长方体的体积教学设计及说稿(专业16篇)
生活中总有一些细小的瞬间,让人不禁沉思和总结。总结需要注意结构的清晰和句子的连贯,使读者更易理解。总结是一个整理思绪、明确目标、展望未来的过程。
长方体的体积教学设计及说稿篇一
教学目标:
1.理解并掌握长方体和正方体体积的计算方法.。
2.能运用长、正方体的体积计算解决一些简单的实际问题.。
3.培养学生归纳推理,抽象概括的能力.。
一、激趣导入。
师:今天老师带了两个精美的礼品盒,喜欢吗?猜猜看,哪个礼品盒的体积大?
生1:我猜蓝色礼品盒的体积大,因为它比较宽;
生2:我猜黑色的礼品盒体积大,因为它比较长…。
师:看来仅靠观察我们能准确比较出礼品盒体积的大小吗?(不能)。该怎么办呢?(计算)。
师:这个主意不错!今天这节课我们就来研究长方体体积的计算。(板书课题)。
二、先学后教。
1、示自学指导(课件)。
小组合作摆出不同的长方体并在记录单上做好记录,摆好后仔细观察,思考:长方体的体积与什么有关?想好后在组内交流。(时间4分钟)。
2、学生按小组分工合作,二人拼摆长方体,一人记录,一人监督,探索长方体体积与什么有关?教师巡视指导。指两个小组到前面板演。
3、组织学生汇报。
生1:我们组摆了3个长方体,第一个长方体长4厘米,宽3厘米,高2厘米……我们组发现小木块的数量和长方体的体积相等。
师:能举例说明吗?
师:还有哪个小组愿意来回报你们的发现?
生2:我们组摆了3个长方体,第一个长方体长2厘米,宽3厘米,高3厘米,第2个长方体……我们组发现长乘宽乘高等于长方体的体积。例如第一个长方体的长2厘米,宽3厘米,高3厘米,用2×3×3=18,长方体的体积也是18立方厘米…..)。
师:真会思考,将你们组的发现写在黑板上。还有哪个小组愿意汇报?
其他组学生汇报。
4、验证发现。
师:同学们都很善于观察思考,现在我们就重点看看第2小组的发现。他们组摆了3个长方体,发现长方体的体积=长×宽×高,那所有长方体的体积都等于长乘宽乘高吗?(师在黑板上写个“?”)现在我们就来验证一下。这次验证有两个要求:一、尽量用多的学具拼摆,二、把你们的发现用算式表示并填在记录表2中。
学生小组合作拼摆并进行记录,自由汇报拼摆结果。
生1:我们组摆了两个长方体,第一个长方体长6厘米,宽3厘米,高4厘米,体积是72立方厘米,用算式表示是6×3×4=72……我们组的结论是长方体的体积等于长×宽×高。
生2:我们组也摆了两个长方体,第一个长方体长……我们组的结论是长方体的体积=长×宽×高。
师:其他组你们的`结论和他们一样吗?(一样)有了这么多例子,现在这个问号可以擦下去了吗?(可以)。
同桌互说,男女说,齐说。
师:如果用字母v表示体积,用a、b、h分别表示长方体的长、宽、高,那么长方体的体积公式还可以写成…(指说)。
生:v=abh(开火车说)。
5、小结。
三、当堂训练。
1、填空。
3、计算并比较两个礼品盒的体积。
4、计算下面立体图形的体积。(单位:分米)。
(指生板演,汇报算法,在汇报过程中直接推导出正方体体积的计算公式及字母表示法)。
5、一块正方体石料,棱长是6dm,这块石料的体积是多少立方分米?
6、挖一个长和宽都是5米的长方体菜窖,要使菜窖的窖是50立方米,应挖多少米深?
7、一个正方体魔方的棱长总和是36厘米,它的体积是多少立方厘米?
8、计算组合图像的面积。
四、课堂总结。
这节课你有什么收获?学生自由发言。
五、课外延伸。
生自由发言。
六、随堂检测。
1、建筑工地要挖一个长50米,宽30米,深5米的长方体土坑,挖出多少立方米的土?
2、一个棱长3厘米的正方体橡皮,它的体积是多少立方厘米?
