最新数学单元教学设计案例大全(15篇)
不同类型的作文要采用不同的写作方式和结构。写总结要注重逻辑性和条理性,使读者能够轻松理解和接受。以下是小编为大家收集的朋友心得体会,希望能给大家一些启发。
数学单元教学设计案例篇一
教学内容:《义教课程标准实验教科书一年级数学上册》第3~4页教学目标:
1.以生活中有关“左、右”的真实情境激发学生兴趣。
2.通过学生参与多种形式的数学活动,使学生经历建立“左、右”方位感的过程。3.能正确辨别“左、右”的位置关条,体验其相对性。
4.培养学生运用“左、右”的数学知识解决实际问题的能力和与人交流的能力以及观察能力,让学生体会到生活中处处有数学。
5.结合教学内容对学生进行“乐于助人”的思想品德教育和。教学重、难点:
正确辨别左、右的位置关系,体验其相对性。教具准备:课件教学过程:
一、感知自身的左右1.创设问题情境。
师:小朋友们会念拍手歌吗?喜欢玩吗?谁能来表演一下?问:小朋友们,刚才他们是用什么拍掌的?2.体验左、右。
(1)师:请伸出你的右手,再伸出你的左手。(2)看一看。
(4)师小结:左手、右手是一对好朋友,配合起来力量可大了,可以做许许多多的事情,小朋友们瞧瞧自己的身体,还有像这样的好朋友吗?(5)生说。(要求学生摸着说。)(6)揭示课题。
3.小游戏:听口令,做动作。举左手,举右手;举右手,举左手。左手摸左耳朵,右手摸右耳朵。左手拍左肩,右手拍右肩。左脚跳两下,右脚跳两下。拍一拍:
在身体的上面、下面、前面、后面、左面、右面各拍两下掌。二、感知群体中的左边、右边,建立方位感1.找一找。
(1)第一横排坐在最左边的是谁?最右边的又是谁?
(2)第二横排中,从左往右数,第__个同学是谁?从右往左数,第__个同学又是谁?
师小结:同一个人,从不同的方向去数,顺序也就不同。(3)你的左边是哪个同学?右边又是哪个同学?(4)同桌互相说一说。你的左面、右面都有哪些同学?(5)全班交流。
2.解决生活中的实际问题。
(1)创设问题情境:一只小猪找不到回家的路,请小朋友用学到的前、后、左、右的知识帮小猪找家。(2)学生展开讨论。(3)计算机演示结果。
(4)对学生进行安全教育和乐于助人的思想品德教育。三、体验左右的相对性,加强理解1.创设问题情境。
(1)师:老师和你们是面对面站的。请你判断:老师举得是哪只手呢?(2)同桌互相说一说:你是怎样想的?(3)全班交流、验证。
师小结:两个人面对面站的时候,左、右刚好相反。2.游戏巩固认识。(1)师生齐举左手。(2)师与生演示。
老师的右手搭在同学的哪只肩上?老师的左手搭在同学的哪只肩上?学生的右手搭在老师的右肩上。学生的左手搭在老师的左肩上。(3)两生演示。
伸出右手握握手,你是我的好朋友,自己的右手褡在对面同学的右肩上。自己的左手搭在对面同学的左肩上。(4)全班齐做。
1.计算机演示:小白兔用前、后、左、右的知识介绍自己的卧室。2.学生运用前、后、左、右的知识介绍生活中的情境。3.师小结,全课结束。分析:
每个学生的生活与数学知识背景、数学活动经验、所处的文化环境、自身思维方式都各不相同。因此新课程标准教学新理念指出,数学内容的呈现形式应多样化,以保证学生积极、主动地参与整个学习过程,使他们的数学学习活动是一个主动的、生动活泼的和富有个性的过程。
1、突出知识之间的联系与综合数学是一个整体,其不同的分支之间存在着实质性联系。按照教材的编排意图,根据学生的年龄特点,合理安排教学全过程。2、设计生活化的教学内容:创设生活情境,引发学生兴趣。这节课教学内容是左右,从日常生活入手,创设一个问题情境,从自身入手,从真实的生活中提出问题。用学生熟悉的,有兴趣的,贴近他们现实生活的内容进行教学,才能唤起他们的学习兴趣,调动学习积极性,使学生感受到生活与数学知识是密不可分的,使数学课富有浓郁的生活气息,从而产生学习和探求数学的动机,主动应用数学去思考问题、解决问题。
3、注重呈现形式的丰富多彩在数学教学中,我们应努力让孩子们愿意亲近数学、了解数学、喜欢数学,从而主动地从事数学学习。根据学生的兴趣爱好和认知特征,采取适合于他们的表现形式,培养他们一种愿意甚至喜爱的积极情感。
4、关注对数学的理解,发展富有个性地学习促进随着开放式教学的深入开展,课堂中学生的主动性、创造性都得到充分的发展,应用有关数学问题的能力不断提高,课堂上应尽量抓住学生出现的一些问题,关注学生对数学的理解,及时调控课堂教学。
