小学数学鸡兔同笼教案人教版(汇总12篇)
在编写教案的过程中,教师需要考虑学生的认知特点和学习需求,以便更好地实施教学。教案应包括预习、讲授、练习、巩固等环节,使教学过程更加完整。在这里,大家可以找到一些优秀的教案样本,帮助大家提高备课质量。
小学数学鸡兔同笼教案人教版篇一
(二)探索新知。
先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下。
追问:按顺序列表填写一下,应该是各有几只?
得出结论有3只鸡,5只兔子。
进一步追问:还有没有其他方法?
学生活动:前后四人一小组讨论。
教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。
(三)课堂练习。
ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”
(四)小结作业。
提问:今天有什么收获?
教师引导学生回顾解决鸡兔同笼问题的方法。
课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。
小学数学鸡兔同笼教案人教版篇二
1、知识与技能:学会使用列表方法解决鸡兔同笼问题,了解使用假设解决鸡兔同笼问题的方法。
2、过程与方法:在尝试和列表中经历探究与解决问题的过程,掌握分析解决问题的方法。
3、情感态度与价值观:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的兴趣。
小学数学鸡兔同笼教案人教版篇三
生:我学会用……方法解决“鸡兔同笼”问题。
师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。
板书设计:
列表法。
方程法假设法。
解:设有兔x只,鸡就有2(8-x)只。全看作鸡。
4x+2(8-x)=268×2=16(只)。
x=54-2=2(只)。
8-5=3(只)10÷2=5(只)。
答:有5只兔,3只鸡。8-5=3(只)。
26-4x=2(8-x)全看作兔。
26-2(8-x)=4x8×4=32(只)。
26-2x=4(8-x)4-2=2(只)。
26-4(8-x)=2x6÷2=3(只)。
8-3=5(只)。
小学数学鸡兔同笼教案人教版篇四
3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?
4.鸡兔同笼不知数,三十六头笼中露。数清脚共五十双,各有多少鸡和兔?
18.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对。问蜻蜓有多少只?(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀)。
小学数学鸡兔同笼教案人教版篇五
《鸡兔同笼》(第一课时)。
教学。
设计教学内容:
人教版小学四年级数学下册。
第1。
03—105页教学目标:
知识技能1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。
3.在解决问题的过程中培养学生的逻辑推理能力。
数学思考与问题解决经历解决问题的过程,体验分析解决问题的方法。
情感态度体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,激发学生学数学、用数学的兴趣。
重点:理解掌握解决问题的不同思路和方法。
难点:能运用不同方法解决实际问题。
教学过程:
一、创设游戏,提出问题师:同学们,前段时间我们学校进行了有关h7n9禽流感的知识讲座,大家还记得吗?其中就有一条要远离家禽,同学们做到了吗?其实,在这些家禽里也蕴含了一些数学知识。今天,我们就来学习一下著名的数学问题。先让我们来玩个接龙游戏,我说动物的数量,你们对应说出他们的头的个数和脚的只数。如:
师:一只鸡。
生:一只鸡,一个头,两只脚。
师:一只鸡和一只兔。
生:一只鸡和一只兔,两个头,6只脚。
……师:那反过来如果有5个头,16只脚,该有几只鸡几只兔呢?……师:下面,我们来看看怎样解决这类问题的。
设计意图:创设游戏情境,很自然地引入课题。
二、出示表格,学习模式已知:鸡和兔共有5个头,16只脚。
问题:鸡和兔各有几只?画图法:
头兔兔鸡鸡兔脚兔有3只,鸡有2只。
鸡543210兔0123总脚数10121416列表法(枚举法):
兔有3只,鸡有2只。
文字说明:
1.画图法:先画出5个头和16只脚,然后先给每个头配2只脚,剩下的脚再两只两只地加到每个头上,分配完后,4只脚的是兔,2只脚的是鸡。
2.列表法:假设4只鸡,1只兔,那么共有12只脚,与题目条件不符;
假设3只鸡,2只兔,那么共有14只脚,也不符合条件;
假设3只鸡,2只兔,那么共有16只脚,刚好符合题目条件。
设计意图:数形结合,以画促思,更好地帮助学生理解题意,同事激发学生学习兴趣。
三、
例题讲解那现在我把数量增加一点点,你们再来算一下?(出示例1)。