长方体的体积教学设计及说稿篇二
教学目标:
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
教学重点和难点:
长方体和正方体体积的计算方法,以及其体积公式的推导。
教学过程:
一、复习引入。
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课。
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)。
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。
三、议一议。
长方体和正方体底面的面积叫做底面积。
如果用s表示底面积,上面的公式可以写成:
v=sh。
四、巩固练习。
计算下面图形的体积。
正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。
v=a3v=sh。
长方体的体积教学设计及说稿篇三
教学内容:
人教版小学数学五年级下册第三单元长方体和正方体的体积。
教学目标:
探索并掌握长方体和正方体体积的计算方法,能正确计算长方体、正方体的体积。
2.在观察、操作、探索的过程中,提高动手操作的能力,进一步发展空间观念。
3.大家想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点:
经历探索长方体体积计算方法的推导过程,能正确计算长方体的体积。
教学难点:
促使学生从一维到三维的发展,让学生深切感悟体积度量单位的实际意义。
教具、学具准备:
课件,长方体、正方体模型,每组若干个棱长为1厘米的小正方体,直尺等。教学过程:
一、复习引入、揭示课题。
1.这节课我们继续研究与“体积”有关的知识。(板书:体积)。
2.说说对体积有哪些了解,并说说什么叫做音箱的体积,什么叫做空调的体积。3.比较空调和音箱哪个体积大,再比较两个体积近似的长方体。
过渡:我们不能直接观察出来,就需要计算出长方体的体积,这节课我们就来重点研究“长方体的体积”。(板书课题)。
二、探究明理。
(1)长、宽相等的时候,越高,体积越大。
(2)长、高相等的时候,越宽,体积越大。
(3)高、宽相等的时候,越长,体积越大。
2.探究体积计算方法。
(1)动手操作,填表。
(4)教师结合课件演示小结:长是一排有几个体积单位,宽是有几排,高表示几层,“长×宽”表示一层有多少个体积单位,再乘高求出几层共有多少个体积单位,所以长方体的体积=长×宽×高,用字母表示为:v=a×b×h(板书公式)。
(5)巩固练习:
v=abh。
=7×4×3。
=84(cm3)。
答:它的体积是84cm3。
(1)(课件演示)引导学生推导出:正方体的体积=棱长×棱长×棱长。
v=a×a×a=a3(板书)。
(2)巩固练习:。
一块正方体石料,棱长是6dm,这块石料的体积是多少立方分米?
v=a3。
=63。
=6×6×6=216(dm3)。
答:这块石料的体积是216dm3。
(1)课件演示长方体和正方体的底面积,给出底面积的概念。
(2)课件演示教材第43页长方体和正方体的底面积、高和体积的关系。(3)概括一般公式:
长方体(或正方体)的体积=底面积×高字母公式:v=sh(4)巩固练习:
利用公式v=sh计算:
1.完成教材第43页做一做第一题。
谁来说一说:今天这节课你有哪些收获?板书设计:
长方体的体积教学设计及说稿篇四
本节课是北师大版小学数学第八册第四单元“长方体(二)”中的一个内容。是在学夕了长方体、正方体的特征及表面积和体积、容积的概念及其进率的基础上来开展学夕的。长方体、正方体体积的计算,是学生形成体积概念、掌握体积的计量单位和计算各种几何形体体积的基础,学生在探究和操作活动中学会长方体和正方体的体积计算方法。教科书重视引导学生经历知识的探究过程,引导学生探索长方体体积的计算方法。
一、设计思路。
1、指导思想。
根据新课标设计理念“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。遵循不同学生获得不同发展理念,给学生提供个性化的学夕机会。本节课我首先安排了长方体体积与长方形面积的类比,由此启发学生猜测长方体的体积可能与长、宽、高有关;然后变化长方体的长、宽、高中的一个量,比较体积的变化,使学生分别体会到“宽、高不变,长变短了,体积变小了”“长、高不变,宽变短了,体积变小了“长、宽不变,高变短了,体积变小了”,对体积的计算产生猜想,让学生经历猜想、操作的思考过程。第二个环节是通过猜想与验证,得出长方体体积的计算公式;第三个环节是探索正方体体积计算公式。
2、学夕目标。
知识与技能:通过猜想验证的方法探索并掌握长方体,正方体体积的计算方法,能正确计算长方体、正方体的体积。
过程与方法:通过返回认知原点,打通知识间本质联系,将繁杂的数学知识变得更为简单。
情感态度与价值观:通过传递科学的研究方法,获取数学思想,提升解决问题的实践能力。
3、教学重点与难点。
重点:探索并掌握长方体和正方体的计算方法,能正确计算体积。
难点:理解体积单位的个数与体积之间的关系。
教学准备。
ppt课件、1立方厘米的正方体若干、1立方分米的正方体1块。
教学过程。
一、创设情境,导入新课。
1.出事情景图。师:今天学夕什么?(长方体的体积)你们怎么知道的?对,这就是观察,生活中遇到很多事情都是通过观察获取信息。
2.看到这个内容,你有什么想知道的?
师:什么是长方体的体积?长方体的体积怎么求?学夕了长方体的体积有什么用?
(师:我们学夕的时候就带着这些问题,有目的的去学夕。)。
3.现在,请问什么是长方体的体积?(板书:长方体的体积)。
有的同学看到这个内容后就在思考。
4.插入语音:体积,体积,怎么就叫体积呢?怎么不叫体和,体差,体商呢?(配合着老师的手势)。
师:真的,你们想过没有?(预设:体积都是通过相乘才得到的。
嗯~好像很有道理)。
二、探究新知。
师:老师前两天收了一个快递,看看,是什么形状?这个快递占多大空间?我想请同学们帮忙来解决这个问题。我已经把它画了下来。
师:求快递所占空间的大小,其实求得就是?(体积)。
1.通过观察你知道了什么信息?
