张齐华分数的意义教学设计(7篇)
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
张齐华分数的意义教学设计篇1
教学目标
1、使学生理解两个整数相除的商可以用分数来表示。
2、使学生掌握分数与除法的关系。
3、培养学生的应用意识。
教学重难点
1、理解归纳分数与除法的关系。
2、用除法的意义理解分数的意义。
教学工具
ppt
教学过程
一、激趣引入
师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?
课件出示唐僧、孙悟空、沙僧的图片
师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?
引出平均分,让学生列式:8÷4=2(张)
总量÷份数=每份数
二、探究新知
1、老猪化得一张饼,如何分给4人呢?
师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。
把1个饼平均分给4个人,每个人分得多少个?
师:这道题该怎样列式呢?(学生列式,师板书:1÷4)
师:1÷4表示什么意思?
生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。
师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?
生:1/4个。(师板书)
师:大家都认为是这样吗?(是)谁来说说你是怎么想的?
教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4 。
师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?
生:1/4个。
师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。
教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)
(课件出示例2)
指名读题
师:谁能列出算式?
生:3÷4(师板书)
师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。
小组操作,教师巡视指导。
师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?
(小组边汇报,边演示)
小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。
师:你能用一个式子表示一下吗?
小组1:1÷4=1/4块。
师:好。请接着汇报吧。
小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。
师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)
师:还有没有和这组方法不同的?
小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。
师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。
师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。
师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?
学生小组讨论
生:我们发现,被除数就是分子,除数就是分母。
师:你能试着表示出来吗?
生:被除数÷除数=被除数/除数(师板书)
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=a/b(师板书)
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?
学生观察算式,思考
生:可以。比如3/4=3÷4。
课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。
师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?
请学生观察黑板算式,和同学讨论。
学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。
三、巩固练习
1、用分数表示下列算式的商
(1)3÷2 = ( )
(2)2÷9 = ( )
(3)7÷8 = ( )
(4)5÷12 = ( )
(5)31÷5 = ( )
(6)m÷n = ( )n≠0
2、试一试
( )÷7=4/7 1÷( )=1/3 7/9=( )÷9 5/8=( )÷( )
3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?
4、填空
9厘米=( )米59秒=( )分
13分=( )时5时=( )日
5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。
四、全课总结
张齐华分数的意义教学设计篇2
教学目标
1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。
2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。
3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。
教学重难点
教学重点:理解分数的意义
教学难点:认识单位“1”和概括分数的意义
教学工具
ppt
教学过程
一、温故知新:
师:三年级上学期我们已初步学习了分数,谁能说出几个分数哪?
生:
师:谁能说出分数各部分的名称:生说师板书。
师总结引入新课:从以上看来同学们对分数已经有了初步的认识,但是关于分数的知识还有很多,这节课我们一起进一步研究分数。
二、探究新知
(一)分数的产生
1、出示米尺:同学们这是什么?(生:米尺)知道干什么用的吗?(生:测量用的)好我们一起测量我们的黑板(或人的身高),老师量时要认真观察,看会遇到什么问题,想一想应如何解决?(生:最后测量时不够一米了)
师:(出示情景图)其实古人也发现类似的情况:他们用打了结的绳子来测量石头的长度,每两个结之间表示一个单位长度。发现这块石头长3段多一点。这时旁边记录人提出疑问:剩下的不足一段怎么记哪?
2、(出示一个西红柿图:)同学们,把1个西红柿平均分给2个同学,每人能分得一个完整的西红柿吗?
3、教师小结:生活中在进行测量、分物或计算时,往往不能正好得到整数的结果,要想准确表示结果,这时常用分数来表示,这样分数就产生了。(出示并板书:分数的产生)
T:小结:我们通过把一个物体、一个计量单位、或是一些物体等都可以平均分成4份,取其中一份。
3、教师总结:课件出示图,像这样一个物体、一个计量单位、或是一些物体等都可以看作一个整体,像这样的一个个整体都可以用自然数1来表示,这个1在数学上通常叫做单位“1”。
板书:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”(齐读)
谁能说说自然数1与单位“1”有什么不同吗?
