(1) 你的拼图用了什么形状的板?你想表现什么?
(2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。
(3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。
通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。
介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。
由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。
通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。
利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。
(一)知识回顾 (三)例题解析 (五)课堂小结
(二)观察发现 (四)课堂练习 练习设计
初一年级数学教案篇二
3.使学生初步理解数形结合的思想方法.
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初一年级数学教案篇三
初一年级的学生,从思想还是行为上都已经开始走向成熟且有所叛逆的阶段,抓好这个年龄的工作,就必须要有很好的耐心和很正确的班主任工作计划。新的学期,我还将担任初一(5)班班主任,全班41人。我的班主任工作力求从小事入手,从细小处要成绩,从细微处教做人,我的初一班主任工作计划有以下几项:
一、在班级管理中,充分发挥班级干部的作用,用制度说话,为创造良好的学习环境而努力。
1、实行奖罚制度,加强纪律约束。
对迟到、上课纪律不好的学生,因其不能保证正常的上课秩序,实行义务打扫教室卫生,同时对月全勤,学期全勤同学予以奖励。
2、保证提供一个安静舒适的学习环境。
由班长到值周班干到普通学生,及时反馈班级纪律情况,保证自习课的正常进行。
3、保证提供一个清洁整齐的生活环境。
由值周班干,带领本组值日生,责任到人进行每天的值日工作,对不负责的值日生,罚重新值日。
二、学习生活中,保持昂扬向上的心态。
1、密切关注学生思想动向。
人有智力高潮低潮时,情绪也同样,所以要密切关注学生思想,对出现消极悲观的思想学生及时做工作,始终保持乐观进取的心态,对班级整体出现思想波动现象,要及时进行心理疏导,做好心理调整工作。
2、确立目标。
了解学生的阶段学习情况,同时让学生确立下次的目标,通过实现目标,完成目标情况与未完成情况比较,找差距、找原因,以取得进步。
三、注重养成教育,尽力帮助解决学生实际困难。
1、做到生活有节奏,有规律。
督促学生做好计划,合理安排学习时间,处理好闲暇时间,并且形成生活规律,跟上节奏,不要过快,也不要过慢,在一张一弛中调整状态,以最佳的身心投入学习生活。
2、加强家庭与学校的沟通,了解学生生活实际。
了解学生生活实际,学习环境好坏,有无生活困难,适时帮他们解除后顾之忧,全心投入学习生活当中。
初一年级数学教案篇四
【教学目标】。
1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】。
一、本讲主要学习内容。
1、负数的意义及表示2、零的位置和地位。
3、有理数的分类4、数轴概念及三要素。
5、数轴上数与点的对应关系6、数轴上数的比较大小。
其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。
下面概述一下这六点的主要内容。
1、负数的意义及表示。
把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,-等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位。
零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
3、有理数的分类。
正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。
正整数。
整数零正有理数。
有理数负整数或有理数零。
分数正分数负有理数。
负分数。
初一年级数学教案篇五
用因式分解法解一元二次方程.
难点。
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入。
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.
二、探索新知。
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1解方程:
思考:使用因式分解法解一元二次方程的条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积.)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
三、巩固练习。
教材第14页练习1,2.
四、课堂小结。
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置。
教材第17页习题6,8,10,11。
初一年级数学教案篇六
一、学习与导学目标:
情感态度:通过师生、生生合作学习,促进交流,激发兴趣。
二、学程与导程活动:
a、准备活动:
1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。
2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的`距离相等,真可谓从原点背道而驰“唱反调”)。
提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?
归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。
b、学习概念:
1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。
一般地,a和-a互为相反数。“-a”可读成“a的相反数”。
2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。
3、从上述意义上看,你看如何规定0的相反数更为合理?
商讨得:0的相反数仍是0,即0的相反数等于它本身。
c、应用举例:
1、两人一组,一人任说一个有理数,请同伴说出它的相反数。
2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。
3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。
4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)。
你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。
5、若a=-5,则-a=;若-x=7,则x=。
三、笔记与板书提纲:
课题应用举例中的2。
活动引例应用举例中的4(学生练习)。
概念。
四、练习与拓展选题:
1、教科书p18/3;。
2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。
初一年级数学教案篇七
1.重点:
(1)了解多边形及其有关概念,理解正多边形及其有关概念.
(2)区别凸多边形和凹多边形.
2.难点:
多边形定义的准确理解.
一、新课讲授
投影:图形见课本p84图7.3一l.
你能从投影里找出几个由一些线段围成的图形吗?
上面三图中让同学边看、边议.
在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?
(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.
这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?
提问:三角形的定义.
你能仿照三角形的定义给多边形定义吗?