生:知道了这个长方体的长是5cm,宽3cm,高4cm。
师:嗯,他知道了长方体的长、宽、高。
长方体的体积可能是谁x谁呢?大家大胆的猜想一下。(板书:猜想)。
(3+4+5)x4或(5×3+5×4+3×4)或5x3x4个可能吗?这个是什么的计算方法?)(若只有一人回答,师:你们只猜到这个一个啊)。
师:这几个猜想可能都正确吗?最多对几个?(1个)。
师:也有可能?(1个都不对)。
2.师:这些只是大家的猜想,猜想在数学学夕中是必要的,但我们仅靠猜测就能得到结论吗?(不能)我们需要(预设学生答::验证)(板书:验证)。
师:怎么验证呢?我们一起回顾一下。
师:我想知道这只铅笔的长度,我们会用尺子量?
用1cm长度单位来量,有几个1cm就有几个长度单位。
我想知道一个长方形的面积是多少,可以怎么办?
预设:量出长和宽的长度,用长x宽。
(预设:用数格子的方法。)。
师:多大的格子?要有一个标准,我们一般用面积是1平方厘米,1平方分米,1平方米这样的正方形作为面积单位。有几个面积单位,面积就是多少。
预设:铺不满怎么办?用小一点的面积单位)。
师:如果用面积是1cm的面积单位来量,这个长方形的面积是多少?
师:求面积的的时候,用面积单位来量,有几个面积单位,面积就是多少?
预设:用体积单位来量。
3.师:那我们用多大的体积单位合适呢?
预设:1立方分米,因为这个长方体的单位是dm。
师:(出示ppt)这是一个体积为1dm3。
学生思考,并同桌交流。
请一组同学展示:1人摆1人讲解,互相配合。
预设:先沿着长摆5个,挨着一共摆3排,然后摆4层。(板书:一排5个,摆3排,摆4层)。
师:沿着长摆5个,沿着宽摆3排,沿着高摆4层。
师:快速告诉老师,一共用了多少个体积单位?
预设:60个。
师:怎么计算的?
预设:一排5个x3排x4层=60个。
预设:60立方分米。
师:那我们来看一个哪个猜想可能是正确的?
预设:5×3×4(把其他的擦掉。(配合手势)那你们讲一讲他们之间有什么关系?
预设1:长是5dm,所以要摆5个。宽是3dm,所以需要3排。高是4dm,所以需要摆4层。
预设2:生说不出来,。
师:这两个5分别表示什么?5个和5排有没有关系?有什么关系?
预设:长是5dm,所以要摆5个。
师:长是5dm,为什么要摆5个?
生:这个体积单位的棱长是1dm,5个1dm才是5dm。
师:(借助手势)接下来,你们讲讲3和4之间的关系。(生交流讨论)。
师:所以共包含60个体积单位,体积就是60立方分米。
师:回顾一下是怎么得到这个长方体体积的?
看来这个猜想是正确的。
4.师:下次如果遇到另一个长方体,你觉得还需要摆吗?(预设:不需要。)。
师:(出示ppt)老师这还有一个长方体,怎样可以得到它的体积?
预设:14×10×5。
师:为什么用14×10×5就得到它的体积了?(你是怎么想的?)。
生:我是根据上面的长方体的计算方法得到的,前一个长方体的体积=长x宽x高,所以这个长方体体积也可以这样计算。
师:前一个长方体5指的是5个,这个14呢?
预设:14个。
师:也就是说长14cm,可以知道摆14个。
预设2:长是14cm,就可以沿着长摆14个。
师:虽然看着我们没有摆,其实摆了没有?在哪摆的?(预设:在心里摆的)。
师:物体包含几个体积单位,它的体积就是多少。
预设:25×10×10。
这个长方体呢(没有长度)要求体积需要知道什么信息?
预设:要知道长、宽、高。
师:告诉你之后怎样求体积?
用字母表示:(大写字母v):v=abh。
师:提到长方体就一定会想到正方体。正方体的.体积怎样计算?
同学们可以用今天学夕的知识探究正方体的体积如何计算?
预设:棱长x棱长x棱长。
师:为什么?
预设:正方体是特殊的长方体,长方体的长x宽x高,其实就是正方体的棱长x棱长x棱长。
预设:如果用体积单位来量的话,边长是几,一排就要摆几个,摆几排,摆几层,棱长x棱长x棱长是所需体积单位的个数,所以正方体体积就是棱长×棱长x棱长。
师:你们太聪明了。我还以为你们之前学过呢!
师:用字母表示?
预设:v=。
axaxa。
v=。
a3。
师:读作:a的立方,表示:三个a相乘。
三、课堂练夕、巩固新知。
2、用体积是1的小。
cm3。
正方体摆成如下的图形,它们的体积各是多少?
四、回顾总结、反思评价。
1.通过本节课的学夕你有什么收获?你想提醒大家注意什么?
2.这些知识可以帮助我们解决哪些问题?
