2023年分式教学设计金雯雯(汇总16篇)
教育的重要性一直被人们所强调,它是个人和社会发展的基石。如何养成良好的生活习惯?这是每个人都需要思考的问题。希望大家可以从总结范文中获得一些启发和提升,提升自身的写作水平。
分式教学设计金雯雯篇一
二、学情分析。
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.。
三、
目标和目标解析。
1.教学目标。
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(2)会进行简单的二次根式的除法运算;
(3)理解最简二次根式的概念.。
2.目标解析。
(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;
1.复习提问,探究规律。
问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.。
2.观察思考,理解法则。
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并。
总结。
二次根式除法法则:
.
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了.。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数.。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算.。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
3.例题示范,学会应用例1计算:(1);(2);(3).。
师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?
师生活动学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
问题6课件展示一组二次根式的计算、化简题.。
【设计意图】让学生用总结出的结论进行二次根式的运算.。
4.巩固概念,学以致用。
例2。
再提问章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
5.归纳小结,反思提高。
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)除法运算的法则如何?对等式中字母的取值范围有何要求?
(2)你能说明最简二次根式需要满足的条件吗?
6.布置作业:教科书第10页练习第1,2,3题;
教科书习题16.2第10,11题.。
五、目标检测设计。
1.在、中,最简二次根式为.。
【设计意图】考查对最简二次根式的概念的理解.。
2.化简下列各式为最简二次根式:;.。
3.化简:(1);(2).。
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算.。
分式教学设计金雯雯篇二
1.经历在实际问题中运用分式方程的过程,了解分式方程的意义,体会分式方程的模型思想.
2.会解可化为一元一次方程的分式方程.
3.了解分式方程增根产生的原因,会检验分式方程的根.
4.通过学习分式方程的解法,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,体会数学中的转化思想.
二、重、难点。
重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
难点:增根产生的原因。
三、学习过程。
(一)复习并引入新课。
1、什么叫方程?什么叫方程的解?
(二)探究新知。
1、总结分式方程的定义:中含有求知数的方程,叫做分式方程.
巩固练习:判断下列方程中,哪些是分式方程.为什么?
(1)2x+x-15=10(2)x-1x=2。
(3)12x+1-3=0(4)2x3+x-12=0。
2、阅读课本p77—78例1、例2并思考:
(1)与解一元一次方程有什么异同点?解分式方程必需要.
(1)(2)。
3、自学课本p78—79页例3、例4,进一步熟练解分式方程的步骤.
巩固练习:(1)21-x+1=x1+x。
(2)61-x2=31-x。
四、当堂小结:
本节课你的收获是:
不足有:
五、当堂测试:
解下列方程。
(1)(2)。
(3)(4)。
分式教学设计金雯雯篇三
二、学情分析。
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.。
三、目标和目标解析。
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(2)会进行简单的二次根式的除法运算;
(3)理解最简二次根式的概念.。
2.目标解析。
(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;
1.复习提问,探究规律。
问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.。
2.观察思考,理解法则。
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:
.
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了.。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数.。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算.。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
3.例题示范,学会应用例1计算:(1);(2);(3).。
师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?
师生活动学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
问题6课件展示一组二次根式的计算、化简题.。
【设计意图】让学生用总结出的结论进行二次根式的运算.。
4.巩固概念,学以致用。
例2。
再提问章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
5.归纳小结,反思提高。
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)除法运算的法则如何?对等式中字母的取值范围有何要求?
(2)你能说明最简二次根式需要满足的条件吗?