生:………
我们把这个整体平均分成若干分,就是把单位“1”平均分成若干分,所以分数的意义是:
把单位“1”平均分成若干分,表示其中一份或几份的数就叫分数,齐读一遍
(同学们表现得非常棒,同学们看看看生活中的单位“1”。出示图)
四、巩固训练大闯关(看谁反应快、回答得对):
(出示练习题见课件)
1、填空:
2、学生独立完成书上练习十一1、2、3题。
五、总结:通过学习你学到了什么,有哪些收获?
通过这节课的学习,我们知道分数是怎样产生的,什么叫分数也就是分数的意义,还知道分数单位及单位“1”的概念,整节课同学们表现的都非常太棒,就请大家为自己的精彩表现鼓鼓
张齐华分数的意义教学设计篇3
教学目标:
1.了解分数的主产生,理解单位“1”,理解理解分数的意义,分数单位。
2.理解分数的意义的过程中,渗透数形结合、应用意识等数学思想方法,培养学生的抽象概括能力。
3.通过分数意义的学习,让学生初步感受数学的神奇魅力。
教学重点:理解分数的意义。
教学难点为:理解单位“1”。认识分数单位。
教学准备:
教具:、一个苹果、5支铅笔、一个文具盒
学具:圆片、正方形、一根一米长的绳子、一板面包(8个)图片(分格)、12个苹果图片
教法与学法:教法:激趣谈话法、讲授法、引导发现法、问题激励法等学法:自主探究法、合作交流法等。
课前交流:
师:老师很荣信,来到美丽的太极城――旬阳和你们一起上一节数学课,特别的开心,孩子们你们欢迎我吗?
生:欢迎
师:怎么没见你们的掌声呢?
生:鼓掌
师:谢谢,老师今天也带来了许多小礼品,想要吗?
生:想
师:我不能白送给你们,因为“天下没有免费的午餐”需要你们的付出努力才能得到,上课积极表现、勤于思考、善于发言你们就有机会得到哟。有信心吗?
【设计意图】:建立关系,活跃课堂学习氛围,为后面的学习做铺垫。
教学过程:
一、激趣导入,揭示新知。
师:今天老师考考我们班孩子们看你们的数学水平达到五年级的水平没有?(出示两块橡皮泥左手一块右手一块),分别出示左右手,问学生几块?
生:1快。
师:同学们看的够仔细的啊,现在老师把它们合在一起,用什么数来表示?快速回答我?
预设一:2(你的数学水平还局限于一年级)
预设二:1(你能给老师说说为什么是“1”呢?)
生:指把两个小快的橡皮泥捏成一个整体了,所以可以用“1”表示了。(引出“整体”)
师:(竖起大姆指,你的想法就是不一般,老师不说你多么优秀,但你就是——与众不同)老师现在又把这一整个橡皮泥平均(强调平均分)分成2份,同学们看看,现在我左手拿的是这整个橡皮泥的多少?
生:一半、0.5。
师:有文字表示的,幼儿园都会,有小数表示的,三年级学过。但我要表扬用分数表示的同学,你太给力了,懂老师会理解老师,你一语道破老师的天机了。你能给给大家说说中间一条线表示的是什么?“2”是这个分数的什么?1又叫分数的什么呢?现在老师左手用分数表是?右手呢?这是几个?两个合起来就是一个整体“1”
师:经过你们的努力你们已经达到了五年级的水平了。现实世界中存在的量,除了一些单位量合成的,可以用自然数表示多少的量之外,还存在许多可以分割的无法用自然数表示的量,这时我们可以用分数来表示。今天我们就来研究下分数的意义。(板书并出示课题)
师:刚才我们以分橡皮泥共同研究了分数是怎么来的。其实,分数在很早以前就产生了,据科学家研究,仅次于自然。古人在测量物体的长度时也遇到了同样的困惑,请同学们认真看屏幕,古代分数的产生。然后听老师给我们作的介绍(PPT出示介绍录音)
师:现实在你还在哪儿见过分数(谈生活中的分数)
生:音乐中,八分音符等于,死海表层的水中含盐量达到,我国的人均水资源占世界平均水平的……
【设计意图】:通过具体的事物,为学生创设智力陷井,激发求知欲望。同时,对分数的各个部分的名称进行了一次再现的过程。再次为下面学习分数单位及有几个这样的分数单位做好铺垫。学生从历史、现实的生活中,初步了解分数的产生、应用的广泛性,呈现了学习分数的必要性和重要性。
二、合作探究,理解分数的意义
1.操作研究
师:分数重要吗?你想知道分数的哪些知识?