1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)
2.多边形的边、顶点、内角和外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
看投影:图形见课本p85.7.3―6.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多边形.
二、课堂练习
课本p86练习1.2.
三、课堂小结
引导学生总结本节课的相关概念.
四、课后作业
课本p90第1题.
备用题:
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()
3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()
4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
1.连接多边形的线段,叫做多边形的对角线.
2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.
3.各个角,各条边的多边形,叫正多边形.
三、解答题.
1.画出图(1)中的六边形abcdef的所有对角线.
初一年级数学教案篇八
教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。
教学重点:对概念的理解及对数据收集整理。
教学难点:总体概念的理解和随机抽样的合理性。
教学过程:
一、情景创设,引入新课。
二、新课。
1.抽样调查的意义。
在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。
抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。
2.总体、个体、样本、样本容量的意义。
总体:所要考察对象的全体。
个体:总体的每一个考察对象叫个体。
样本:抽取的部分个体叫做一个样本。
样本容量:样本中个体的数目。
3.抽样的注意事项。
下面是某同学抽取样本数量为100的调查节目统计表:
表中的数据信息也可以用条形统计图或扇形统计图来描述。
初一年级数学教案篇九
【教学目标】。
1、能运用公式解决比较简单的实际问题,并对简单公式的导出方法有一个初步的认识;
2、会解简单的方程及会利用简易方程解实际问题;
3、初步了解抽象概括的思维方法及特殊与一般的辩证关系。
【知识讲解】。
下面讲述这几点的主要内容:
1、公式。
用字母表示数的一类重要应用就是公式,在小学,我们已经学过许多公式。
如:(1)s=vt(路程公式),(速度公式),(时间公式)。
(2)梯形面积公式:
(3)圆的面积公式:
(4)s圆环=。
2、方程中的.有关概念。
(1)含有未知数的等式叫方程。
(2)使方程左右两边相等的未知数的值,叫方程的解。
(3)求方程的解的过程叫解方程。
3、解方程的依据。
(1)方程两边都加上(或减去)同一个适当的数。
(2)方程两边都乘以(或除以)同一个适当的数。
例1、图示是一个扇环,外圆半径是r,内圆半径是r,扇环的圆心角为n,写出扇环的面积公式,并计算当r=8cm,r=4cm,n=60°时的扇环面积(取3.14,结果取一位小数)。
分析:扇环面积可以看作是环形面积的一部分,因为环形的圆心角是360°,所以圆心角是n的扇环面积是环形面积的。
解:当r=8cmr=4cmn=60°时,
答:扇环的面积约是25.1cm2。
说明:(1)公式计算时单位要一致,计算过程中一般不写单位,最后结果才写出单位,并用括号将单位括起来。
(2)上面所用的求扇环面积的方法体现了数学上的转化思想。一般在计算比较复杂的图形的面积时,都有采用此法,即将复杂的图形转化为几个简单图形的面积的和或差。
例2、一根钢管它的截面是一个圆环,圆环的外圆半径是r=10cm,内圆半径r=8cm,钢管长l=100cm。
初一年级数学教案篇十
1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)。
2、知道事件发生的可能性是有大小的(难点)。
一、情境导入。
二、合作探究。
探究点一:必然事件、不可能事件和随机事件。
【类型一】必然事件。
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()。
a、摸出的4个球中至少有一个是白球。
b、摸出的4个球中至少有一个是黑球。
c、摸出的4个球中至少有两个是黑球。
d、摸出的4个球中至少有两个是白球。
变式训练:见《学练优》本课时练习“课堂达标训练”第1题。
【类型二】不可能事件。
下列事件中不可能发生的是()。
a、打开电视机,中央一台正在播放新闻。
b、我们班的同学将来会有人当选为劳动模范。
c、在空气中,光的传播速度比声音的传播速度快。
d、太阳从西边升起。
解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选d、
变式训练:见《学练优》本课时练习“课堂达标训练”第2题。
【类型三】随机事件。
变式训练:见《学练优》本课时练习“课堂达标训练”第6题。
探究点二:随机事件发生的可能性。
掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()。
a、一定是6。
b、是6的可能性大于是1~5中的任意一个数的可能性。
c、一定不是6。
d、是6的可能性等于是1~5中的任意一个数的可能性。
变式训练:见《学练优》本课时练习“课堂达标训练”第11题。
三、板书设计。
1、必然事件、不可能事件和随机事件。
必然事件:一定会发生的事件;
不可能事件:一定不会发生的'事件;
必然事件和不可能事件统称为确定事件;
随机事件:无法事先确定一次试验中会不会发生的事件、
2、随机事件发生的可能性。
教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。
一、选择题(共15个小题)。
1、下列说法正确的是()。
a、随机事件发生的可能性是50%。
b、确定事件发生的可能性是1。
c、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本。
d、确定事件发生的可能性是0或1。
答案:d。
分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、
一、选择——基础知识运用。
1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()。
a、摸出的是3个白球。
b、摸出的是3个黑球。
c、摸出的是2个白球、1个黑球。
d、摸出的是2个黑球、1个白球。
2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()。
a、不确定事件b、不可能事件。
c、可能性大的事件d、必然事件。
3、下列事件是必然事件的是()。
a、打开电视机正在播放广告。
b、投掷一枚质地均匀的硬币100次,正面向上的次数为50次。
c、任意一个一元二次方程都有实数根。
d、在平面上任意画一个三角形,其内角和是180°。
初一年级数学教案篇十一
教科书第1~2页的例1以及相关的练习。
1、理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。
2、培养学生的分析能力和归纳概括能力。
3、通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。
多媒体课件和视频展示台。
一、复习引入
师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗?多媒体课件展示:
等学生完成后,抽学生的作业在视频展示台上展示,集体订正。
二、教学新课
1?教学例1,理解单位“1”
师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。
师:同学们,你们能用小圆代替月饼,帮小华分一分吗?