6.布置作业:教科书第10页练习第1,2,3题;
教科书习题16.2第10,11题.。
五、目标检测设计。
1.在、、中,最简二次根式为.。
【设计意图】考查对最简二次根式的概念的理解.。
2.化简下列各式为最简二次根式:;.。
3.化简:(1);(2).。
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算.。
分式教学设计金雯雯篇四
一、优点。
(1)本节课初步达到了教学目标,突出了重点,层层推进,突破难点。通过与学生情感交流和互动式复习,放手让学生去猜想分式混合运算的顺序,通过例题讲解,使同学牢记分式混合运算的顺序,并且通过大量的练习来巩固,同时引导学生独立完成分式混合运算的题目,顺应着学生的认知过程,递进式的设置不同层次的练习,在法则的重点环节上,无论是例题的`分析还是练习题的落实,都以学生为中心,为重心,给足充分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
(2)是以师生之间的情感为基础,通过活跃的课堂气氛,及时的对学生给予肯定和鼓励,使学生对数学产生浓厚的兴趣。每一个层次的练习完成之后都给予赞扬,在此基础上委婉的提出他们的缺点和不足,把学生的认知提升了一个高的层面上,同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
(3)是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
二、不足之处:
(3)忽略了例题的示范性和板书的清晰、条理性。
(4)课堂准备还可以再充分一些。
分式教学设计金雯雯篇五
本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回顾与思考、合作和讨论的过程中理解和掌握知识与技能,体验感受过程、方法和数学思想,培养情感态度价值观,从而达成教学目标。
本节课关于分式方程的增根的教学,是通过创设小亮解法的情境,引导学生通过思考探索、阅读理解、动手解题等手段,从而获取知识、形成技能,发展思维,学会学习,而不是由教师去讲解增根的概念和产生原因。
本节课小结采取了学生提出问题、教师解答问题的形式。这种方法一方面为学生搭建了展示自己的平台,设置了独立思考的想象空间,提供了锻炼表达能力的机会;另一方面也为教师能及时弥补教学中存在的漏洞创设了条件和可能。不过,若时间允许的话,有些问题可以由学生讨论解决。
教学环节是否可行,最终是由教学目标是否达成来检验和评价的。所以本节课的某些教学环节对目标的达成是否行之有效,还有待于在今后的教学过程中不断实践和完善。
将本文的word文档下载到电脑,方便收藏和打印。
分式教学设计金雯雯篇六
2。通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点。
难点:根据题意,找出等量关系,正确列出方程。
一、复习。
例解方程:
(1)2x+xx+3=1;(2)15x=2×15x+12;。
(3)2(1x+1x+3)+x-2x+3=1。
解(1)方程两边都乘以x(3+3),去分母,得。
2(x+3)+x2=x2+3x,即2x-3x=-6。
所以x=6。
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)方程两边都乘以x(x+12),约去分母,得。
15(x+12)=30x。
x=12。
检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)整理,得。
2x+2x+3+x-2x+3=1,即2x+2+x-2x+3=1,
即2x+xx+3=1。
方程两边都乘以x(x+3),去分母,得。
2(x+3)+x2=x(x+3),
即2x+6+x2=x2+3x,
亦即2x-3x=-6。
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
二、新课。
请同学根据题意,找出题目中的等量关系。
答:骑车行进路程=队伍行进路程=15(千米);
骑车的速度=步行速度的2倍;
骑车所用的时间=步行的时间-0。5小时。
请同学依据上述等量关系列出方程。
答案:
方法1设这名学生骑车追上队伍需x小时,依题意列方程为。
15x=2×15x+12。
方法2设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为。
15x-152x=12。
解由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程。
方程两边都乘以2x,去分母,得。
30-15=x,
所以x=15。
检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意。
所以骑车追上队伍所用的时间为15千米30千米/时=12小时。
答:骑车追上队伍所用的时间为30分钟。
指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离时间。
如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按。
速度找等量关系列方程,所列出的方程都是分式方程。
s=mt,或t=sm,或m=st。
请同学根据题中的等量关系列出方程。
答案:
2(1x+1x3)+x2-xx+3=1。
指出:工作效率的意义是单位时间完成的工作量。
2x+xx+3=1。
1-2x=2x+3+x-2x+3。
用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了。重点是找等量关系列方程。
三、课堂练习。
1。甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数。