数学单元教学设计案例篇二
本节教材主要是在口算整十、整百数乘一位数和估算两、三位数乘一位数的基础上,扩大口算和估算的范围。例1教学整十、整百数乘整十数的口算方法。用解决邮递员10天、30天要送多少份报纸?要送多少封信?等实际问题的活动,让学生运用已有的知识探讨口算方法。接着,通过“做一做”,让学生经历口算整十、整百数乘整十数的过程,掌握口算方法。新教材把口算教学和解决实际问题联系在一起,使学生产生亲切感和学习兴趣,同时有利于加深学生对乘法意义的理解。
二、学习者分析。
学生在整十、整百数乘整十数的基础上,扩大口算的范围,相信学生能够运用已有的知识和已有的计算方法,探索出新的计算方法。
三、教学目标。
1、使学生在理解的基础上,掌握整数乘法的口算方法。
2、培养学生类推迁移的能力和口算的能力。
3、使学生经历整数乘法口算方法的形成过程,体验解决问题策略的多样性。
4、培养学生养成认真计口算的良好学习习惯。
5、使学生感受到数学源于生活,培养学生积极思考的习惯。
四、教学重点及解决措施。
掌握整数乘法的口算方法。
五、教学难点及解决措施。
通过学生活动,体验数学学习方法。
口算是不借助任何工具,只凭思维和语言进行计算并得出结果的一种计算方法,它具有快速、灵活的特点。口算是计算能力的一个重要组成部分。首先,口算是笔算、估算的基础,笔算和估算能力是在准确、熟练的口算能力的基础上发展起来的,没有一定的口算基础,笔算、估算能力的培养就成了无源之水。其次,口算在日常生活中有极其广泛的应用。因此良好的口算能力不仅是学习任何其他数学知识的基础。我在备课前想过,既要让学生牢牢的掌握这堂课的内容,又要尝试让他们自己去学习。于是我精心设计了一个个井井有条的步骤:注意口算联系经常化,并通过多种形式的训练,逐步提高口算速度,培养口算能力。依据的理论引导学生自主合作探究,联系生活实际。
数学单元教学设计案例篇三
单元简析:
:本单元学生主要学习一些简单的统计图表知识,初步体验数据的收集、整理、描述和分析的过程,学会用简单的方法收集和整理数据,掌握统计数据的记录方法,并能根据统计图表的数据提出并回答简单的问题,使学生了解统计的意义和作用,初步了解统计的基本思想方法,认识统计的作用和意义,逐步形成统计观念,进而养成尊重事实、用数据说话的态度。
:上学期学生已经学习了比较、分类,能正确地进行计数,所以填写统计表时不会感到太困难,其关键在于引导学生学会收集信息,整理数据,根据统计表解决问题。学生在生活中积累了较多的生活经验,能利用统计图表中的数据作出简单的分析,能和同伴交流自己的想法,体会统计的作用。
(1)使学生经历数据的收集、整理、描述和分析的过程,能利用统计表的数据提出问题并回答问题。
(2)了解统计的意义,学会用简单的方法收集和整理数据。问题解决:能根据统计图表中的数据提出并回答简单的问题,并能够进行简单的分析。
(3)通过对周围现实生活中有关事例的调查,激发学生的学习兴趣,培养学生的合作意识和创新精神。
:使学生初步认识简单的统计过程,能根据统计表中的数据提出问题、回答问题,同时能够进行简单的分析。
:使学生亲历统计的过程,在统计中发展数学思考,提高学生解决问题的能力。
课时安排:3课时。
数据收集整理………………………………2课时。
练习一………………………………………1课时。
课题:数据收集整理(一)。
1.体验数据收集、整理、描述和分析的过程,了解统计的意义。
2.能根据统计表中的数据提出并回答简单的问题,同时能够进行简单的分析。
3.根据统计表的数据提出有价值的数学问题及解决策略。
教学重点:
使学生初步认识简单的统计过程,能根据统计表中的数据提出问题、回答问题,同时能够进行简单的分析。
教学难点:
引导学生通过合作讨论找到切实可行的解决统计问题的方法。教学准备:班班通、表格。
教学过程:
第一课时。
交流理由。
小结:全校学生那么多,要调查全校的学生,范围太广了,我们可以先在班级里调查,通过班级中的数据作为代表,找出大多数同学喜欢的颜色,也能代表全校大多数学生喜欢的颜色。
师:那这节课就以我们班级为单位,在班级中进行调查统计,看看在这四种颜色中,大多数同学最喜欢哪种颜色。
1.讨论收集数据的方法。
(1)问:刚才我们确定了要在班级里进行调查,我们班级的人数也不少,应该怎样调查呢?你有什么好的办法?学生讨论收集数据的方法。
(2)出示统计表。问:可以用什么方法来完成这张统计表呢?