等学生分好后,抽一个学生分的小圆在视频展示台上展示。
师:这时,小华的爸爸又提出了问题。
课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?
引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。
多媒体课件演示下面的月饼图:
引导学生理解两个1/4代表的数量不一样。
师:为什么会出现这种现象呢?
引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。
让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。
师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。课件出示第2页的熊猫图。
师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?
请分一分,并填空。
引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。
师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。
板书单位“1”的含义。
师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体?教师再举两个例子,深化学生对单位“1”的理解。
2?理解并归纳分数的意义
师:想想自己操作的过程,你能说一说什么是分数吗?
学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。
师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。
归纳并板书分数的意义,板书课题。
试一试:涂色部分占整个图形的几分之几?
师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。
生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。
3?说生活中的分数
学生说生活中的分数。
三、课堂小结
(略)
四、课堂作业
1?第4页课堂活动第2题。
2?练习一第1,2,3,4题。
分数的意义
师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?
课件出示如下的题目:
(1)把一个月饼平均分成4份,其中的1份是这个月饼的();
(2)把一张手工纸
初一年级数学教案篇十二
一、知识结构。
二、重点、难点分析。
本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.
然后再次运用单项式与多项式相乘的法则,得到:
3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:
当然,如有同类项则应合并,得出最简结果.
4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.
5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.
6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.
教学时,应注意以下几点:
积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.
(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.
(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.
(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的等等,能够直接写出结果.
初一年级数学教案篇十三
立足教材,注重基础。
近年来中考数学有许多新题型,但所占分值比例较大的仍然是传统的基本问题,多数试题源于教材。试题的构成是在教材中的例题、习题的基础上通过类比,加工改造,加强条件或减弱条件,延伸或扩展而成的。因此,复习要立足于教材,在备战中考的过程中,首先应以教材为蓝本,重视“双基”训练,要让学生掌握典型例题、习题的解决套路,能够做到举一反三,触类旁通。注意知识体系构建,让各种概念、公理、定理、公式、常用结论及解题方法和技巧等,都能在学生的头脑中清晰地再现,扎扎实实地从教材做起,夯实基础,充分认识基础知识在解题中的指导作用。
创设情境,提升能力。
几年来,全国不少地方的试题都不再局限于对知识本身的考查,而是重在创设一个新颖的情境,考查学生在具体情境中灵活应用知识去解决问题的'能力。这就要求教师在课堂上,要善于创设问题情境,要注意引导学生深层次地参与学习过程,重视培养学生运用所学的知识和技能分析问题和解决问题的能力,使他们在观察、实验的活动中,通过比较、分析、归纳、类比、抽象等思维过程,完成知识的猜想和证明,加深对知识的理解,并学到创新解决问题的策略和方法。
贴近生活,学会运用。
数学知识来源于实际生活,继而为生产、生活服务。在教学中,要注意发掘学生身边与数学相关的事情,如银行商标图案、骑自行车反映出来的函数图象、测量电视塔的高度、投寄平信应付的邮费、购买商品如何省钱等,以增强学生用数学的意识。同时还要注意它们与教材中有关内容的类比。要培养学生运用所学数学知识解决实际生活中遇到的数学问题的意识和能力,引导学生做生活的有心人,做到学以致用,学用相长。
传授方法,加强理解。
考查数学思想方法是考查学生能力的必由之路。在中考复习中,应有意识有目的地适时渗透数学思想和方法,培养学生有效地利用数学思想方法解决相关问题的能力。要注意让学生针对具体题目作总结,以体会其中的数学思想和数学方法。近年中考数学试题,很多试题都是以图象、图表为背景呈现在学生面前的,这方面的试题有利于培养学生的自学能力、创新思维和实践能力。这类题目一般是通过阅读材料,观察图象,整理信息,抽象出数学问题,并用数学语言抽象成数学模型,进而得到解决的。正确解决这类题目的前提是正确理解题意。因此,在中考复习中,我们还要重视学生阅读理解能力的培养。
初一年级数学教案篇十四
一、知识结构。
二、重点、难点分析。
本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.