2。a,b两地相距135千米,有大,小两辆汽车从a地开往b地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知大、小汽车速度的.比为2:5,求两辆汽车的速度。
答案:
1。甲每小时加工15个零件,乙每小时加工20个零件。
2。大,小汽车的速度分别为18千米/时和45千米/时。
四、小结。
1。列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根。一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意。原方程的增根和不符合题意的根都应舍去。
135x+5-12:135x=2:5。
解这个分式方程,运算较繁琐。如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从a地到b地的时间,运算就简便多了。
五、作业。
1。填空:
(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克。
2。列方程解应用题。
(4)a,b两地相距135千米,两辆汽车从a地开往b地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟。已知两车的速度之比是5:2,求两辆汽车各自的速度。
答案:
1。(1)mnm+n;(2)ma-b-ma;(3)maa+b。
2。(1)第二次加工时,每小时加工125个零件。
(2)步行40千米所用的时间为404=10(时)。答步行40千米用了10小时。
(3)江水的流速为4千米/时。
分式教学设计金雯雯篇七
知识与技能:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
过程与方法:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
情感态度和价值观:
从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生“学会”还要让学生“会学”
重点难点。
重点:理解并掌握分式乘除法法则及应用。
难点:分子分母是多项式的分式的乘除法运算。
教学过程。
第一学时。
教学活动活动1。
【导入】一、创设情境,导入新知。
活动1:提出问题,引入课题。
问题1:求得水的高:
问题2:大拖拉机的工作效率是小拖拉机的倍。
教师活动:教师引导学生观察分析以上两式的特点得出它们分别是分式的乘法和除法。
从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们本节课要学习的内容。
学生活动(解决问题):学生动手操作,探究规律,激发学生学习兴趣。
活动2【活动】二、合作交流,探索新知。
问题2:以学生为主体,鼓励学生进行类比探究,让学生根据分数的乘除法法则类比探究得出分式的乘除法法则。教师巡视,观察学生探究的情况,对学习有困难的学生给以指导。
1.学生独立完成问题1和问题2的结果。
2.学生通过类比分数的乘除法则,探究分式的乘除法则。
3.小组之间交流结果,并总结规律性的结论。
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子,分母颠倒位置后,与被除式相乘。
用式子表示为:
活动3【练习】学以致用巩固新知。
(1)运算结果应约分到最简。
(2)分式除法应:“颠倒相乘”。
(3)运算中,先判断运算符号,再计算结果。
例2计算:
例2是例1的拓展,也是本节课的难点,学生在独立完成时,应提醒学生先分解因式后再运用法则进行运算。解题时应注意:
分子、分母为多项式时,先将多项式分解因式,再约分。
活动4【练习】学以致用,运用新知。
1.练一练。
2.试一试3.闯一闯。
活动5【讲授】归纳与总结。
(1)熟练掌握并应用分式的乘除法法则进行运算;
(2)因式分解在分式乘除法中的灵活应用;
(3)运算结果要最简;
(4)乘除混合运算统一为乘法运算;
活动6【练习】实际应用。
活动7【讲授】教学反思。
1、选取学生熟悉的分数的乘除运算问题,用类比的思想方法学习归纳出分式乘除法的运算法则,学生感到轻松容易的掌握了分式乘除法的运算,激发了学生的学习兴趣。
2、针对本节课内容我设计一系列有梯度的问题,并采取小组合作形式。课堂气氛活跃,生学习热情比较高。课堂学习效果较好。
3、学生能力的培养,创设良好的问题情境,强化问题意识,激发学生的求知欲;培养学生敢于独立思考,敢于探索、敢于质疑的习惯;培养学生善于观察的习惯和心里品质;培养学生良好的思维习惯,教会学生在多方面思考问题,多角度解决问题的能力。
存在的问题:
(1)由于部分学生计算能力欠缺,算上还出现问题。在以后的教学中还应加强计算能力的培养。
(2)教学效果还有些欠缺,争取以后在课堂上让学生思维活跃,气氛热烈,学生受益面大,不同程度学生在原有的基础上都有进步。知识、能力、情感目标都能达到,让学生学的轻松,积极性高,当堂问题当堂解决。
分式教学设计金雯雯篇八
分式的概念与意义(即了解分式的形式(a、b是整式),并理解分式概念中的一个特点:分母中含有字母;一个要求:字母的取值限制于使分母的值不得为零.)。
设计意图:分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。
学习难点:理解和掌握分式有无意义、分式值为零时的条件。
设计意图:由于分式的分母中含有字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。
分式教学设计金雯雯篇九
2.经历“实际问题-分式方程方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.