例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?1.尝试与猜想(分小组合作,活动后汇报、交流)。
四人小组按照表格模式,探讨方法,并把讨论结果综合在表格里,组长负责收集和整理相关信息,并推荐一位组员上台展示成果并分享方法。
画图法:
8个头26只脚兔有()只,鸡有()只。
鸡8765兔012总脚数1618列表法(枚举法):
兔有()只,鸡有()只经过同学们的小组交流,合作探讨,基本解决了这个问题,而且你们善于观察和。
总结。
规律,老师为你们感到高兴。以上的方法属于一种猜测和推算的过程,这些方法在对于一些数字简单的题目还是可行的,但是如果数字较大,以上两种方法操作起来就有些难度了,我们能不能用列式的方法来解决这个问题呢?下面我们一起来探讨一下。
2.假设与探究假设全是鸡师:突然传来一阵鞭炮声,兔子们吓得全都用前面两只脚捂住耳朵,站立了起来。这时,兔子和鸡一样只有两只脚站在地上。同学们,听到这里,你想到了什么?你能列式解决这个问题吗?(小组合作探究,师生再交流)。
设计意图:拟人化的比喻,让学生兴趣盎然。
生:我们是这样想的:兔子都用2只前脚捂住耳朵,用2只后脚站了起来,这时每一个头就对应着有2只脚站在地上(即可假设8个头都是鸡头),此时站在地上的脚的个数是8×2=16只。
师:算式里的8表示什么?2又表示什么?结果的16只脚是什么的脚?生:8表示“假设8个头都是鸡的头”,2表示“每只鸡有2只脚”,16只脚是站在地上的脚。而之前数有26只脚,少了26-16=10只脚,这10只脚是兔子捂耳朵的前脚,而每只兔子有2只前脚,所以兔子的只数是:10÷2=5只,鸡的个数是:8-5=3只。
师:“10÷2=5”式中的10表示什么?2表示什么?生:10表示兔子抬起捂耳朵的前脚,2表示每只兔子有2只前脚,【板书1】:假设全是鸡:
8×2=16(只脚)。
兔子:10÷2=5(只)。
鸡:8-5=3(只)。
10÷2表示兔子的数量。
师:以上的方法就是假设法,假设全是鸡,先算出脚的假设总数,然后对比实际总数,再用少了的脚数除以2就可以算出兔子的数量了。
假设全是兔师:鞭炮声停了,兔子们都把前脚放回到地上,这时所有的鸡看到兔子被鞭炮声吓倒,都笑得站不稳,用两只翅膀撑到地上,变成了鸡好像也有4只脚的样子。你又想到了什么?(小组合作探究,师生再交流)。
生2:我们是这样想的:鸡都把翅膀撑到地上当“脚”了(即可假设8个头都是兔头),这时地上的脚的总数是8×4=32只,但实际上只有26只脚,多出来的“脚”32-26=6只,多出来的这6只“脚”实际上是鸡的翅膀来的,每只鸡有2个翅膀,所以鸡的个数有6÷2=3(只),兔的个数有8-3=5(只)。
【板书2】:假设全是兔:
8×4=32(只脚)。
鸡:6÷2=3(只)。
兔子:8-3=5(只)。
假设全是兔,就会先求出鸡的只数。
四、渗透文化,激发情感师:同学们,让我们闭上眼睛穿越时空回到1500年前。在一间学堂里,一位先生拿着一本数学名著《孙子算经》,摇头晃脑地读着:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”同学们,你们能用我们刚才学习的几种方法帮帮古代的学生们吗?谁来先翻译一下这个古代数学问题的意思?然后,请各位同学用刚才学过的方法解答这个问题。
(独立完成后汇报、交流)。
师:同学们都做得很好,那么古代的人又是怎样解决这类问题的呢?下面我们一起来看看他们是怎样做的。(看阅读资料)。
设计意图:渗透古代数学思想,适时适地进行思想教育,创设课堂数学文化氛围。
五、畅谈收获师:今天的学习有趣吗?大家有哪些收获?生1:……生2:…………师:今天,我们通过了小组合作、自主探究学习了用画图、列表和假设的方法来解决“鸡兔同笼”的问题,希望你们能用今天学到的方法去解决实际生活中的数学问题。
小学数学鸡兔同笼教案人教版篇六
师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。
小学数学鸡兔同笼教案人教版篇七
方法:边看书边完成下面要求:
1、“鸡兔同笼”这四个字是什么意思?
2、书上用了种方法来解决这个问题。
3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?
生理解:
(1)鸡和兔共8只;
(2)鸡和兔共有26只脚;
(3)鸡有2只脚;
(4)兔有4只脚;
(5)兔比鸡多2只脚。(课件演示)。
师:那问题是什么?
生:鸡和兔各有多少只?
3、猜一猜:
师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?
4、介绍列表法:
师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)。
5、观察发现,列式计算。
三、合作交流:5分钟。
假设全是兔,怎样解决?试一试。
四、质疑探究:5分钟。
解决鸡兔同笼这类问题,有几种假设的方法?