(3)学生说出各种不同的方法。
(4)问:你认为以上各种方法中,哪一种方法最方便?
师:在这些方法里,举手表示是比较简便的方法,现在由老师发布指令,每人只能选一种颜色,最喜欢哪种颜色就举手表示。“用举手数一数”的方法,师生合作完成统计表。师生活动,教师说颜色,学生举手,教师数人数,学生填表格。
2.从这张统计表中,我们可以知道些什么?
(1)师:从统计表中你能看出全班共有多少人?怎样计算?
(2)师:喜欢说明颜色的人数最多,那么这个班订做校服,选择该种颜色,那全校选这种颜色做校服合适吗?为什么?组织学生分析表格,教师根据分析的情况加以引导,突出统计的意义。
1.完成教材第3页“做一做”,调查本班同学最喜欢去哪里春游。
2.完成教材“练习一”的第1题。调查本班同学最喜欢参加哪个课外小组。
师:通过今天的学习,同学们有哪些收获?学生自由发言。
小结:这节课,我们通过举手表决的方式统计了本班同学最喜欢的校服的颜色,最喜欢去哪里春游,最喜欢参加哪个课外活动,这个方法简便,易操作,下次我们班级调查就可以采用这种方法。
课题:数据收集整理(二)。
教学目标:
1.能根据统计结果回答问题、发现问题,进行简单的预测和较为合理的判断。
2.让学生进行一些社会调查,体验实践性和现实性。
3.激发学生的学习兴趣,培养学生的应用意识,并接受其中的思想教育。
教学重点:
让学生选择记录方法作记录,并体会哪种记录方法既清楚又方便。教学难点:
根据统计表提出问题并初步进行简单的预测。
教学准备:班班通,表格。
教学过程:
今天,老师要请你们帮忙,为老师评选一名数学科代表。
出示评选条件:1.数学成绩优秀。2.数学成绩一般,但非常希望能提高数学成绩。3.愿意为大家服务,乐意为数学老师服务。
问:你想推荐谁当数学科代表?教师根据学生的回答,筛选出两位学生的名字写在黑板上。
1.学习用记录的方法收集、整理数据。
(1)收集数据。
学生讨论,说说选择的方法。
问:用我们上节课学习的举手统计的方法可行吗?为什么?
出示小精灵的话:可以用投票的方式来决定谁能担任科代表。教师讲解投票的方法,拿出准备好的小纸张,从黑板上选一个你心目中的科代表的名字。学生动笔写,将写好的纸张折好,由小组长收上来。
(2)学习记录方法。
教师将收好的纸张放在讲台桌上。
师:现在老师要从这些纸张里拿出一张,报出名字,同学们要想办法把它记在纸张上,老师报一个,你记一个,一直到把这些纸张记完。
请小组讨论一下,你们准备用什么方法来统计数?
(提示学生:纸张很多,报得又很快,必须抓紧时间统计,最好能分工合作。)。
请方法独特的学生到黑板上板演,其他学生用自己想到的方法记录。
讲述:记录完的讨论一下,哪种方法记得既清楚又方便,将不同的方法展示在黑板上让大家瞧一瞧。
完成统计表。根据统计结果,应该选()担任数学科代表。
(3)小结:刚才同学们选择了自己喜欢的方法,你们能说说是怎样记的吗?把你喜欢的方法说给大家听一听,要说出喜欢这种方法的理由。
2.教学例2:
(2)填写统计表,分析数据。
回答问题。
小结:即使把缺勤同学的两票同学的两票加到王明明的票数中,也不影响投票结果,所以,结果不会改变。
(3)从上面这道题中,你有没有学到新的记录方法?
完成教材“练习一”的第3题。
这节课最让你高兴的收获是什么?学生自由发言。
小结:这节课,我们应用统计知识帮助老师选了一位同学们心目中的数学科代表,老师先谢谢同学们,我们还学到了统计的另一种方法——投票,并用自己喜欢的方法进行了记录,在日常生活中可以统计的内容很多,有兴趣的同学课后还可以选择一些内容进行统计。
数学单元教学设计案例篇四
教学内容:
估算黄豆粒数。
教学目标:
学会估算方法。
教学重难点:
利用估算方法解决实际问题。
教学准备:
黄豆,杯子,天平等。
教学过程:
一、引入。
师:你们看,这是什么?
生:黄豆。
师:你们想知道这些黄豆有多少粒吗?