教学重点:
将实际问题中的等量关系用分式方程表示。
教学难点:
找实际问题中的等量关系。
教学过程:
一、情境导入:
有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。你能找出这一问题中的`所有等量关系吗?(分组交流)。
如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________。
二、讲授新课。
从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程______________________。
学生分组探讨、交流,列出方程.
三、做一做:
四、议一议:
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程。
分式方程与整式方程有什么区别?
五、随堂练习。
(3)根据分式方程编一道应用题,然后同组交流,看谁编得好。
六、学习小结。
本节课你学到了哪些知识?有什么感想?
七、作业布置:
分式教学设计金雯雯篇十
教学目标:
1、知道通分的意义,掌握通分的方法。
2、培养学生的归纳总结能力。
3、结合教学内容,渗透“事物之间是相互联系的可以转化的”思想。
教学重点:理解通分的意义,掌握通分的方法。
教学难点:理解通分的算理以及通分的关键:找准分母的最小公倍数作公分母。
教学过程:
一、复习、激趣、引入口。
1、说出下面每组数的最小公倍数。
6和88和99和27。
2、填空(说出依据)。
3/4=/8=9/()=()/16=15/()=()/24。
二、探索新知。
这是小明家的后花园的示意图,现在准备种花。
妈妈说:“这块地的4/5种牡丹花,1/5种草。”
小明说:“这块地的1/2种桃花,1/3种郁金香。”
爸爸说:“这块地的3/6种月季花,1/4种菊花。”
分小组合作进行计算比较。
汇报、交流。
a、化小数进行比较。b、化成分子相同进行比较。c、化成分母相同进行比较。d、画图进行比较。
引导得出方法c比较简便。出示课题:通分。
1、观察c的过程,你发现了什么?
2、引导归纳:
1、异分母分数转化成同分母分数。
2、分数的大小不变。
同桌互说通分的意义。
3、试一试:根据通分的意义想想下列计算过程,哪个是通分,哪个不是通分?
3/4和5/63/4=3×3/4×3=9/12;5/6=5×2/6×2=10/12()。
5/8和2/75/8=5×3/8×3=15/24;2/7=2×4/7×4=8/28()。
4、结合试一试和例题,讨论通分时的难点是什么?(关键)。
公分母有什么特点?(是原有分母的公倍数,为计算简便,通常用最小公倍数)。
5、练习:通分。
5/12和4/93/4、5/6和1/24。
6、看书p100页。
三、巩固新知。
1、判断,下面哪组是通分,哪组不是通分,哪组不够简便?
3/4=3×5/4×5=15/20;3/5=3×5/5×5=15/25()。
5/6=5×6/6×6=30/36;5/18=5×2/18×2=10/36()。
5/14=5×2/14×2=10/28;3/4=3×7/4×7=21/28()。
2、实际应用。
(3)据统计,生活垃圾中废金属占1/4,废纸占3/10,食物残渣占3/10,危险垃圾占3/20。提出问题,并解答。
四、课堂小结。
通过今天的学习,你学会了哪些新知识?你能用这节课学的知识解决哪些问题?