作业设计:1.完成教材第43页“练一练”第4、5题。
2.预夕下一节。
板书设计:
v=abh。
v=。
axaxa。
v=。
a3。
教学反思。
成功之处:
本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8个小正方体既搭出了长方体又搭出了正方体,因此在本节课中,有好几个小组的学生通过同次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因,同时学生能根据长方体与正方体的关系——正方体是长、宽、高都相等的长方体,进一步揭示了正方体的体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一环节的操作探索活动中,学生通过数据的记录与分析,发现长方体体积与长、宽、高(正方体体积与棱长)之间的关系,知道了求长(正)方体体积。所具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步发展,这也是本节课的意图之一。
不足之处:部分学生汇报的语言不准确。在本节课的学生汇报环节中,学生在汇报时语言表述有些不清楚,且汇报夕惯不是很好,这跟学生平时在这个方面得到的训练机会不多有关系,也跟老师当时的心态—稍显急躁有着一定的关系。
再教设计:再教学时,教师要给足学生说的时间,让学生养成良好的汇报夕惯。教师不要怕占用时间过多,完不成教学任务,教学一定要以学生的学为主体。只有学生学会了,本节课才是成功的。
长方体的体积教学设计及说稿篇五
1、引导学生通过观察长方体的长、宽、高和正方体的棱长,再应用公式计算,解决生活中的实际问题。
2、通过练习,提高学生解决问题的能力。
应用长方体体积公式计算长方体、正方体的体积。
正确理解体积。
一、复习引入。
1、复习上一节课学过的知识。
2、应用公式计算体积。
(1)一个长方体,长8厘米,宽6厘米,高4厘米,求体积是多少?
(2)一个正方体,棱长是9厘米,体积是多少?
二、练习(教材43页练习题)。
1、第5题要求学生认真读题,注意最后的问题是需要多少升水?计算出来的体积单位是立方分米,要换算成升。
2、第6题要求独立思考练习,与同伴交流,说一说你是怎么想的。
3、第7题教师指导练习,结合书上的图想一想,再说一说,最后算一算。提示,正方体的每一条棱长都相等,先确定棱长。
4、第9题。
实践活动(见教材)。
三、作业练习。
完成配套练习。
长方体的体积教学设计及说稿篇六
一、教学内容简析:
这一内容是在学生理解了体积的概念和体积单位的基础上进行教学的。由计算平面图形的面积扩展到研究立体图形的体积计算,是学生空间思维发展的一次飞跃。长方体、正方体的体积计算,是学生形成体积的概念、掌握体积的计量单位和以后计算各种形体体积的基础。
二、教学环境:
通过“猜想——动手操作验证——探究”的教学过程,学生们兴趣盎然的参与到教学活动的每一个环节当中。借助多媒体的教学手段。演示实验的过程,帮助学生建立空间观念,形成清晰的表现。
三、教学目标:
知识技能目标:
1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。解决一些简单的实际问题。
2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
过程与方法策略目标:
通过“猜想——验证”的过程,形成发现、创新的过程。从而获取数学活动经验。
能力目标:
培养学生动手操作、抽象概括、归纳推理的能力。情感目标:
激发学生学习数学、发现数学的兴趣,学会与人合作。教学重点:
使学生理解长方体的体积公式的的推导过程,掌握长方体体积的计算方法。
教学难点:
在本课的教学中,让学生从生活实际需要中体会长方体的体积在生活中的应用,从而产生研究长方体体积的计算的需求,通过观察生活中的实物,发现长方体的体积与长宽高有关系,提出猜想,确定研究的方向。在学生以小组为单位,动手操作探究,来验证猜想的正确。使学生经历知识的建构的过程。通过解决生活中的实际问题,运用长方体体积计算的方法。体会数学运用于生活实际。
五、教学媒体的选择和应用:
教学实施具体过程:
(一)激发兴趣,唤起生活经验和旧知。
课件出示:
1、字典是我们学习的工具书,必须要常备身边的,淘气遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)。
(二)、唤起旧知。
提出猜想。
体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。(1)我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。
(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?
学生1:12立方厘米。追问怎么得到的?
学生2:一排是4立方厘米,3排就是4×3=12立方厘米。??
(3)再加上这样的一层,这个长方体的体积是多少?你是怎么计算的?
一层是12立方厘米,2层就是。
12×2=24立方厘米这个长方体的长宽高分别是多少?学生1:24立方厘米。
学生2:长是4厘米,宽是3厘米,高是2厘米。板书:体积。
长
宽
高
24。
猜想:
学生1:用计算公式。
(三)动手实践。
验证猜想。
1、这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。
(1)请同学们小组合作,用这些1立方厘米的小正方体木块拼成形状不同的长方体,每拼成一种就记录下它的长宽高和体积各是多少,然后计算出来验证刚才的猜想是否正确。
全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。
引导学生全员参与公式的推导。明确小组学习的任务哪个小组愿意先汇报你们的研究过程和成果?(在实物投影上边摆边说)。
第一组:把12个正方体木块摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米,我们认为猜想的公式是正确的。
第二组:把18个正方体木块摆成1排,每排6个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米,我们认为猜想的公式是正确的。
第三组:把12个正方体木块摆成2排,每排6个,摆1层。这个长方体的长是6厘米,宽是2厘米,高是1厘米,体积是12立方厘米,我们认为猜想的公式是正确的。刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。
(1)师问:每排的个数、每层的排数、层数与长宽高有什么关系?