生:汇报交流,梳理本节课的知识点。
师:好,首先我们就来围绕什么是分数来研究研究。给同学们五分钟时间,研读教科书第46页的知识,小组交流,打开准备的学具袋,利用自己喜欢的方式表示这个分数。
2.反馈交流
师:我刚才转到看了一下,收集了这些表示的方法,现在我请他来告诉大家表示的方法?
生一:(投影展示)我把圆片一个对折,再对折,这样就平均分成4份了,涂出这样的一份就表示。(老师指导语言的表达:同学们请听我说,我是把……你们听明白了吗?)
师:嗯,你是把一个圆片平均分成4份,再取其中的一份表示的。真有想法。
生二:(投影展示)我把一个正方形对折,再对折,这样就平均分成4份了,涂出这样的一份就表示。
师:你也是把一个图形平均分成4份,用其中的一份来表示的。真好,同学们,有没有用不同的方法来表示的吗?
生三:我是这样把一根绳子对折再原折,取其中的1份来表示的。
师:你很有主见了。你把1米长的绳子也平均分成了4份取其中的1份来表示的,我们把一米长的绳子也可以称为一个计量单位。请坐。同学们,刚才这三位同学给我们分享了用一个圆形、一个正方形、一个计量单位分别平均分成了4份,表示其中的1份涂上不同的颜色,涂色的部分就是这一个物体的。除了上面的这样一个物体外,你还有其它的表示方法吗?
生四:我是把8个面包平均分成4份,用其中的一份来表示的。
师:嗯?你的是多少面包?
生五:2个
师:(疑惑)上面同学样表的示的都是1部分,怎么这次的却是2个了呢?
生:上面是一个物体,下面是8个面包,平均分成4份,每份就是2个面包,把这2个包看作是1份,就取这1份。所以8个面包的表示就2个面包了。
师:你的分析真到位。哪个同学能用刚才这个同学一样的方法表示12个苹果的。
生:我表示12个苹果的是3个苹果,12个苹果,平均分成4份,每份就是3个,把这3个苹果看作是1份,就取这其中的1份。所以12个苹果的是3个苹果。
师:你真是个会学习的孩子。不仅学的快还用的快。像8个面包、12个苹果这些物体平均分成4份,取其中的1份也可来表示。
【设计意图】:在三年级认识分数的基础上,让学生自由表示,加深对分数意义的理解,使学生进一步明确:平均分的整体可以是一个物体,也可以是一些物体,为概括分数的意义做好准备,同时为理解单位“1”做好铺垫。
3.归纳定义,认识单位“1”
师:同学表现的非常积极。发言的同学条理清楚声音响亮,听讲的孩子认真仔细思考有序。(用展示刚才5个同学汇报的几种情况)现在请大家用心的观察、比较、分析用所表示的物体或计量单位有哪些相同的地方?哪些不同的地方?先自己想一想,再和同桌交流说一说自己的想法。
生一:相同的地方,我们都是平均分成4份(板书:平均分),表示其中的1份。不同的地方是我们分的物体不同,分的物体的总数不同。
师:我们把什么物体平均分了?