师:其实通分不仅可以比较分数的大小,在异分母分数加减法中还有重要的应用,下节课我们再来一起研究。
五、布置作业。
分式教学设计金雯雯篇十一
教学内容:
教科书第71页的例14、“试一试”和“练一练”以及第73页的练习十一第1~3题。
教学目标:
1、使学生认识通分的含义,理解和掌握通分的方法,能正确地通分。
2、使学生能联系分数的基本性质理解通分的方法,能解释通分的过程,体会知识的内在联系,培养分析、推理等思维能力。
3、使学生通过主动探索体验成功的感觉,增强学好数学的自信心,产生主动学习的信心和动力。
教学重难点:
掌握通分的方法。
教学过程:
一、复习铺垫,导入新课。
师:今天上新课之前老师照例要来考考你们对以前的知识掌握的如何?愿意接受考验吗?
1.口答下面每组数的最小公倍数。
学生先独立思考一下,然后举手回答,并说说你是怎么求的?指名学生口答。
师:看来大家对最小公倍数的求法掌握不错,接着往下看。
2、你能说出与3/4大小相等的分数吗?
指名说,并说出思考过程。指名口答时再说说这么做的依据是什么?过渡:今天我们将继续运用分数的基本性质来学习新的知识。
二、自主探索,建构新知。
1.教学例题。
(1)出示例题14:把3/4和5/6改写成分母相同而大小不变的分数。指名读题,师:你觉得题目中有哪些要求?(分母相同而大小不变)你会运用以前学过的知识进行改写吗?试试看。
(2)学生在自己本子上独立尝试完成,师巡视,发现不同方法者请板演。
(3)讲评。
师:还可以改写成分母是多少的分数?(指名举例)。
师:哦,看来可以用来做他们分母的数还真不少!那么谁来说说在改写的过程中什么发生了变化?什么没有发生变化呢?(指名口答)。
师引导并强调分数的分子和分母都变大了,但分数的大小没变。是根据分数的基本性质来做的。
(3)师:其实呀刚才大家在尝试解题的过程中已经不知不觉地学会了一样新知识,就是通分。(板书:通分)像刚才大家把3/4和5/6这两个原本分母不一样的分数,分别改写成了分母一样,而又大小不变的分数,这个过程就可以说是通分。书上是怎么说的呢?我们不妨打开书本来读一读。
(4)生自学书本71页,然后指名说说什么是异分母分数?什么是同分母分数?什么是通分?(根据学生回答是板书:异分母分数——同分母分数)问:那异分母分数化成同分母分数有什么条件吗?(引导回答和原来分数相等,并板书在横线上)。
(5)师:这个相同的分母我们也给它取个名字,叫公分母。(指板演题)谁来说说这几位同学各取什么为他们的公分母?(学生口答)。
师:那为什么不取10或者20呢?一定要取12、24、48、?它们和原来这两个分母有什么关系?(引导回答出是原来两个分母的公倍数)。
师:比较一下,用哪个数做公倍数比较简单?那12和4、6有什么关系呢?那么你们认为通分时我们一般用什么做公分母比较简单呢?(引导归纳:通分时一般用原来几个分母的最小公倍数做公分母。)。
(7)小结:现在你能告诉老师完成通分需要几步呢?(学生自由说)结合学生回答板书:1.找公分母(原分母的最小公倍数)。
2.化成同分母分数。
师:那现在我们马上来试一把,先来一个简单的。
2、做练习十一第2题。
学生独立完成,展示交流。
说明:通分找公分母时,可以应用求最小公倍数的方法。
3.教学“试一试”
(1)学生独立完成在书本71页。师巡视发现问题,个别辅导。
(2)展示,全班交流。
师:你通分确定的公分母是多少?你怎样找到的?确定公分母后,应用分数的基本性质,分母乘几,分子也同时乘几。通分就要像课本上这样写出每个分数的转化过程。
三、组织练习,巩固新知。
1、完成“练一练”。
学生独立完成,指名三人板演。
检查板演题,说说各是怎样找公分母的,说说要注意的地方。
2、做练习十一第3题。
(1)让学生检查通分,发现问题。
交流:哪组是对的?哪组不对,错在哪里?哪组不够简单?