生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。
生二:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。
师:体积怎么求?为什么?
(2)师:同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
[意图:分小组学习,是学生主动理解学习过程、解决问题的重要途径。通过学生交流、师生交流,比较、分析实验过程,从而引导学生主动探索出长方体体积与长、宽、高的关系。
学生们通过自己探索,学会了一定的学习方法。]课件演示公式的推导过程。
(3)字母表示:长方体体积用v表示长用a表示,宽用b表示。
(2)看立体图计算长方体的体积(只列式不计算)写在课堂作业本上。
长6厘米,宽6米,
高6米,求体积。
是什么立体图形?正方体。
v=a×a×a=a3说明理由:正方体是特殊的长方体。
阴影部分的面积是上面各个图形底面的面积,称为底面积。
(四)学以致用。
巩固提高1.判断(判断对错,说明理由)。
(1)一个正方体的棱长是2米,它的体积是8立方米。(。
)
(2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。
(
)
(3)一个棱长为6分米的正方体,它的表面积和体积相等。(。
)2.提高题。
(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)。
(2)一个正方体的棱长总和是36厘米,它的体积是多少?
3.实际应用。
解:v=abh=2.9×1×14.7。
=42.63(m3)。
答:这块巨大的花岗岩石碑的体积是42.63立方米。
(2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?
v=a3=6×6×6。
=216(cm3)。
答:这种魔方的体积是216立方厘米。4.发展题。
一块不规则的石头,要求学生借助于两种工具:一个装有水的长方体容器,一把直尺,把这块不规则的石头的体积求出来,只要求说出自己的方法。
(五)谈谈你今天的收获。
板书设计:
v=a×b×h。
=abh。
v=a×a×a。
=a3。
v=s×h教后记:
本课注重让学生从体验中学习,在体验中自我建构新知,在体验中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,教师很自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些客观规律。让学生在发现—验证—解释中体会数学,探究知识。学生们在教师的引导下通过猜测、动手操作、交流讨论发现了长方体的长、宽、高和体积之间的关系,总结出了计算长方体体积的公式。在这一过程中,学生不仅掌握了计算长方体体积的数学公式,还知道了应该如何独立思考,学会了与他人合作。在论证的过程中,同学们动手操作,分别派出各组的代表讲解各自验证的全过程,最终使全班同学达成共识,推导出了长方体的体积公式。通过多媒体的应用,使学生建立清晰的表象,增强了学生的空间想象能力。在从事数学活动的过程中获得了较为广泛的数学活动经验。在探索的过程中培养了学生的合作意识和创新精神。我想,把“如果”变为现实,转换一种角度更多地把学生的思维尽情地施放出来,可能得到的是一片蔚蓝的天空。
长方体的体积教学设计及说稿篇七
一、教学目标:
知识与技能:
探索并掌握长方体体积的计算公式,知道公式的字母表达式,能正确计算长方体的体积。
过程与方法:
在摆长方体、整理数据、观察讨论等活动中,经历探索长方体体积公式的过程,提高动手操作能力,同时发展他们的空间观念。情感态度与价值观:
在活动中感受数学问题的探索性和数学结论的确定性。
四、教学重、难点:
教学重点:探索并掌握长方体体积的计算方法,能正确计算长方体的体积,并解决一些简单的实际问题。
教学难点:
在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
五、教学过程。
(一)复习导入:
【出示课件2、3】:
1、体积是指什么?常用的体积单位有哪些?
2什么是1立方厘米,1立方分米,1立方米?(设计理念:“温故而知新”)。
(二)创设情境,引入新课。
【出示课件4】“天天乐”娱乐场要修建一个游泳池,请你帮忙算一算,应该挖多少土呢?这与我们以前学过的哪些知识有关系呢?(体积)。
(设计理念:激趣导入,激发学生学习与求知的欲望。)。
(三)小组合作,探究新知。
【出示课件5】。
1、学生拼摆长方体分小组探究:每一组都用40个小正方体(棱长1厘米)摆出4个不同的长方体,记录它们的长、宽、高,并完成记录表。
(设计理念:著名教育学家苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。”因此,教师要在学生的认识过程中不断激发学生心灵深处那种强烈的探索欲望。所以我设计了此环节。)。
2、操作验证,归纳提升。
第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。(一排摆出4个1立方厘米的正方体,一共摆了3排,摆2层)。
第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积。
记录数据,填入下表【出示课件6】。
请同学们观察这些从实际操作中得出的数据,思考这些数据与长方体。
的体积有没有关系?是什么关系?【出示课件7】从而推导出长方体的体积公式并【出示课件8】说明用字母表示体积公式的方法。
【设计意图】:为学生创设各种不平衡的问题情境,放手让他们自己去尝试、探究、猜想、思考,给学生留下了足够的思维空间,自己归纳总结出长方体的体积计算方法。这样虽然会走一些弯路,但学生亲自经历和体验了学习过程,他们用自己理解的方式实现了数学的“再创造”。
教师板书长方体的体积公式:长方体的体积=长×宽×高v=a×b×h=abh。
四)讲解例1:
【出示课件9】例题1:
一块砖的长是24厘米宽是12厘米,厚是6厘米。它的体积是多少立方厘米?