想一想:用什么方法可以知道黄豆有多少粒。
二、小组讨论,确定方案。
师:你们可以用课桌上的工具。
(杯子,天平等)。
三、小组合作,实施方案。
四、汇报交流。
方案一:
先数一杯黄豆的数目,再看这些黄豆有多少杯,再用乘法计算即可。
方案二:
先测一把黄豆的数目,再看这些黄豆有多少把,再用乘法计算即可。
方案三:
先测100粒黄豆的重量,算出一粒的重量,再称出总重量,再用除法计算即可。
五、小结。
数学在我们的生活中有着广泛的应用,请大家都要做留心观察的人。
数学单元教学设计案例篇五
1、通过具体操作活动,能识别长方形、正方形、三角形、平行四边形和圆。
2、加深对图形与统计的理解。
3、在认识图形的过程中,发展学生的观察、想象和操作能力,形成初步的空间观念。
4、能综合运用图形等知识解决问题,形成初步的创新意识和实践能力。
5、了解可以用形来描述某些生活现象,感受数学与日常生活的密切联系,体验学习数学的作用。
本单元教学直观认识长方形、正方形、平行四边形、三角形和圆,要求学生整体感知五种图形的形状,形成初步的表象,能识别各种图形,再常见物体上找到这些形状的面,并说出他们的名称,能用简单的方法制作这些图形,初步感受图形的变换。本单元的内容三部分编排:(1)教学长方形、正方形、平行四边形、三角形和圆。(2)感知平面图形的关系,通过动手操作、拼组,把一些大小相同的平面图形拼成一些更大的或其它的图形,从而初步感知平面图形的关系。(3)通过动手操作、拼组七巧板进一步感知平面图形的关系。
上个学期学生已经学习了立体图形,对图形的认识有一了定的基础,所以在学习平面图形方法上应该有知识的迁移,学习起来不会很困难,对平面图形特征要让学生掌握精确,特别是正方体、长方体、平行四边形之间的联系要突破。
1、认识长方形、正方形、平行四边形、三角形和圆等平面图形,会辨认和区分这些图形。
2、经历拼、摆、画、折等活动,直观感受所学平面图形的特征。
3、感受所学图形之间的关系。
4、感受图形与日常生活的密切联系,学会从数学的角度去观察周围的世界,提高观察能力、动手操作能力和语言表达能力。
重点:从物体中分离出面,再从表面抽象出平面图形。
难点:丰富直观体验,发展空间观念。
1.1认识图形。
教材第2页例1及相关练习。
1、直观认识长方形、正方形、平行四边形、三角形和圆等平面图形,能辨认和区别这些图形,通过将图形送回家以及画各种图形,感受各种图形的特征。
2、在学习活动中提高观察能力、动手操作能力和用数学交流的能力,建立空间观念,发展应用意识。
3、初步认识几何知识与人类生活的密切联系,体验数学活动的创造性。
重点:认识长方形、正方形、平行四边形、三角形和圆等平面图形,建立空间观念。
难点:立体图形和平面图形的辨别。
课件、白纸、立体图形模型、平面图形、卡纸、印泥。
师生活动。
设计意图。
一、复习导入。
二、探究新知。
三、巩固训练。
四、总结延伸。
你们知道老师是怎样变出圆的吗?
学生自由回答。
你们想不想变一个给老师看看。
1、学生用准备好的学具,印出不同的图形。
问:你是用什么形状的物体印出一个什么形状的图形?学生汇报交流。
将印好的图形展示给其他同学看。
2、多媒体课件演示:从长方体、正方体、圆柱、三棱柱的一面分别抽取出长方形、正方形、圆和三角形。
师:这个图形的四个角不是直角,对边相等。像这样的图形,我们就把它叫做平行四边形。
4、请你观察一下,今天认识的图形与以前认识的图形有什么不同?
5、小结:今天我们认识的这些图形都是平平的,只有一个面,我们把这样的图形叫做平面图形。
1、游戏:
(1)师说平面图形的名称,生根据要求举起图形。
(2)师出示各种平面图形,学生抢答。
(3)师说出立体图形和平面图形的名称,生按要求出示相应的图形。
2、课件出示:说说以下交通标志是什么形状的?
3、找一找,说一说:在我们的教室里,哪些面是我们今天学习的图形?
4、生活中,你还见过哪些物体的面是我们今天学过的图形?
