2023年笔算乘法教学设计(汇总19篇)
总结是一种自我反思的过程,让我们更有意识地观察和思考自己的行为和思维方式。总结要紧扣主题,突出重点,避免在总结中出现无关紧要的东西。不同人对总结的理解和呈现方式各不相同,以下是一些值得借鉴的总结范文。
笔算乘法教学设计篇一
我教学的是《笔算乘法》的第一课时,本课时的内容是学习《笔算乘法》的引路课,也是进一步学习多位数乘法的基础。它是在学生已经比较熟练的掌握表内乘法,学会了整十、整百数乘一位数的口算、乘加两步计算混合运算和万以内数的组成的基础上教学的。我教学的知识目标是:1、借助算用结合的形式,让学生了解多位数乘一位数计算(不进位)的必要性。2、通过算用结合的形式,让学生经历多位数乘一位数计算的过程,初步建立乘法竖式的计算模型,理解竖式的每一步含义。能力目标是:1、在学习的过程中,让学生体验计算方法的多样化。2、生活情境的创设,让学生体会数学与生活的联系,并在解决问题的过程中有意识地培养学生的估算意识和用知识迁移、类推的能力。3、通过问题的解决,培养学生解决问题策略的多样性。
上完这节课,我觉得有些地方还是很成功的。
一、基于解决问题的背景下上笔算课,情境创设为教学服务。
例题,我创设了一个“为地震中的儿童捐书”的情境,让学生经历解读信息,提出问题,解决问题的过程,充分体现了以学生为主体。在解决第1个问题的过程中,首先,让学生了解笔算的必要必性;同时,通过几个措施理清算理和算法。最后通过对比,将估算、口算、笔算建立联系。问学生你有什么发现,结论是方法是一样的,让学生更深理解算理,同时感受到知识之间的内在联系,万变不离其中。第二个问题的解决是巩固2位数乘1位数的算理与算法。第三个问题的解决,是让学生体验解决问题的多种策略,让学生知道从不同的角度思考问题,算式不同,但结果是一样的。综合练习题,我创设了一个“老师们为地震中的人们捐衣”的情境,目的是巩固多位数乘一位数的基础上,让学生体验算法的多样化。
二、让学生主动学,以学生的已有的知识为起点。
解决第一个问题时,我先让学生估一估,并连问:你能估算吗?怎么估?估大了还是估小了?因为之前刚刚学过,很容易就唤醒学生的已有的知识。估完后,问学生,能口算吗?既起到了复习的作用,也起到了铺垫的作用,也体现了尊重学生的知识起点。再通过引导,让学生了解笔算乘法的必要性,展开新课。
三、练习设计有思维增量。
基础题:一组笔算题。3×223×2223×2之前面设及的都是两位数乘一位数的笔算,此组题中有三位数乘一位数,先让学生说说223×2算理与算法,再让学生对比三道算式,通过对比得出结论,方法是一样的,再在223前面添一个2,让学生感悟。
综合题:老师们为灾区捐衣物。在掌握笔算乘法的.基础上,让学生体验算法的多样化。
数形结合题:(1)先估后算。(2)先移后算。
本课节也还存在着一些问题:
1、面对学生的多种解法,还可以站得更高。在解决第三个问题时,让学生分类,按解题思路的不同进行分类。对学生解题能力的培养会有所帮助。
2、31×2+33,应该问问学生31×2表示什么意思?而不只是为有新的解法而解题,是需要引导学生分析题意。
3、在对比口算、笔算有什么相同处时,事先需要沟通,先要让学生理解,教研员田老师给了一个建议:在让学生口算时,将过程板书下来,说一说6表示什么,3表示什么?笔算之后,再对比,就有对比的依据。
笔算乘法教学设计篇二
1、通过改进教学方法,促进学习方式的改变。著名数学教育家弗赖登塔尔认为:“学习数学的唯一正确的方法是让学生‘再创造’”。即让学生通过数学活动自己去探究、去寻找正确的方法。这本节课中,在学习探究两位数乘两位数的计算方法时,通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。如“请在四人小组里说说你的算法,也听听别人的算法!”“谁愿意与同学们分享你的计算方法?”“在这些算法中,你比较欣赏哪一种算法?”等等,让学生在交流中学会吸收,学会欣赏,学会评价。