指导学生理解题意,重点引导学生理解厚的含义。告诉学生厚就是高的意思。学生分组交流,师板书解题过程。
(设计理念:让生学会正确书写解题过程,正确使用体积单位。并提高与人合作交流的能力。)。
(五)巩固练习。
1、基本练习。
学生独立完成91页练一练的第1、2题【出示课件10、11】。
【设计意图】这样的练习意在面向全体同学,让每一个学生都能掌握。
2、变式练习【出示课件12】。
学生小组合作完成91页练一练的第3题。
【设计意图】培养学生灵活解决问题的能力和与人合作的能力。
3、课后作业【出示课件13】。
让学生课下做91页练一练的第4题。
【设计意图】通过具体的生活实际问题,再次提高认识,培养学生解决实际问题的能力。
(六)全课总结。
教师带领同学回顾长方体的体积公式,提供修建游泳池需要的已知量来解决实际问题。
四、板书设计。
v=abh。
例1:24×12×6=1728(立方厘米)。
答:它的体积是1728立方厘米。
长方体的体积教学设计及说稿篇八
明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。
演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)。
揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)。
二、操作探究,发现规律。
启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?
谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。
明确活动要求:
(1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。
(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。
(3)填完表格后,同桌核对数据,并交流自己的发现。
学生按要求操作、交流,教师巡视。
组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)。
三、再次探索,验证规律。
学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。
根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)。
出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。
提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)。
明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。
出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。
反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)。
四、引导概括,得出公式。
板书:v=abh。
和同桌说一说你还知道了什么?
让学生口算各题的得数,并交流计算时的思考过程。
五、巩固练习,应用拓展。
学生独立完成计算,并组织反馈。
六、全课小结,梳理学法。
七、课堂作业。
练习六第1题。
长方体的体积教学设计及说稿篇九
3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
理解长方体和正方体体积公式的推导过程.
课件,若干个1立方厘米小正方块。
1立方厘米的正方体16块。
一、激情导入。
1、复习引入。
师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。
2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。请同学们齐读本节课的学习目标。
3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。
二、民主导学。
(学情欲设)。
生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。
生2、可以量一量。
生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。
老师认为这个提议不错,你们认为呢?
师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。好,请同学们看今天的第一个学习任务。
任务呈现:
用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:
出示表格。学生四人一小组,每组一张表格。
长
(厘米)。
宽
(厘米)。
高
(厘米)。
师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。并在小组中讨论你发现了什么。
自主学习。
学生活动,师巡视。
展示交流。
师:同学们摆出了许多不同的长方体,并且填好了表格。哪一组来汇报?
学生黑板前展示表格,并做详细汇报。
引导学生观察表格,
师:观察表格中的数据,从中你能发现什么呢?
师:通过观察比较,同学们有了很大的发现:长方体的体积等于它的长、宽、高的乘积。(板书:)长方体的体积=长×宽×高。
任务2、继续验证。
课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。请一个同学上台操作。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米。
师:那究竟对不对呢?让我们再来摆一摆。
学生小组讨论,动手操作,指名一生上台操作。师巡视。
师:和我们之前的猜想一样吗?
v=abh。
课件出示:
师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。
师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
课件出示正方体,出示公式。
师:写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
1、口答题。
2、判断题。
3、解答题。
师:长方体和正方体的体积在生活中运用的很多,让我们一起来看一看。
师:这个算式表示什么意思呢?
出示:
品名:正方体收纳凳。
尺寸:30×30×30。
材质:涤纶+pp不织布+纤维板。
颜色:黑白。
师:你能看懂这个说明书吗?
师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。
师:这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?
长方体的体积教学设计及说稿篇十
教学目标:
1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。
2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。
3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。
教学重点:
体积公式的运用及公式的推导过程。
教学难点:
体验公式的推导过程。
教学过程:
一、比较大小,复习引入
1、比一比。出示书包、文具盒。问:谁大?谁小?
其实刚才我们在比他们的什么?体积指的是什么?
2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)
小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。
3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?
4、揭示课题。
二、动手操作,感知认识
还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)
3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?
三、启发探究,自主建构
1、出示长5分米、宽3分米、高2分米的长方体。
问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)
问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)
2、汇报交流。并演示摆的过程。
3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?
4、听要求摆。
(1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。
(2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。
5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。
四、解决疑难,运用拓展
1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。
2、自己求数学书的体积。
3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?
4、小结正方体的体积公式。
五、全课总结
长方体的体积
长方体的体积教学设计及说稿篇十一
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
长、正方体模型、课件、长、正方体形状的纸盒等。
创设情境,导入新课。
出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?
教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。
揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)。
操作探究,发现规律。
学生按照要求用正方体搭出四个不同的长方体并编号。
让学生观察,并作小组交流。
用了几个小正方体?不数,你怎样计算小正方体的个数?