1、我说你想:老师说一个图形的名字,请你闭上眼睛,想一想它的样子,一边想一边用手画一画。
2、猜图形。
(1)用卡片遮住一个圆,露出一小部分让学生猜,并说说理由。
(2)教师用卡片遮住一个三角形,只露出一个角让学生来猜,并且说说理由。
(3)教师用卡片遮住一个长方形,用同样的方法让学生来猜,并且说说理由。
提供学生常见的立体图形模型,以小魔术的形式,激发学生学习的兴趣和探究的欲望。
在轻松的玩乐中,认识几个图形,并体会到“面在体上”。通过动后操作帮助学生更好地理解知识。
让学生体会由长方形到平行四边形的演变过程,掌握平行四边形的演变过程。
让学生在层次清晰、趣味浓厚的习题练习中巩固新知,加深印象。
结合生活实际巩固知识、应用知识。
通过猜图形这个有趣的游戏,使学生进一步明确图形的特征。
堂清。
1、辨一辨,连一连。
2、认一认,填出下面图形的名称。
板书设计。
认识图形。
长方形正方形圆三角形平行四边形。
在本节课教学中,我注重把思考贯穿教学的全过程,将操作与思考有机地结合,让学生在观察、操作、交流中思考,在思考中探索、获取新知,尤其是特别注意为学生创设独立思考的空间。教学中,无论是学生“观察、发现”还是“探索创新”、“巩固深化”或是“联系实际”,都是让学生独立思考,再进行小组合作或再组织讨论交流,这样学生在充分的思考之后,有话想说,有话可说,充分发挥了学生的积极性。这样,不仅有利于培养学生独立思考的习惯和自主探索的能力,也大大提高了合作学习的效率。
数学单元教学设计案例篇六
知识目标:
结合具体的长方体和正方体的认识情景,经历探究长方体和正方体特点的过程,能够准确的掌握长方体和正方体的表面特点。
能力目标:
能够认识长方体和正方体,具有初步的立体空间想象能力。
情感目标:
使学生感受到长方体和正方体与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的掌握长方体和正方体的表面特点。
掌握长方体和正方体的表面特点。
长方体模型、正方体模型。
一、复习导入:
教师出示教学板书,请学生观察下列长方形和正方形有什么特点?
教师:提问学生长方形和正方形有什么特点?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(长方形和正方形都有四个直角;四条边,每组对边相等;正方形四条边都相等。)。
二、讲授新课:
教师让学生观察课本插图哪些物体的形状是长方体或正方体?
学生回答:楼房的形状……。
教师提问学生:生活中哪些物体的形状是长方体或正方体?
学生思考并回答问题。(电视机包装箱、现代汉语大词典……)。
教师出示长方体和正方体模型,让学生观察长方体和正方体有什么特点?
学生同桌之间交流讨论。
教师提问学生长方体和正方体的特点有什么?
学生回答:(长方体有6个面、8个顶点、12条棱,对面面积相等;正方体有6个面、8个顶点、12条棱,6个面都相等和12条棱相等。)。
学生自己填完课本14页的表格。
三、课堂小结:
同学们,这一节课你学到了哪些知识?(提问学生回答)。
板书设计:
长方体的认识。
长方体:6个面、8个顶点、12条棱;每组对面面积相等;
正方体:6个面、8个顶点、12条棱,6个面面积都相等;
12条棱长度都相等。
教学中渗透给学生数学方法。在课堂教学中,我使用各种学具,教具,调动学生的多种感官参与教学,使学生不光理解了知识,同时还掌握了一些数学方法。在整个教学过程中,我通过引向指路创设情景,提供信息、资料和情感交流等多种途径,使学生在不断的“体验”中“获得知识,发展能力”。用“试一试”、“比一比”、“做一做”等体验方法,将“抽象”上升到具体的“再现”,使之成为丰富思维的活动。学生正是在这种“体验、认识、再体验、再认识”体验性学习中,由于每个学生对所要学习的知识内容都有不同的理解和体验,思维是独立的、独特的,很容易迸发出创造的火花,其创新的潜质有条件得到开发。在体验性学习中,通过交流讨论,每个学生都可以从其他同学那里获得新的思想方法,每个学生又能够充分地表现自我,学生的思想、能力、个性都是发展的。每一个学生又都在不同的学习层次上得到自我实现,学生的体验也是发展的。这节课的教学中,使学生感受到了解决问题需要一些方法和策略,从而在使用方法的过程中,体验到数学的乐趣。
教学中激发学生的过程意识。“应该让学生在游泳中学会游泳。”也就是说在教学中应通过一些探究性的实践活动,让他们在活动中逐步感受,逐步领悟,逐步形成,逐步发展。几何图形是很抽象的,在课堂教学中通过让学生用手摸,用眼观察去体验立体图形,循序渐进最后抽象出长方体,并总结出长方体的特征。这让学生经历了“观察——思考——实践——总结”这一探究过程。整个过程,从观察思考,到讨论、操作、探索发现,每个学生都积极参与,经历了探索长方体棱、顶点及特点的全过程。只有这样的过程,学生才能最大限度地焕发创造力,迸发创新的火花。
数学单元教学设计案例篇七
1.能正确辨认从不同方向(正面、左面、上面)观察到的立体图形。
2.能根据从正面、側面、上面观察到的平面图形还原立体图形,进一步体会从三个方向观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。
3.让学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观念。
能根据从正面、側面、上面观察到的平面图形还原立体图形,
引导学生进行空间图形的平面和立体想象来找出被遮挡住的小立方块。
课件,小正方体积木。
给出一个实物图从正面看到的平面图形,让同学画不同的摆放方法,引导学习复习上节课所学内容。
(1)屏幕出示教材第2页例2。
(3)学生小组合作操作。
(4)各组展示本组搭好的作品。
(5)师:请说一说你搭过程中的想法和做法。生:略。
(6)师:可以先根据正面图形搭出符合正面的立体图形,再根据上面观察到的图形搭出符合上面的立体图形,最后根据左面图形确定最后的立体图形。根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况。
