正比例教案(优质15篇)
教案是教师为实施教学活动所设计的详细计划。它起着指导和组织教师教学活动的作用,有助于教师把握教学进度和重点,提高教学效果。在编写教案时,需要考虑到教学目标、内容、教学手段和评价方法等因素,确保教学过程的合理性和有效性。教案的编写需要经过认真思考和严密设计,对于教师来说是一项重要而繁琐的工作。教案的编写需要注重知识的激活与拓展。以下是一些教师在实际教学中运用的一些教案编写技巧。
正比例教案篇一
小学六年级的学生在学习正比例和反比例这部分内容时,尤其是在练习过程中容易混淆不清,经常弄错。下面,本文从不同的角度帮助他们正确区分这两者的关系,希望对他们的学习会有所帮助。
一、正确认识两者的意义。
正比例和反比例的意义教材中是安排在从p39到p47来进行叙述讲解的,且都是通过对实验中的数据进行分析之后概括得出的结论,这样学生相对易于接受。
1.正比例的意义:教材中的表述是“两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。”
2.反比例的意义:教材中的表述是“两种相关联的量,一种量变化,另种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。”
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的关系式来表示:
y/x=k(一定)或y=kx(k一定)。
(二)反比例关系的表达式。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用下面的关系式来表示:
x×y=k(k一定)或y=kx(k一定)。
1.正比例关系中两种相关联的量的变化规律。正比例关系中两种相关联的量的变化规律是:同时扩大,同时缩小,比值(或商)不变。
例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
完成该题练习时,可以先写出路程、速度和时间三者之间的关系式:速度=路程/时间,已知条件中速度为一定(即常量),根据“速度=路程/时间”这一关系式,结合正比例的意义,即可知道所行的路程和所用的时间是成正比例关系的。也就是说,当速度一定时,走的路程越多,所花费的时间也越多,反之,亦然。换句话说,路程和时间是成倍增长或缩小的。
2.反比例关系的两种相关联的量的变化规律。
反比例关系的两种相关联的量的变化规律是:一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变。
例如:当图上距离一定时,实际距离和比例尺是否成反比例?因为实际距离×比例尺=图上距离(一定),所以,实际距离和比例尺是成反比例的。
1.在事物关系中都包含有三个量,(本网网)即有两个变量和一个常量(即定值)。
2.在相关联的两个变量中,当一个变量发生变化时(扩大或缩小),则另一个变量也随之发生变化。
3.它们相对应的两个变量的积或商都是一定的(即常量)。
也就是说,在正比例和反比例的两个相关联的变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
1.正比例的定量(或定值)是两个变量中相对应的两个数(即变量)的比值(或商)。反比例的定量是两个变量中相对应的两个数的积。
2.当用图象来表示正比例或反比例中两个变量之间的关系时,所画出来的图象是不一样的。正比例的图象是一条倾斜的直线(又叫斜线)。反比例的图象是一条曲线,且两端永远不会与两条轴线(即横轴和纵轴或函数中所称的x轴和y轴)相交。
当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,则由反比例转化为正比例。
需要说明的是,教科书中在“正比例和反比例的意义”的讲解中,并没有指出正比例和反比例关系表达式中常量和变量的取值范围。根据正比例的关系式y/x=k(一定)和反比例的关系x×y=k(k一定)可以知道,无论是正比例还是反比例,两个变量x、y和常量k均不能为零。试想,在正比例y/x=k(一定)中,如果x为0,式子无意义;如果y为0,x不为0,则x的值是不确定的(这时候k的值为0),此时x和y就不存在正比例的说法了。同样,在反比例x×y=k(k一定)中,如果x和y两个变量中,只要其中一个为0或两个都同时为0,则k的值都为0,x和y也无所谓反比例关系了。再说,如果x和y同时为0的话,那么x和y也不叫变量了,都不符合反比例的意义。所以,无论是正比例关系,还是反比例关系中,两个变量x和y以及常量k都不能为0。
因此,当正比例或反比例关系中其中一个变量用字母表示时,要求我们通过讨论确定另一个变量的取值范围的时候,我们就要注意正比例或反比例关系中两个变量的取值绝对不能为零,否则,就失去意义了。
【参考文献】。
1.卢江、杨刚主编,义务教育课程标准实验教科书小学六年级《数学》下册[s],人民教育出版社出版。
2.谢鼓平主编,小学六年级数学《教案与设计》[s],新疆青少年出版社出版。
3.《贵州教育》[j]第3-4期合订本第65页中《小学数学毕业复习建议》(王艳)。
正比例教案篇二
人教版六年级下册p39正比例的意义。
这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
本节课我安排了六个教学环节
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
正比例教案篇三
教学目标:
1。利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2。能根据正比例的意义,判断两个相关联的量是不是成正比例。
3。结合丰富的事例,认识正比例。
教学重点:
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:课件
教学过程:
预习书19———21页内容
1、填好书中所有的表格
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
在老师的小结中感受并总结正比例关系的特征
正比例教案篇四
p47~48,例7、正、反比例的比较。
进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。
一、复习
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
二、新授。
1、揭示课题
2、学习例7
(1)认识:“千米/时”的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线
在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、正、反比例的特点(异同点)
由学生比、说
三、巩固练习
1、练一练第1、2题
2、p49第1题。
四、课堂:
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
五、作业
p49第2题(1)(4)(5)(6)(9)
六、课后作业
1、p49第2题(2)(3)(7)(8)(10)
2、收集生活中正、反比例关系的量并分析。
正比例教案篇五
p50第3——8题,正反比例关系练习。
进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。
一、揭示课题。
二、基本知识练习。
2、练:950第4题。
先说出数量关系式,再判断成什么比例?
三、综合练习。
1、练习:p50第5题。
想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?