根据所搭的长方体填表:(表格略)。
根据表格,引导分析,发现规律。
比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?
引导学生猜想:长方体的体积和他的长宽高有什么关系?
再次探索,验证猜想。
出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。
如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。
引导概括,得出公式。
交流的出结论:
v=abh。
启发引导。
正方体是特殊的长方体,你能根据长方体的体积公式写出正方体的体积公式吗?
让学生尝试,再交流得出结论:
学生阅读教材第26页,说说正方体体积的字母公式。
应用拓展,巩固练习。
做“试一试”
先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。
做“练一练”第1题。
观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。
做“练一练”第2题。
先让学生选择几个式子说说其表示的意思,再口算。
做练习四第2题。
完成练习四第1、3题。
长方体的体积教学设计及说稿篇十二
1.在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。
2.通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。
3.进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。
教师准备用1cm小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm的正方体和实验记录单。
一、创设情境,导入新课
明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。
演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)
揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)
二、操作探究,发现规律
启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?
学生回忆后,电脑演示推导长方形面积公式的过程。
学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。
谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。
明确活动要求:
(1)同桌合作,用若干个1cm的正方体任意摆出4个不同的长方体并编上序号。
(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。
(3)填完表格后,同桌核对数据,并交流自己的发现。
学生按要求操作、交流,教师巡视。
组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)
板书:长方体的体积=长×宽×高。
启发:同学们通过用1cm的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。
三、再次探索,验证规律
学生可能想到用4个1cm的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm;也可能用“4×1×1”算出它的体积。
根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm。(见图1)
出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm的小正方体,你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先在长方体上画一画,再和同学交流。
提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)
明确:在这个长方体中,沿着长一排可以摆4个1cm的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。
出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm的小正方体吗?自己先试一试。
反馈:这个长方体的体积是多少cm?你是怎样想的?(学生的回答后,出示图3)
引导学生用示意图表示出思考过程。
四、引导概括,得出公式
揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。
板书:v=abh。
和同桌说一说你还知道了什么?
让学生口算各题的得数,并交流计算时的思考过程。
五、巩固练习,应用拓展
1.完成“试一试”。
指导测量、记录数据后独立解答。
出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm?
学生独立完成后,组织反馈。
2.完成第26页“练一练”第1题。
先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm的小正方体摆成的。
3.完成练习六第2题。
出示题目,让学生自由读题。
提问:计算冷藏车的容积,为什么要从里面量?
学生独立完成计算,并组织反馈。
六、全课小结,梳理学法
七、课堂作业
练习六第1题。
长方体的体积教学设计及说稿篇十三
内容六年制小学数学第十一册p25—26。
教学目的和要求。
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
教学重点。
及难点探索并掌握长方体和正方体体积的计算方法。
教学方法。
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
学法指导。
讨论交流,并认真听讲思考。
集体备课个性化修改。
预习阅读书本25、26页,并初步理解解。
一、以旧引新。
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)。
二、探究新知。
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
交流得出:v=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题。
课堂作业:做练习六第1、2题。
板书设计。
执行情况与课后小结。
长方体的体积教学设计及说稿篇十四
内容六年制小学数学第十一册p25—26。
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
3、培养学生初步的归纳推理、抽象概括的能力。
及难点探索并掌握长方体和正方体体积的计算方法。
长方体和正方体体积公式的推导。
及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。
讨论交流,并认真听讲思考。
集体备课个性化修改
预习阅读书本25、26页,并初步理解解
一、以旧引新
师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)
二、探究新知
1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。
师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。
师:将摆出的长方体放在桌上,并编号。
请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。
引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。
师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?
2、验证、交流后归纳出长方体的体积计算公式及字母公式。
通过交流得出公式:长方体的体积=长×宽×高。
交流得出:v=abh.
3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。
师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?
交流得出:正方体的体积=棱长×棱长×棱长。
重点理解的含义,进一步明确的读法、写法。
做“试一试”。
作业做“练一练”。
做练习六第2题
课堂作业:做练习六第1、2题
板书设计
执行情况与课后小结
长方体的体积教学设计及说稿篇十五
学习内容:
长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。
学习目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:
教学难点:
教具运用:
正方体木块若干。
教学过程:
一、复习导入。
1.什么叫体积?计量物体的体积常用的单位有哪些?
二、新课讲授。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=a?a?a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。v=abh=7×4×3=84(cm3)。
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业。
完成课本第31页“做一做”第1、2题。
四、课堂小结。
1.这节课,你有什么收获?