五、小结检测:20分钟。
1、小结方法:
同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。
2、检测:
a、问答:
(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?
为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)。
(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)。
(注:如果前面出现了折半列表,就把这个环节提前讲。)。
b、解决问题。
(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
作业:p106;1、2、3。
板书:
假设全是鸡,就有脚8×2=16(只)。
比实际少26—16=10(只)。
一只鸡比一只兔少4—2=2(只)。
兔子:10÷2=5(只)。
鸡:8—5=3(只)。
小学数学鸡兔同笼教案人教版篇八
在我校本学期组织的公开课教学中,我讲的是人教版的数学《鸡兔同笼》这课。由于我所教的班级学生整体基础较差,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
师生共同经历了三种不同的方法,列表法,假设法和代数法。让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。从学生的学习效果来看,在本节的教学中,学生不容易理解或者说容易出错的就是第三步,实际上也就是对“差”的分析,因此,我和课件结合起来,让学生理解:假设全是鸡,就多出了10只脚,而每增加一只兔子,减少1只鸡,多出的只数就会减少2,10里面有5个2,所以应该有5只兔子,这里一定注意要和学生讲清楚2是什么,要学生不仅仅是看算式,更要看算式前面的文字。结合前面的文字来帮助学生理解算式中的10是什么,2是怎么来的,表示什么意思,这样学生才会对假设法有一个准确的认识。
反思整节课,我感觉基本实现了我预定的教学目标。但是还是存在着很多的不足,例如:
首先,我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型,大多数同学还是比较喜欢用代数法来解决。
然后,就是在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。在进行教学设计时,我也感觉到本节课的内容着实又点多,虽然问题没几个,但本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的开展探讨活动,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;这样一节课的时间就显得不够用了,导致最后没有时间来了解日本的龟鹤问题和解决生活中的实际问题。
对于这个问题我也认真的思考了一下解决的办法,因为这是一节公开课,所以要给所有听课教师呈现一节完整的课,那么就要有联系生活实际的练习或者说必须做几道练习题,那么在前面为了节省时间就可以说说解题的思路或者让学生说说列式就可以了,这样就可以解决龟鹤问题,也可以出示生活中的问题让学生用本节课学习的方法解决,这也就体现了数学和生活实际联系很大,让学生觉得学好数学有很大的用处。
将本文的word文档下载到电脑,方便收藏和打印。
小学数学鸡兔同笼教案人教版篇九
1,、工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有个间隔。
2、一排同学之间有7个间隔,这一排有()个同学。
10、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
11、林老师家里时钟5点敲响5下,每下相隔2秒,敲完5下需要()秒。
12、酒店里的大钟4时敲4下,6秒敲完,10时敲响10下,需要多长时间?
13、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
14、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。
小学数学鸡兔同笼教案人教版篇十
教学过程:
一、游戏体验。
师:这节课我们来做个鸡兔同笼的游戏好吗?
师:谁来介绍鸡和兔的特征?
生1:鸡一个头,两条腿。
生2:兔一个头,四条腿。
二、建立模型。
师:谁来说说你们刚才是怎样数出有多少只脚的?
生:用鸡数乘以2,用兔数乘以4。
板书:鸡数2+兔数4。
师:通过刚才的游戏你有什么发现?
生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。
师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。
(小组讨论)。
师;可以用什么办法把你们刚才猜测的过程记录下来。
生发言:可以用画图或制成统计表的方法。
师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。
师:谁来说说,统计表中每栏要表示什么?
师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。
(小组活动)。
师:谁来说说你是怎样记录的?
反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)。
生:我们可以采用取中列表法,再结合跳跃列表法进行调整。
师:如何调整?
生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。
板书:猜测列举调整。
三、巩固提升。
师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?