口答并说说怎样想的。
2、做练习十二第6题、第7题。
3、做第8题。
提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?
四、延伸练习。
下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?
1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。
2、某工厂3小时织布1800米,照这样计算,8小时织布x米。
五、课堂。
通过这节课的练习,你进一步认识和掌握了哪些知识?
六、作业。
《练习与测试》p25第五、六题。
正比例教案篇六
正比例这一内容是在学生学习了比和比例知识的基础上进行教学的,着重使学生理解正比例的意义。从内容上看,正比例在整个小学阶段是一个较抽象的概念,学生不仅要理解其意义,还要学会判断两种量是否是成正比例的量,同时还要学会用含有字母的式子来表示正比例关系。
教师要渗透给学生一些函数的思想,为他们以后的初中学习打下基础。在教学图象的同时,我密切联系学生已有的生活经验和学习经验,给学生提供了有利于探索和理解两个量之间变化规律的材料,使学生理解正比例关系图象的特征,并掌握其画法。
新的《数学课程标准》提倡引导学生以自主探索与合作交流的方式理解数学、解决问题。在“探究新知”这一环节,我放手让学生自主讨论学习:怎样利用图象,不计算,由一个量的值直接找到另一个量的值。以上三个教学环节,我紧扣教材,遵循学生的认知规律,在师生互动的过程中,使学生认识正比例关系的图象。
唯有每节课坚持课后反思,寻找教学中出现中出现的问题,并不断改进,我相信我的教学水平会有一个较大的提高!
正比例教案篇七
教学内容:p50第3——8题,正反比例关系练习。
教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。
教学过程:
一、揭示课题。
二、基本知识练习。
2、练:950第4题。
先说出数量关系式,再判断成什么比例?
三、综合练习。
1、练习:p50第5题。
想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?
口答并说说怎样想的。
2、做练习十二第6题、第7题。
3、做第8题。
提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?
四、延伸练习。
下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?
1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。
2、某工厂3小时织布1800米,照这样计算,8小时织布x米。
五、课堂。
通过这节课的练习,你进一步认识和掌握了哪些知识?
六、作业。
《练习与测试》p25第五、六题。
正比例教案篇八
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
成正比例的量的特征及其判断方法。
理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.
启发引导法
自主探究法
课件
一、定向导学(5分)
1、已知路程和时间,求速度
2、已知总价和数量,求单价
3、已知工作总量和工作时间,求工作效率
4、导入课题
今天我们来学习成正比例的量。
5、出示学习目标
1、理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
二、自主学习(8分)
自学内容:书上45页例1
自学时间:8分钟
自学方法:读书法、自学法
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
2、正比例关系式是什么?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
y/x=k(一定)
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升
引导学生小结成正比例的量的意义和关系式。
三、合作交流(5分)
第46页正比例图像
1、正比例图像是什么样子的?
2、完成46页做一做
3、各组的b1同学上台讲解
四、质疑探究(5分)
1、第49页第1题
2、第49页第2题
3、你还有什么问题?
五、小结检测(8分)
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测
1、49页第3题。
六、堂清作业(9分)
练习九页第4、5题。
板书设计:
成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
关系式:
y/x=k
正比例教案篇九
师:请同学们结合课本上的例题,讨论以下问题。
(1)题目中相关联的两种量是________和________。
(2)________一定,_________和_________成_______比例关系。
(3)______行驶的_____和_____的________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流。
4、学生尝试解答后评价(指名学生板演)。
5、怎样检验?把检验过程写出来。
6、概括总结。
比例的方法解。
(2)明确解题步骤。(板)。
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1.分析判断。
2.找出列比例式所需的相等关系。
3.设未知数列等式。
4.求解。
5.检验写答语。
正比例教案篇十
1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。
2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。
正比例教案篇十一
1。能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2。使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3。使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
正比例教案篇十二
先来研究这样一个问题。
1、出示例1课件。
2、分析解答应用题。
(1)请一位同学读一读题目。
(2)这道题要求什么?已知什么条件?
(3)能不能用以前学过的方法解答?
(4)让学生自己解答,边订正边板书:。
140÷2×5。
=70×5。
=350(千米)。
答:________________。
3、激励引新。
这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
正比例教案篇十三
本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。
例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。
试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。
学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。
练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的.比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。
像直观表达正比例关系。
例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照a点表示1小时行80千米b点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。
练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。
例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。
练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。
正比例教案篇十四
一、概念复习:
1、提问:怎样的两个量成正、反比例?
根据学生回答板书字母关系式。
二、书本练习:
1、第9题。
(1)观察每个表中的数据,讨论前三个问题。
要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。
(2)组织学生讨论第四个问题。
启发学生根据条件直接写出关系式,再根据关系式直接作出判断。
2、第10题。
(1)看图填写表格。
(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。
要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。
(3)启发学生运用有关比例尺的知识进行解答。
3、第11题。
填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。
4、第12题。
引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。
5、第13题。
让学生小组进行讨论,教师指导有困难的学生。
三、补充练习。
1、对比练习:判断下列说法是否正确。
(1)圆的周长和圆的半径成正比例。()。
(2)圆的面积和圆的半径成正比例。()。
(3)圆的面积和圆的半径的平方成正比例。()。
(4)圆的面积和圆的周长的平方成正比例。()。
(5)正方形的面积和边长成正比例。()。
(6)正方形的周长和边长成正比例。()。
(7)长方形的面积一定时,长和宽成反比例。()。
(8)长方形的周长一定时,长和宽成反比例。()。
(9)三角形的面积一定时,底和高成反比例。()。
(10)梯形的面积一定时,上底和下底的和与高成反比例。()。
正比例教案篇十五
2.做练习十一第1题。
让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。
3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?
一种苹果,买5千克要10元。照这样计算,买15千克要30元。