2、提倡算法的多样化,促进学生个性的发展。算法多样化是问题解决策略多样化的一种重要思想,它是培养学生创新意识的基础。新课标指出:笔算教学不应仅限于竖式计算,应鼓励学生探索和运用不同的方法计算。学生的个性差异是客观存在的,对同一道计算问题,由于学生的生活经验、认知水平和认知风格存在着差异,常常会出现不同的计算方法和解题策略,这正是学生具有的不同个性的体现。在本节课教学24×12时,放手学生试算,学生出现了多种不同的计算方法,有根据口算的方法来计算的;有把因数拆成两个一位数,利用以前学过的知识来计算的;有直接列竖式进行计算的;在学生独立思考解决的基础上,再让学生发表自己的观点,倾听同学的解法,进行小组内交流,这样的教学,有利于培养学生独立思考问题和创新能力。有利于学生间的数学交流。而且在解决问题的过程中,使每一个学生都获得了成功的愉悦,使不同的人学到了不同的数学。
在本节课的教学中也存在着不足之处,老师还不能够完全放手让学生自己去探究问题,解决问题。如在笔算乘法时,教师讲得过细。在以后的教学中要尽量克服这些不足,力争课堂教学尽善尽美。
笔算乘法教学设计篇三
1.使学生掌握一个因数末尾有0的乘法的笔算方法,能够正确计算。
2.培养学生的迁移类推的能力。
3.培养学生善于思考,积极动脑的好习惯。
一个因数末尾有0的笔算方法。
因数末尾有几个0,积的末尾就添上几个0。
一、沟通联系,促进迁移。
1.出示复习题。
20×3=200×3=2000×3=。
12×4=120×4=340×2=。
2.提问:一个因数末尾有0的口算乘法应该怎样计算:(用第一个因数0前面的数与第二个因数相乘,再看第一个因数末尾有几个0,就在积的末尾添几个0)。
二、创设情境,探索新知:
1.出示课件“末尾有0的乘法(例11)”(师:天太热了,王老师实在受不了了,就想去买电扇,于是他带了1000元钱来到了商店,电扇每台350元,王老师带的钱够用吗?)。
2.提问:怎样判断王老师的钱是否够用?
3.学生分组讨论。
4.学生汇报讨论结果(要想知道王老师带的钱是否够用,必须要先算出买3台录音机共用多少元钱)。
5.怎样计算:由学生在练习本上试做。
6.学生汇报:全班交流,质疑(学生可能会出现以下两种做法)。
7.比较两种方法有什么不同?(方法一是根据三位数乘一位数的计算法则进行计算的;方法二是根据一个因数末尾有0的口算方法进行类推得来的)。
8.你更喜欢哪一种方法?为什么?(因为第二种方法比较简便,所以更喜欢第二种方法)。
9.板书:2500×3师问:怎样算简便?
10.找一名学生板演,然后集体订正。
11.谁能说一说一个因数末尾有0的乘法怎样进行笔算?笔算时应注意什么?(一个因数末尾有0的笔算乘法,先用第一个因数0前面的数与另一个因数相乘,再看第一因数末尾有几个0,就在乘得的数的末尾添写几个0。笔算时应该注意:
1.第二个因数要写在第一个因数的末尾的0的前一位的下面;
2.第一个因数末尾有几个0,就在积的末尾添几个0,不能漏掉)。
三、巩固知识,发展能力。
1.演示动画“末尾有零的乘法”
2.出示课件“末尾有零的乘法(练习)”(要求学生独立完成)。
3.教材第二十二页第7题,请学生将答案直接写在教材。
4.你会计算2072×4和8×420吗?
末尾有0的乘法。
20×3=200×3=2000×3=2500×3=。
12×4=120×4=340×2=。
笔算乘法教学设计篇四
1.初步学会乘法竖式的书写格式,理解每一步计算的含义;能正确进行多位数乘一位数(不进位)的笔算。
2.进一步提高学生的计算能力。
过程与方法。
使学生经历多位数乘一位数(不进位)的计算方法的形成过程,体验计算方法的多样化。
情感态度与价值观。
使学生在学习活动中获得成功的体验,激发学生的好奇心和求知欲,培养学生的合作精神。
学会乘法竖式的书写格式,掌握计算方法。
体验算法的多样性。
一、复习导入。
20×7=9×400=700×8=。
500×3=6×60=5×600=。
问题:直接说出得数,并说一说你是怎样算的。
二、探索新知。
(一)创设情境,引出数学问题。
坐过山车每人12元,3人需要多少钱?