生:一个圆、一个正方形,一根一米长的绳子,一些面包、苹果。
师:回答的非常好!在这里,一个物体、一个计量单位或一些物体等都可以看作一个整体。把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。这个整体我们可以用自然数“1”来表示。(板书:整体单位“1”)
师:现在同学们想想,我们还可以把哪些物体看成单位“1”?
(学生汇报,学生自评)
师:同学们,通过刚才我们的研究发现,把单位“1”平均分成4份,这样的1份可以用表示,这样的3份呢?
师:看样子同学们已经掌握了用分数来表示物体的量,现在跟着老师一起说,把单位“1”平均分成4份,表示这样的3份,可以用来表示;把单位“1”平均分成5份,表示这样的2份。
张齐华分数的意义教学设计篇4
教学内容:教科书第36页例1、“试一试”“练一练”,练习六第1-5题。
教学目标:
1.使同学初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。
2.使同学在说明所表示的意义的过程中,进一步培养分析、综合与笼统、概括的能力,感受分数与生活的联系,增强数学学习的信心。
教学重点:正确理解分数的意义和单位“1”的含义。
教学难点:引导同学自主概括出分数的意义。
教学对策:通过创设互相协作、积极探索的学习情境,组织同学动手操作、动脑考虑,自主探索,教师适时点拨,引导和启迪同学考虑。
教学准备:教学光盘
教学过程:
一、揭题。
二、新授。
1.教学例1
出示例1中的一组图
请大家根据每幅图的意思,用分数表示每个图中的涂色局部。写出分数后,再想一想:每个分数各表示什么?在小组内交流。
同学汇报所填写的分数,你认为这些图中分别是把什么平均分的?
一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。
左起第四个图形与前三个图形有什么不同?
一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(1)在这几个图形中,分别把什么看成单位“1”的?
(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?
(3)从这些例子看,怎样的数叫作分数?
拿12根小棒自已发明一个分数
说说你是怎么做的?
假如老师要表示6根小棒可以用什么分数表示?
2.教学“试一试”
同学在小组内说说上面每个分数的分数单位,以和各有多少个这样的分数单位。
反馈交流时,教师请同学同桌两人合作回答,一人说分数,另一人说分数单位。
3.完成“练一练”
各图中的涂色局部怎样用分数表示?请大家在书上填空。说说是怎样想的。
每个分数的分数单位是多少?各有几个这样的分数单位?
三、巩固
1.做练习六的第1题
每个分数的分母与分数单位有什么联系?
2.做练习六的第2题
先让同学在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。
同样是三分之二,为什么涂色桃子的个数不同?
3.做练习六的第3题
照样子说说题中每个分数的意义。
在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1
4.做练习六的第4题
先让同学看图指一指直线上从几到几的这一段可以表示单位“1”。再让同学中直线上的点表示各分数。然后让同学说说各是怎样想的。
5.做练习六的第5题
同学独立完成后,说说所填写的两个分数有什么不同。
这两个分数都是把12枝铅笔看作单位“1”平均分后得到的;第一个分数要把单位1平均分成12份,第二个分数要把单位1平均分成2份。
四、总结。这节课学习了哪些内容?
教学反思:分数意义的归纳鼓励同学用自身的语言说出,切实做到了淡化概念,注重实质。使同学建构的过程得以凸显,内化的知识得到外显。特别是“若干”一词,扣得很有价值,让同学做到了真正理解,使同学在新情景中实现迁移,举一反三。
授后小记
早在三年级的时候同学已经初步认识了分数的意义,本课主要让同学弄清“单位‘1’”和分数单位的意义。
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以看作单位“1”。
2、将单位“1”平均分成若干份,表示这样一份的数叫做分数单位。
同学的练习中,“‘一节课的时间是2/3小时’的分数意义”一题中把什么看作单位“1“个别同学仍有一定困难。
张齐华分数的意义教学设计篇5
教学目标
1、使学生在已初步认识分数的基础上,进一步理解分数的意义。
2、弄清分子、分母、分数单位的含义。
3、掌握分数的读、写方法,培养学生的抽象、概括能力。
教学重点
理解和掌握分数的意义。
教学难点
抽象概括出分数的意义。
教学过程
一、讲授新课。
(一)分数的产生。
1、请一位同学用米尺测量黑板的长,说一说,用“米”作单位,其结果能不能用整数表示?