1.完成教材第2页“做一做”。
2.完成教材第3~4页练习一第3、6、7题。
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
完成练习册中本课时练习。
数学单元教学设计案例篇八
本节课是北师大版高中数学必修5中第三章第4节的内容。主要是二元均值不等式。它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。
二、教学目标和目标解析。
教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。
在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。
学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。
进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。这是一个过程性目标。借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。
在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识。但是,倘若教师不加以引导,学生并不能自觉地通过已有的知识、记忆去发展和构建几何图形中的相等或不等关系,这就需要教师逐步地引导,并选用合理的手段去激活学生的思维,增强数形结合的思想意识。
另外,尽可能引领学生充分理解两个基本不等式等号成立的条件,为利用基本不等式解决简单的最值问题做好铺垫。在用基本不等式解决最值时,学生往往容易忽视基本不等式,使用的前提条件a,b0同时又要注意区别基本不等式的使用条件为,因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。
四、教学支持条件分析。
为了能很好地展示几何图形,体会基本不等式的几何背景,教学中需要有具体的图形来帮助学生理解基本不等式的生成,感受数形结合的数学思想,所以,借助于几何画板软件来加强几何直观十分必要,同时演示动画帮助学生验证基本不等式等号取到的情况,并用电脑3d技术展示基本不等式的又一几何背景,加深对基本不等式的理解,增强教学效果。
教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。通过典型例题的讲解,明确利用基本不等式解决简单最值问题的应用价值。数形结合的思想贯穿于整个教学过程,并时刻体现在教学活动之中。
六、教法和预期效果分析。
本节课通过6个教学环节,强调过程教学,在教师的引导下,启动观察、分析、感知、归纳、探究等思维活动,从各个层面认识基本不等式,并理解其几何背景。课堂教学以学生为主体,基本不等式为主线,在学生原有的认知基本上,充分展示基本不等式这一知识的发生、发展及再创造的过程。
同时,以多媒体课件作为教学辅助手段,赋予学生直观感受,便于观察,从而把一个生疏的、内在的知识,变成一个可认知的、可交流的对象,提高了课堂效率。
会用基本不等式解决简单的最大(小)值问题并注意等号取到的条件。在教学过程中始终围绕教学目标进行评价,师生互动,在教学过程的不同环节中及时获取教学反馈信息,以学生为主体,及时调节教学措施,完成教学目标,从而达到较为理想的教学效果。
数学单元教学设计案例篇九
3.能够利用二次函数的图象求一元二次方程的近似根。
利用二次函数的图象求一元二次方程的近似根。
教学难点:
理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
启发引导合作交流
课件
计算机、实物投影。
[活动1]检查预习引出课题
预习作业:
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解。
师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2]创设情境探究新知
问题
1.课本p16问题。
(结合预习题1,完成课本p16观察中的题目。)
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的
图象和x轴交点
两个交点
一个交点
没有交点
教师重点关注:
1.学生能否把实际问题准确地转化为数学问题;
2.学生在思考问题时能否注重数形结合思想的应用;
3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3]例题学习巩固提高
问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
问题:(1)p97.习题1、2(1)。
师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。
教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。
设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。
[活动5]自主小结,深化提高:
1.通过这节课的学习,你获得了哪些数学知识和方法?
2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。
师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。
设计意图:
1.题促使学生反思在知识和技能方面的收获;
2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。
[活动6]分层作业,发展个性:
1.(必做题)阅读教材并完成p97习题21。2:3、4.