指出:通分时,通常用几个分母的最小公倍数作公分母,这样既方便结果计算。
分式教学设计金雯雯篇十二
一、优点。
(1)本节课初步达到了教学目标,突出了重点,层层推进,突破难点。通过与学生情感交流和互动式复习,放手让学生去猜想分式混合运算的顺序,通过例题讲解,使同学牢记分式混合运算的顺序,并且通过大量的练习来巩固,同时引导学生独立完成分式混合运算的题目,顺应着学生的认知过程,递进式的设置不同层次的练习,在法则的重点环节上,无论是例题的`分析还是练习题的落实,都以学生为中心,为重心,给足充分的时间让学生去演算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。
(2)是以师生之间的情感为基础,通过活跃的课堂气氛,及时的对学生给予肯定和鼓励,使学生对数学产生浓厚的兴趣。每一个层次的练习完成之后都给予赞扬,在此基础上委婉的提出他们的缺点和不足,把学生的认知提升了一个高的层面上,同时把时间和空间留给学生,让他们多一些练习,多一些巩固。
(3)是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。
二、不足之处:
(3)忽略了例题的示范性和板书的清晰、条理性。
(4)课堂准备还可以再充分一些。
分式教学设计金雯雯篇十三
教学目标:
1、理解通分的意义,掌握通分的方法,能正确地把两个分数通分。
2、在教学中渗透转化的数学思想,通过自主探究、小组合作,让每个学生都有发现,从而体验成功的感觉。
3、从生活中提炼出数学问题,让学生在解决问题的过程中学习通分的方法,并将新知用于解决实际问题,使学生感悟到生活中处处有数学。教学内容紧密联系生活实际,让学生感知到数学来自于生活,又应用于生活。
重点难点:
重点:理解通分的意义,掌握通分的方法。
难点:通分在解决实际问题时的应用。
教具学具:
投影仪等。
教学过程:
一、创设情境,激趣导入。
师:同学们,六一儿童节就要到了。你想在那一天做哪些事呢?
先独立思考后发表意见。
生1:这两个分数的分母不同,分数单位不同,没办法比较。
生2:能不能把这两个分数转化成分母相同的分数呢?
师:同学们的想法很好,这也是今天我们要共同研究的问题—通分。
(板书:通分)。
二、探究体验,经历过程。
1、投影出示例4。
小组自主探究,教师巡视指导,然后组织小组汇报。
生1:我们组按照分数的意义,如果把地球面积平均分成10份,陆地面积只占3份,海洋面积占了7份,3/10小于7/10,所以陆地面积比海洋面积小。
师:很好。
生:3/10与7/10的分数单位都是1/10、3个1/10是3/10,7个1/10是7/10,所以3/10小于7/10。
师:你们组的想法很好,老师也是这样想的。
师:同学们能不能说一说分母相同的分数怎样比较大小呢?学生思考后回答。
生:分母相同的分数比较大小,分子大的分数大。
2、分子相同的分数的大小比较。
师:请同学们完成教材73页的“再比较一下”后回答问题。
学生独立完成后老师提问题。
师:上、下两行分数相比较,有什么不同点?
生:上面一行每组的两个分数的分母相同,下面一行每组中的两个分数的分子相同。
生:根据分数的意义,分母小的分数单位大,所以分子相同的两个分数,分母小的分数大。
总结:分母相同的两个分数比较大小,分子大的分数大;分子相同的两个分数比较大小,分母小的分数反而大。
3、投影出示例5。
师:怎么化呢?化成分母相同的分数后大小不变吗?根据什么呢?
学生思考后回答:我们可以根据分数的基本性质,把分母不同的两个分数化成和它们大小分别相等的同分母的分数。
生:我们可以先找出这两个分母的最小公倍数用它们的最小公倍数作分母,然后转化。
师:为什么用最小公倍数呢?公倍数不行吗?