四、思想教育与总结。
师:鸡兔同笼的问题很有意思吧。早在15前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。
小学数学鸡兔同笼教案人教版篇十一
本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的不同方法。
“鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。
对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。
小学数学鸡兔同笼教案人教版篇十二
1.了解”鸡兔同笼”问题,感受中国古代数学问题的趣味性。
2.尝试列表枚举、算术、方程等不同的方法解决“鸡兔同笼”问题,体验解决问题方法的多样性,提高解决实际问题的能力。
3.通过自主探索、合作交流,培养合作意识和逻辑推理能力。
4.体会数学问题在日常生活中的应用,进而体会数学的价值。
学情分析。
“鸡兔同笼”题目是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”题目,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
教材的编排有以下特点:
1.教材首先通过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”题目,并通过小精灵的提问激发学生解答我国古代著名数学题目的爱好。
2.注重体现解决“鸡兔同笼”题目的不同思路和方法。
3.让学生进一步体会到这类题目在日常生活中的应用。
教学重点:亲历列表、假设、方程等解题的过程,体会解决问题的一般策略。
教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略解决生活中的实际问题。
教学过程。
活动1【导入】激趣导入引发思考。
课件出示:笼子里有若干只鸡和兔,从上面数,有12个头;从下面数,有32条腿。鸡和兔各有几只?(全班齐读)。
活动2【活动】合作交流预设生成。
(一)这个问题课前你们通过自学都有了自己的想法,现在请你们把自己研究的收获和小组的同学交流交流,等一下大胆地上台展示自己的研究成果。开始吧!(学生交流)。
(二)老师刚才听了你们的交流,老师发现同学们的思维真的很活跃,谁愿意第一个上台展示?掌声有请第一个小勇士上讲台给大家交流他解决问题的方法,大家要认真倾听,随时向这位同学提问。
1.生:我是这样想的,假设鸡为0只,兔为12只的时候,腿数为48;当鸡的只数为1只,兔为11只的时候,腿为46,依次类推,当鸡为8只,兔为4只的时候,腿就刚好是32.这样都得出了鸡为8只,兔为4只。
请同学们观察分析这些数据,你发现了什么?(鸡兔共12只;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)。
(1)还有哪些同学与他的方法相同或类似?你们认为这种方法有什么特点?这位同学的这个方法按顺序一个一个列举下来,不容易遗漏,我们取个名字记住它吧!(板书:逐一列举)。
(4)取中列举和跳跃列举方法的同学汇报,说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的?谁还有不同的调整策略?问:你们觉得这种方法怎么样?(简便、快捷)。
重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?
(三)回顾与交流。
谢谢同学们还有其他的方法解决这道题吗?
(四)继续交流分享。
2.生:我先假设全都是鸡,那么就有24条腿,比实际的腿少了32-24=8条。多的这8条腿就是由于我们把兔当作了鸡,每只兔鸡少算了2条腿,所以用8除以2就得到了兔的只数,兔是4只,鸡只有8只。
师:大家听懂这个方法了吗?你有什么问题要提出来的?没关系,我们请12个小朋友充当小动物来演一演帮忙同学们理解一下这种方法。
(学生表演,借助学生表演理解算术解法每一步的意思)。
师:如果假设全都兔呢?你们会解决吗?对手试试看。(学生动手试做,然后汇报)。
3.生:我用的.是画图的方法。我们先画12个圆代表12个头,然后个头添上2条腿,就一共添了24条腿,这个时候鸡的腿数齐了,剩下8条腿的全是兔的腿了,每只兔子还差2条腿,所以再给每只兔子添上两条腿,这样就可以添4只兔子,所以有4只兔子,有8只鸡。
生:我觉得这个方法和列举法一样,如果数目较多的时候,画图就麻烦了。
师:这道题用画图的方法可行吗?
生:数目简单的时候可行。
师:这也就解决问题的一种策略,如果数目较多,我们可以把图画在心中,心中想怎么画就可以了。下面有请其他小组进行汇报。
4.生:我们小组是用抬腿法来做的。我们先让每只动物抬起一条腿来,这样就还剩下了26-8=18条腿,我们再让每只动物再抬一次腿,这个时候就还剩下了18-8=10条腿了。这10条腿全都是兔子的了。所以兔子有5只,鸡有3只。
师:这个方法就是古人的奇思妙想,你们也想到了,真好!有兴趣的同学课后可以看课本的阅读资料,也可以和同学们演一演,研究研究。
活动3【练习】联系生活建构模型。
同学们,生活中有没有类似鸡兔同笼这样的问题呢?我们走进生活一起去找一找吧!请看租船中的问题:
全班一共有38人,共租了8条船,大船能坐6人,小船能坐4人,每条船都坐满了。大、小船各租了几条?(38人相当于鸡兔同笼的腿数,8条船相当于头数,大船坐6人相当于6条腿的怪兔,小船相当于4条腿的怪鸡)。
活动4【测试】实际应用解决问题。
尝试运用你喜欢的方法独立完成此题。
就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?哪种方法解决最好?
活动5【作业】生活拓展谈谈收获。
结束语:孩子们,课上到这里,你还有什么疑问或想法吗?老师通过这节课和同学们的交流,觉得你们太棒了,你们通过课前自学,课上通过交流并分享了自己的研究成果,还用学到的方法解决了生活中的许多类似问题,相信同学们只要保持这种研究精神,一定能有更多的收获。谢谢同学们!