五、课后作业。
完成练习册中本课时练习。
板书设计:
v=abh。
v=a?a?a=a3。
长方体的体积教学设计及说稿篇十六
教学目标:
1、学生经历探索长方体与长、宽、高之间关系的过程,理解掌握长方体体积的计算方法。
2、能根据正方体与长方体的从属关系,理解掌握正方体的体积计算方法。
3、能运用长方体、正方体的体积计算公式,正确地进行简单的体积计算,并解决简单的问题。
4、经历数学学习活动,培养学生分析与解决问题的能力。
教学关键:运用教学具引导学生观察、发现长方体体积与长、宽、高之间的关系。教具准备:电脑课件、棱长1厘米的正方体块若干。
教学过程:
一、复习铺垫:
1、计算下列长方形的面积。
练习要求:
(1)学生独立计算各长方形的面积;
(2)全班反馈。
2、说一说。
教师:你认为长方形的面积与长和宽有什么关系?要计算长方形的面积需要哪些条件?通过问题回答,使学生懂得长方形面积的大小与它的长、宽有直接的关系,要计算长方形的面积必须已知它的长和宽的长度。
二、探索新知。
1、揭示课题,设疑激趣。
教师:我们已经学习过并掌握了长方体、正方体的表面积计算,今天,我们要学习长方体、正方体的体积计算。板书课题:长方体的体积。
随后,电脑课件演示,如:
比较图1、图4体会到:长、宽相等的时候,高的值越大,体积也越大;高的值越小,
体积也越小。
比较图2、图5体会到:长、高相等的时候,宽的值越大,体积也越大;宽的值越小,体积也越小。
比较图3、图6体会到:宽、高相等的时候,长的值越大,体积也越大;长的值越小,体积也越小。
教师:体积与长、宽、高存在怎样的关系呢?
从而,使学生肯定长方体体积的大小决定于它的长、宽、高的长短。
(这里课件动态演示长方体体积相关的三个条件的变化,一是长方体宽、高不变,长变;一是长方体长、宽不变,高变;一是长方体长、高不变,宽变。通过课件动画和色彩上的区别,让学生形象、直观地观察体会长方体体积大小与哪些条件有关。为进一步探索长方体体积做好铺垫。)。
2、自主探索,获取新知。
(1)请学生取4个、6个、12个正方体块,分别摆出不同的长方体,让学生观察,记录这些长方体的体积的长、宽、高。
(2)反馈,课件同步演示。
第一组:用4个小正方体拼长方体。
第一种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
4114。
第二种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
2124。
(通过课件动态演示用四个小正方体拼长方体的过程,让学生初步感知长方体体积与它的长、宽、高之间存在的内在联系。更直观、形象,易于学生理解。)。
第二组:用6个小正方体拼长方体。
第一种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
6116。
第二种:
体积是多少?
长是多少厘米?
宽是多少厘米?
高是多少厘米?
记录:长宽高体积。
3126。
(这组同样通过课件动态演示,使教学内容更具体、形象、直观,使学生更容易体会。)。
第三组:用12个小正方体拼长方体。
(同上)。
(通过上面三组flash动画的动态演示,使抽象的立体图形在上下、前后、左右层层拼摆的过程中,让学生很容易理解长方体体积所包含的体积单位及与长宽高之间的关系,引发了每一个学生积极的情绪体验。)。
(3)整理数据,发现规律(课件演示)。
通过观察、交流,让学生发现规律,板书如下:
4×1×1=4。
2×1×2=4。
6×1×1=6。
3×1×2=6。
12×1×1=12。
……。
从而发现:长方体所包含的体积数正好等于长方体长、宽、高的乘积。
板书:v=a×b×h或v=abh。
(以上环节通过课件的动态演示,学生经历了提出问题-----探索问题-----验证结论-----概念形成的过程,建立了对长方体体积正确的认知。同时在图形位置、数量及长、宽、高变化的过程中学生加深了对长方体体积的全面认识,从而使学生的空间观念进一步提升。)。
(4)知识迁移,归纳正方体体积计算公式。
课件演示,学生观察、交流后归纳:
v=a×a×a或v=。
三、巩固应用,加深理解。
1、用1立方厘米的小正体摆成如下的图形,他们的.体积各是多少?
(课件出示)(此题在教学中若教师用笔画图,不但耗时而且还会不标准、不美观,通过计算机课件来出示,不但快捷,而且能解决所有的这些问题,起到事半功倍的效果。)。
2、计算体积。
(课件出示)(效果同上)。
3、一个药盒长6厘米,宽和高都是3厘米。现有一个长12厘米,宽6厘米,高6厘米的。
纸箱,内侧的尺寸如图,这个纸箱中最多能放多少盒药?
(课件演示)(此题在大纸盒内摆小药盒,用实物演示具有很大的局限性,比如纸盒是不透明的,学生看不到纸箱里面的摆放过程,而这里利用课件动态演示,让学生直观形象的了解横摆、竖摆、侧摆这三种方式,从而找到解决问题的办法,同时进一步培养了学生的空间观念感。)。
四、精彩活动,拓展延伸。
我说你搭。
用体积是1立方厘米的小正方体摆长方体。
(课件操作)(此题让学生在电脑课件中用拖拽的方式进行拼搭,激发学生浓厚的学习兴趣,积极活动的参与性,不但创设了让学生独立思考、共同研究交流的学习氛围,同时让学生深深感受到学习的乐趣和成功的喜悦。)。
五、数学万花筒。
(课件演示)(把教材内容用课件的形式展现出来,既便于激发学生学习兴趣,又有利于全体学生共同研究交流。)。