生:公倍数可以,但是这样化成的分数的分母就大了,数值大了给计算造成麻烦,所以我们选择两个分母的最小公倍数。
师:同学们想得很全面,非常好。下面就请大家解决这个问题吧。
学生独立完成,教师巡回指导。(课件出示)。
师:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(板书)。
三、课未总结,梳理提升。
这节课我们学习了通分的知识,把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分时,先找出各个分母的最小公倍数作它们的公分母,然后依据分数的基本性质把它们通分成分母相同的数。
分式教学设计金雯雯篇十四
教学内容:
第65页的例4和“试一试”,“练一连”和练习十二的第1—4题。
教学目标:
1、初步理解通分及公分母的意义。
2、能正确的把异分母分数化成与它们相等的同分母分数。
3、通过亲历探索通分的意义与方法这一知识的形成和发展过程,体验成功的快乐。
教学重点:理解通分的意义。
教学难点:选择分母的最小公倍数做为公分母。
教学过程:
一、复习。
1、说一说:最小公倍数4和6、8和9、9和5。
2、化成分母是20而大小不变的分数1/5、3/4、7/10。
二、新授。
1、出示例题。
例4:把3/4和5/6改写成分母相同而大小不变的分数。题目要求是什么?(改写分母相同大小不变)。
2、揭示通分的意义。
小组学习,交流各小组汇报。
为了计算简便,一般取最小公倍数做公分母。
把异分母分数分别化成和原来分数相等的同分母分数叫做通分。
3、你觉得通分的依据是什么?
4、通过自学、讨论,我们知道了这些概念和方法,根据这些我们又能解决什么问题呢?
5、通分和约分,有什么区别和联系?
三、巩固练习。
1、试一试先找出1/6和4/9的公分母,再把这两个分数通分。
思路引导:1/6和4/9的公分母是。
要求学生自由说说中间的过程。
2、练一练(65页)。
3、判断(练习十二题3)。
四、课堂小结。
分式教学设计金雯雯篇十五
经历从实际问题中建立分式方程模型的过程,从分析分式方程的特点入手,引出解分式方程的基本思路。通过解分式方程讨论得出分式方程验根的必要性。通过例题巩固分式方程的.解法,总结出解分式方程的步骤。
教学目标。
知识与技能。
1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
过程与方法。
1.通过具体例子,独立探索方程的解法,经历和体会解分式方程的必要步骤。
2.进一步体会数学思想中的转化思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。
情感态度与价值观。
1.养成自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
2.运用转化的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信心。
教学重点和难点。
教学重点。
1.解分式方程的一般步骤,熟练掌握分式方程的解法。
教学难点。
教学方法。
启发引导、小组讨论、合作探究。
教学媒体。
课件。
教学过程设计。
(一)复习及引入新课。
1.什么叫方程?什么叫方程的解?
答:含有未知数的等式叫做方程。
使方程两边相等的未知数的值,叫做方程的解。
分式教学设计金雯雯篇十六
通分一课的教学目标是让学生理解通分的意义和掌握通分的方法。它是分式基本性质的一种应用,是在学生已经掌握了分式的基本性质和约分的基础上进行教学的,它为后面学习异分母分式加减法的奠定基础。通分的方法其实不难,关键是让学生理解为什么要通分和通分的方法,所以,在教学中,我引导学生利用分式基本性质把分母变成相同而大小不变的方法就是通分这一概念。出示三道练习题,指导学生巩固运用通分的方法。本节课,我能够以一个组织者、引导者和参与者的身份进行教学活动,注重调动学生的学习兴趣,创设了良好的探究交流的.平台。不把自己的意愿强加给学生。给学生多练,领悟通分的意义及方法,使本节课收到预期效果。
所以,如果我们在数学课堂教学中经常注视培养学生的思维能力,当学生的思维受阻时,教师适时点拨,当学生的思维遇卡时,教师巧妙催化,这样会使学生在题中数量间自由地顺逆回环,导致学生发散思维能力的形成,以有利于培养学生的创新思维。