2.(备选题)p97习题21。2:5、6
设计意图:分层作业,使不同层次的学生都能有所收获。
1.注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。
数学单元教学设计案例篇十
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程。
一、复习。
二、引入新课。
1.假言推理。
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论。
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
数学单元教学设计案例篇十一
一例一议“精细化教学”
科学探究,是当今课堂教学改革领域中打造高效课堂的有效举措,教师要多为学生创造探究学习的机会,尤其要抓住每一个细节,把握每一次机遇,让学生不失时机地在探究中学习,在探究中收获,在探究中提高。实践证明,课堂上科学、有效的探究,是构建高效课堂、实现精细化教学的必由之路。
人教版小学数学五年级下册练习六中有这么一道题:
学生自主解答后,我发现大体有两种不同的答案,其一是这样的——。
涂黄色油漆的面积:
其计算结果为12800平方厘米;
涂红色油漆的面积:
65×40×2+40×3×40。
其计算结果为10000平方厘米。
而另一种状况则是——。
涂黄色油漆的面积:
[65×40+v65+10w×40+40×40]×2。
其计算结果为14400平方厘米;
涂红色油漆的面积:
v65+10w×40×2+40×3×40。
其计算结果为10800平方厘米。
学生的解题思路大致相同,而为什么会出现这样两种不同的结果呢?对此,我组织、指导学生进行了探究。在探究学习过程中,大家发现了两种解法的差别在于1号颁奖台的高的取值不同,即一种解法的取值为65厘米,另一种解法的取值为75厘米。由于题图中明确标注了40厘米、65厘米及10厘米等数值,则能够从中对三个长方体的长、宽、高分别取值,而正常状况下这几个量(已知条件)的取值在图中能够很容易得出来,为什么会有学生产生误解呢?到底哪种取值是正确的?透过讨论、探究,最后大家一致认为1号颁奖台的高为65厘米。
(下面是师生探究活动记实)。
学生甲:如果2号颁奖台的高是65厘米,那么原题的图中就就应把“65厘米”字样标在2号颁奖台的左边,所以根据“65cm”字样标注在1号颁奖台的正面上,我认为65厘米是给出的1号颁奖台的高。
学生乙:我观察到1号颁奖台正面左边的这条棱被分成两条线段,上面较小的部分是10厘米,而从图中能够明显地看出下面较大的部分则为65厘米长,而这两个数字都是标注在这两条线段附近的,所以1号颁奖台的高就是10厘米与65厘米之和,即75厘米。
听了我的说法,同学们跃跃欲试,纷纷行动起来。
经过同学们的测量、计算、比较,最后证实了1号颁奖台的高为65厘米。
【课后反思】。
对于一道数学题的解答,似乎大可不必如此“兴师动众”,而课后想起来,我的这种做法并非“小题大做”,而却是“大有益处”的。
1、大大地激发了学生的探究兴趣。
2、培养了学生严谨的学习态度。
3、透过“借题发挥”而把知识向未知领域延伸,不但实现了“比例尺”这项知识的渗透,而且还使学生懂得了“学无止境”的道理。
4、达成了培养学生构成细致而有序的审题习惯这一教学设想。
回顾此例的教学,我认为教师在教学中不能盲目地、简单地教给学生问题的答案,正如上面的这个问题,如果我只是告诉学生1号颁奖台的高为65厘米,认识不清的学生只要照做就能够了,那么仍会有学生感到不解,甚至还可能依然坚持自己的看法而一头雾水。
因而,为实现精细化教学,构建高效课堂,我们要明确:
教会学生一个问题并不是教育的目的,教育的真正目的在于抓住教育契机,教给学生科学的、适用的、有效的学习方法,引发学生参与探究,以切实实施精细化教学,从而培养学生的潜力,培养创新精神与数学素养。
【相关阅读】。
数学单元教学设计案例篇十二
科目。
数学。
年级。
五年级。
教学时间。
执教者。
王冬梅。
一、教材内容分析。
《组合图形的面积》是义务教育课程标准实验教科书(北师大版)五年级上册数学第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级上册75——76页的内容,这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。设计理念:
数学课的教学应当以注重引导学生亲历数学知识探究过程、突出思维训练为主要目标。主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。
二、教学目标分析。
1、知识与技能:使学生理解组合图形的含义,理解并掌握组合图形的计算方法,并能正确地计算组合图形的面积,并能运用所学的知识,解决生活中有关组合图形面积的实际问题。
2、过程与方法:自主探究、合作交流。让学生在自主探索的基础上进行合作交流,培养学生的观察能力、动手操作能力和逻辑思维能力。
3、情感态度与价值观:结合具体的题例,使学生感受到计算组合图形面积的必要性,产生积极的数学学习情感。
三、
教学重、难点。
重点。
教学重点:学生能够通过自己的动手操作,掌握用割、补法求组合图形面积的计算方法。
难点。
教学难点:割补后找出相应的计算数据解决问题。
四、学习者特征分析。
(1)多媒体教学法。
动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。
六、教学环境及资源准备。
实验(演示)教具。
图画,图片,教科书,粉笔,教学支持资源。
课件,投影,幻灯片。
网络资源。
多媒体教室。
七、教学过程。
教师活动。
学生活动。
设计意图及资源准备。
创设情境、复习导入。
让学生猜一猜(学习过的平面图形),说一说(面积公式),看一看(给出的图案像什么)。
学生独立与小组合作交流解决组合图形面积计算问题。小组汇报学习情况。
汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:。
3、师生。
总结。
分割法填补法。
学生合作交流,探讨解决组合图形面积计算的方法。板书并计算面积总结方法,学以致用。
这一环节中我真正的转变们了教师的角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的掌握“分割法”和”添补法”这两种计算方法.让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。
综合实践、学以致用。
1,为了巩固新知,我设计了不同层次的练习,使不同层次的学生都有提高。前面情景导入时几个生活中的数学问题解决了一个,剩下的我放在练习里。2设计一个组合图形的草坪,面积大约45平方米。
学生在画图程序中,自己设计出组合图形的图画,并涂上漂亮的颜色。让学生把掌握的知识拓展到实际生活中去。
总结收获、小结全课。
学习这节数学课,你有什么收获,或者有什么心得?