1.平方差公式是由多项式乘法直接计算得出的:
与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.
2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.
只要符合公式的结构特征,就可运用这一公式.例如。
在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.
3.关于平方差公式的特征,在学习时应注意:
(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.
(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).
(3)公式中的和可以是具体数,也可以是单项式或多项式.
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.
1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
这样得出平方差公式,并且把这类乘法的实质讲清楚了.
(1+2x)(1-2x)=12-(2x)2=1-4x2。
(a+b)(a-b)=a2-b2.
这样,学生就能正确应用公式进行计算,不容易出差错.
另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.
教学目标。
1.使学生理解和掌握平方差公式,并会用公式进行计算;。
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点。
重点:平方差公式的应用.
难点:用公式的结构特征判断题目能否使用公式.
一、师生共同研究平方差公式。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
初一年级数学教案篇十五
1.进一步熟练掌握有理数加法的法则。
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
1.培养学生的分类与归纳能力。
2.强化学生的数形结合思想。
3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。
加法运算律的灵活运用,解决实际问题。
能运用加法运算律简化运算,加法在实际中的应用。
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。
1.复习有理数的加法法则:
(1)同号两数相加,取相同的`符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2.口算:7+(-5)(-5)+(-4)(-10)+0(-8)+8。
(一)情境引入,提出问题:
鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。
1.叙述有理数的加法法则.
2.小学学过的加法的运算律是不是也可以扩充到有理数范围?
3.计算下列各组数的值,并观察寻找规律。
(1)(-7)+(-5)(-5)+(-7)。
(2)[8+(-5)]+(-4)8+[(-5)+(-4)]。
(3)[(-7)+(-10)]+(-11);(-7)+[(-10)+(-11)]。
结论:在有理数运算中,加法交换律、结合律仍然成立。
(二)活动探究,猜想结论:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示:a+b=b+a。
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.
在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示:(a+b)+c=a+(b+c)。
这里a、b、c表示任意三个有理数.
(三)验证结论:
例1计算16+(-25)+24+(-32)。
(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)。
解:16+(-25)+24+(-32)。
=[16+24]+[(-25)+(-32)](加法结合律)。
=40+(-57)(同号相加法则)。
=-17(异号相加法则)。
例2计算:31+(-28)+28+69。
(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)。
解:31+(-28)+28+69。
=31+69+[(-28)+28]。
=100+0。
=100。
3.若两个有理数的和为负数,那么这两个有理数()。
a.一定都是负数b.一正一负,且负数的绝对值大。
c.一个为零,另一个为负数d.至少有一个是负数。
4.两个有理数的和()。
a.一定大于其中的一个加数。
b.一定小于其中的一个加数。
c.和的大小由两个加数的符号而定。
d.和的大小由两个加数的符号与绝对值而定。
5.如果a,b是有理数,那么下列各式中成立的是()。
a.如果a0,b0,那么a+b0。
b.如果a0,b0,那么a+b0。
c.如果a0,b0,那么a+b0。
d.如果a0,b0,且|a||b|,那么a+b0。
7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比()。
a.增产20kgb.减产20kgc.增长120kgd.持平。
初一年级数学教案篇十六
1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。
2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。
3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。
4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
培养学生思维的有序性。
抽象概括计算规律。
计数器,答题纸。
师:同学们,数学王国里有十个数字,它们是……
生:0、1、2、3、4、5、6、7、8、9。
师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。
出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?
师:问题提出来了,敢不敢迎接挑战?
生:敢!
师:谁来说说,你是怎么理解“没有重复数字的三位数”的?
生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。
师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。
1、解决问题:
(学生尝试解决问题)
师:同学们写完了,哪位同学愿意展示一下你的答案?
生:(投影仪展示)123,321,213,132,321。
师:还有其他的写法吗?
生:(投影仪展示)123,132,213,231,312,321。
师:两种写法,你认为哪一种更好?
生:第二种更好。
师:为什么?(学生茫然)同桌讨论一下。
生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。
师:观察第二种写法有重复或遗漏吗?
生:没有!
师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。