问题:
1.这道题告诉了我们什么?让我们求什么?
2.你想怎么解决这个问题,谁来列算式?
3.为什么用乘法来解决呢?
4.这个结果是怎样得到的?你能把想法用自己喜欢的方式表示出来吗?
(二)自主探究,明确算法。
问题:
1.结合小棒图,谁来说一说这个算式表示的意思?
2.还可以怎样想?
3.这种方法谁读懂了?把12分成了哪两个数?
结合图,请你思考每一步求的是什么。(先求出3个10是多少,再求出3个2是多少,最后再把这两部分合并起来就是36。)。
4.谁的想法和他们的不一样,请你说一说你是怎样想的。
(三)寻找共性,加深理解。
12×4=4821×8=8423×2=46。
问题:1.想一想,这道题该怎样算呢?说一说你的想法。
2.这两道题又该怎样算呢?
3.在计算这几道题的过程中,你发现了什么共同之处?
三、巩固练习,拓展提高。
1.完成教材59第6题。
问题:(1)仔细观察这幅图,你知道了什么?
(2)怎样解决这个问题?谁来列个算式?
(3)说一说你是怎样算的。
2.管乐团有男生32人,女生的人数是男生的3倍,
女生有多少人?
问题:(1)谁来读一读这道题?
(2)你知道了什么?
(3)“女生的人数是男生的3倍”你是怎样理解的?
(4)要想解决这个问题?谁来列个算式?
(5)说一说你是怎样算的。
四、布置作业。
作业:第58页练习十二,第4题、第5题。
第59页练习十二,第7题、第9题。
课后小结。
这节课学到了什么?在笔算时你认为要注意什么?
笔算乘法(不进位)。
12×3=36。
12+12+12=3610×3=30。
2×3=6。
30+6=。
笔算乘法教学设计篇五
教学目标:
1、学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
2、在不同方法解决问题的过程中加深对口算方法和笔算方法的理解,并加强应用,培养世界解决问题的能力。
3、让学生经历运用两位数乘两位数计算解决实际问题的过程,体会乘法计算的运用价值。在学习活动中感受数学与生活的密切联系。
教学重点:学会计算两位数乘两位数进位的乘法。
教学难点:提高计算的正确率。
教具准备:课件、写有算式的南瓜卡片。
教学过程:
一、提出问题。
出示下围棋的画面,介绍有关围棋赛的事例(或战绩)。
放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。
接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”
请学生说一说用什么方法解决这个问题,从而列出算式19×19。
揭示课题:两位数乘两位数。
二、探讨计算方法。
1、估一估19×19大约是多少?
2、各组讨论:怎样计算19×19。
请把想出的计算方法写在纸上。
3、组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
4、师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。
(3)重点评议笔算。
三、练习。
1、尝试练习。
用竖式计算第65页“做一做”中的4道题。
分组选做2道。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
2、争当小医生:下列题目对吗?有错的请改正。
3 4 2 2。
× 4 1 × 7 4。
3 4 8 8。
1 3 6 1 4 4。
1 6 0 1 5 2 8。
3、完成练习十六第1题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
4、解决问题。
请学生独立完成练习十六第3题。
完成后,请学生向全班说一说,解决问题的过程和结果。
5、游戏。练习十六第2题。
贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。
让学生自由选择卡片,算对的就收获了这个南瓜。
完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。
四、课堂总结:
1、请学生讨论笔算乘法时要注意什么问题,并交流。
2、教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
五、布置作业:《课堂作业本》第33页。
板书设计: 两位数乘两位数进位笔算。