学生自由说,畅所欲言。
学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。
教学过程流程图。
形成性检测与评价。
1、是否能够通过自学、掌握平面图形的面积公式。
2、是否能正确计算简单的基本图形的面积。
3、是否能够积极参与课堂上的学习活动。
4、是否能够与老师同学交流。
心得体会。
5、是否能够倾听他人发言。
6、是否能够理解,掌握组合图形的面积计算。
九、教学总结与反思。
“组合图形的面积”是北师大教材五年级上册第五单元第一课时,是在学生积累了一定的学习经验,认识了一些平面图形的基础上安排学习的。本节课是以学生已经学习过的长方形、正方形、平行四边形、三角形和梯形等基本图形面积计算为基础,结合实际情境和具体的图形来探索组合图形面积的计算方法,不仅能够巩固已学的基本图形面积的计算方法,培养学生的分析问题和解决问题的能力,而且也有利于发展学生的空间观念,提高学生的综合能力。在本节课的教学过程中,我注重了以下几个方面:
1、创设情景,激发学习情感。
好的开始等于成功的一半。本课一开始我就从谈论生活中的各种组合入手,进而出示七巧板拼图让学生观察得出这些图形都是一些组合图形,使学生充分感受到数学与生活的密切联系。为下一步探究组合图形做好铺垫。
2、注重方法的指导与总结。
3、问题来源于学生,回归于学生。学生在探索的过程中,放手让他们拼图,画图,分割图,并自行解决提出的问题。让学生在拼一拼、画一画,分一分的活动中,初步形成“组合”的概念,从而对“组合图形”的意义有了更深一层的理解。
新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。本节课的教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。
当然也还有很多细节的地方需要改进,比如教师语言的精练度,课堂教学时间的掌控、学生操作的方式,以及汇报的形式等等,这都有待于在今后的教学中进一步加以完善。
数学单元教学设计案例篇十三
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。
教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。
教学过程:
一.复习准备。
1.等差数列的通项公式。
2.等差数列的前n项和公式。
3.等差数列的性质。
二.讲授新课。
引入:1“一尺之棰,日取其半,万世不竭。”
2细胞分裂模型。
3计算机病毒的传播。
由学生通过类比,归纳,猜想,发现等比数列的特点。
进而让学生通过用递推公式描述等比数列。
让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。
注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。
2当首项等于0时,数列都是0。当公比为0时,数列也都是0。
所以首项和公比都不可以是0。
3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?
4以及等比数列和指数函数的关系。
5是后一项比前一项。
列:1,2,(略)。
小结:等比数列的通项公式。
三.巩固练习:
1.教材p59练习1,2,3,题。
2.作业:p60习题1,4。
第二课时5.2.4等比数列(二)。
教学重点:等比数列的性质。
教学难点:等比数列的通项公式的应用。
一.复习准备:
提问:等差数列的通项公式。
等比数列的通项公式。
等差数列的性质。
二.讲授新课:
1.讨论:如果是等差列的三项满足。
那么如果是等比数列又会有什么性质呢?
由学生给出如果是等比数列满足。
2练习:如果等比数列=4,=16,=?(学生口答)。
如果等比数列=4,=16,=?(学生口答)。
3等比中项:如果等比数列.那么,
则叫做等比数列的等比中项(教师给出)。
4思考:是否成立呢?成立吗?
成立吗?
又学生找到其间的规律,并对比记忆如果等差列,
5思考:如果是两个等比数列,那么是等比数列吗?
如果是为什么?是等比数列吗?引导学生证明。
6思考:在等比数列里,如果成立吗?
如果是为什么?由学生给出证明过程。
三.巩固练习:
列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。
解(略)。
列4:略:
练习:1在等比数列,已知那么。
2p61a组8。
数学单元教学设计案例篇十四
一、概述。
九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。
二、设计理念。
鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。
(1)激发学生亲自探索直线和圆的位置关系。
(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。
(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
四、教学重点。
直线与圆的三种位置关系——相交、相切、相离。
从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。
五、教学难点。
探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
数学单元教学设计案例篇十五
本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。
1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。
2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。
3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。
本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。
1、能利用天平,通过动手操作理解等式的意义。
2、结合具体实例和情景,初步理解方程的意义,会用方程表达简单的'等量关系。
3、培养保护动物的意识,感受数学与生活的密切联系,提高学习数学的兴趣。
重点:方程意义的理解。
难点:建立等式、方程的概念。