教后反思:在笔算前让学生先估一估是培养学生估算意识的重要资源和手段,估算还能帮助检查笔算的结果是否合理。我在学生笔算之前,总要让学生先估一估,学生的乘法估算能力提高的同时,也巩固了乘法口算。进位乘法的算理和不进位的相同,学生通过知识迁移,独立探究完成,在交流中注意进位的处理。尤其在第2步计算,总有进位的,如若学生口算有困难的就存在进位写法的问题,有的写在竖式中,显然找不到合适的位置,所以我就引导学生记录在竖式旁边。但是在计算结果校对中发现错误率很高,除了算理不透外很多学生都是在口算时这儿或那儿出点问题。教材在练习十六里还安排了充分的练习。那么就让学生在练习中提高吧!建议在起步阶段的笔算过程中,要求学生轻声说出每一步计算过程,每个数字都是怎么得来的。在说的过程中改善书写和计算中的一些马虎现象,培养良好的计算习惯。
作业反馈:本次作业是针对两位数乘两位数的进位笔算。我要求学生每一道都列出竖式,如果书上已经出现竖式,就将竖式写完整,如果没有,就将竖式列在本子上夹进去。作业本上完成的情况比较理想。
笔算乘法教学设计篇六
教学内容:人教版四年级数学上册第四单元第一课时。
教材分析:《三位数乘两位数笔算乘法》这节课是在学生掌握两位数乘两位数的笔算基础上进行教学的,教学中两位数乘两位数的算理和算法都将直接迁移到三位数乘两位数笔算中来。学习这部分内容,有利于学生完整地掌握整数乘法的计算方法,并为以后进一步学习小数乘法打好基础。
学情分析:学生在三年级时已经学习过三位数乘一位数、两位数乘两位数的乘法笔算。而三位数乘两位数的笔算和两位数乘两位数的笔算相比,在算理和算法上是完全一致的。因此,学生对算理和算法的理解和探索并不会感到困难。但是,由于因数数位的增加,计算的难度也会相应的增加,计算中就会出现各种不同的情况。
教学目标
知识与技能:
1、使学生掌握三位数乘两位数的笔方法。
2、培养学生类推迁移的能力和口算的能力
过程与方法:
使学生经历笔算乘法计算的全过程,掌握算理和计算的方法
情感、态度和价值观:
培养学生认真计算的良好学习习惯。
重点:使学生掌握三位数乘两位数的计算方法。
难点:使学生掌握三位数乘两位数的计算方法并正确计算。
教学过程
一、复习导入;
1、口算:
23×30= 47×20=
42×19≈58×41≈
2、笔算
43×26=12×34=
说一说笔算的方法是什么?
3、揭示并板书课题。
二、探究新知.
1、默读题目,你知道了哪些数学信息?要求的问题是什么?
2、怎样解答?
3、为什么用乘法计算?
4、怎样计算145×12:
(一)、估算
师:你们可以估算出145×12的大致范围吗?小组交流讨论,你是如何估算的?
哪位同学把你的估算过程和想法跟我们分享一下呢?
生:把145看成150,150×10=1500,150×2=300,相加等于1800。所以我觉得,大约是1800千米,但比1800小。
(二)、笔算
生:用竖式计算。
师:也就是笔算乘法(板书)
师:那么要如何用竖式计算145×12的积呢?先在你们的练习本上试着算一算。
(学生尝试计算,师巡视,找同学板演并说出自己的计算方法)
生2:竖式计算
(全班学生齐做,把学生做错的几种不同情况,板书在黑板上)
师:我们一起来看看这几位同学的竖式,有什么不一样?你们觉得那位同学是正确的?
生:……
师:我们一起用计算器来验算一下积到底是多少?你算对了吗?
让板演正确的学生讲一讲“你是怎么算的”
师:那1与5相乘的积要写在哪位数位上呢?是个位上,还是十位上?为什么呢?
生:写在十位上,因为1在十位上,相同数位要对齐
(此处,学生的表述可能不规范,可能说,“在这里的1表示的是10”,师要予以引导,得到这个之后,师可以再结合145×12=145×2+145×10,让学生明白145×12竖式的算理)
师:那列竖式计算145×12时,要先算什么?再算什么?怎么算?
生:2乘以145,再算10乘145
师:积要写在哪里?为什么?
生:10乘145的积写在十位上,因为1在十位上,数位要对齐
师:最后写什么?
生:将两次乘积相加
师:那其他几个同学的竖式有问题吗?有的话,问题在哪里?
生:他没有乘百位,……
(师要强调我们现在算的是三位数乘两位数,要记得乘百位,可以和45×12进行对比。)
师:现在请同学们观察45×12、的竖式有145×12什么不同?找出其相同点和不同点。
三、知识运用
1.做一做。
1 3 4
第二部分积 该怎样写? |
×1 2