2、把一个苹果平均分给两个小朋友,每个小朋友分得的苹果数是不是整数?
(板书课题:分数的意义)
(二)分数的意义。
1、以前我们已学过分数的初步认识,现在请大家仔细观察:下面把一个物体或一个计量单位平均分成了几份?想一想:其中的一份或几份怎样用分数来表示?
(依次出现糕点图、正方形图、1米长的线段图)
2、我们也可以把许多物体看作一个整体,如一堆苹果、一批玩具、一班学生等。
出示图片“苹果图”
教师提问:这幅图把什么看作一个整体?
把它平均分成了几份?
每份是几个苹果?
每份苹果是这个整体的几分之几?
(边讨论边板书)
出示图片“熊猫图”
教师提问:这幅图把什么看作一个整体?
把它平均分成了几份?
每份是几只熊猫玩具?每份是这个整体的几分之几?
4只熊猫玩具是其中的几份?是这个整体的几分之几?
(边讨论边板书)
3、将下面的两幅图与上面的三幅图进行比较,它们有什么不同点与相同点?
明确:一个物体、一个单位或是一些物体都可以看成整体1,都可以用自然数1来表示,通常我们把它叫做单位“1”,它们的相同点在于都是把各自的单位“1”平均分成若干份,取其中的一份或者几份。
(板书:单位“1”若干份一份或者几份分数)
4、总结、归纳分数的意义。
根据上面的例子,谁能说一说,什么样的数叫做分数?
张齐华分数的意义教学设计篇6
教学内容:
百分数的意义和写法(小学数学九年制义务教材第十一册)
教学目标:
通过教学,使学生正确理解百分数的意义,了解百分数与分数的异同,正确读写百分数
教学重点:
百分数的意义
教学难点:
百分数与分数的异同
教学过程:
一、复习引入:
教师小结:分数既可以表示数量,也可以表示关系
2.下面各句中的分数表示什么意思?(学生回答,教师在黑板上画出线段图)
提问:单位一是谁?分数表示谁与谁的关系?
二、新课:
1.意义:上面这些表示关系的分率和倍数都可以用一种新的数来表示,这种数叫百分数
(板书课题,并把上面句中和图中的分数改成百分数,指导读法。)
(1)参加课外小组的人数占全年级的70%。(读作:百分之七十)
(2)已经修了一条路的25%。(读作:百分之二十五)
(3)今年的钢产量是去年的120%。(读作:百分之一百二十)
提问:这些百分数在各句中分别表示谁与谁的关系?谁表示100份?
像这样表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。(补充板书)
追问:百分数是一种什么数?
2.指导写法:
写百分数时,先写分子,再写百分号(70%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小。
读百分数时,与分数的读法一样。(示范读法)
练一练:用手指在桌上写一写,然后读一读。
在本上写:25%16.7%1.25%100%131%
3.比较百分数与分数的异同:(小组讨论后指名发言,教师出示投影)
同:都是数,读法相同。
异:(1)意义不同:分数是表示把单位一平均分成若干份,表示这样的一份或几份的数,既可以表示数量,也可以表示关系,百分数是表示一个数是另一个数的百分之几的数,只能表示关系,不能表示数量。
(2)写法不同:写分数时,先写分数线,再写分母,最后写分子,分子、分母分别写在分数线的上下,写百分数时,先写分子,后面写上百分号。
(3)使用范围不同:分数的分子只能比分母小,分子大于分母的要化成带分数或整数,不是最简分数的要化成最简分数,分子必须是整数,而百分数的`分子可以比分母小,也可以比分母大,还可以和分母相等,可以是整数,也可以是小数。
三、练习:
1.读百分数:(互相读)
1% 5% 99% 100% 300% 0.6% 38.3% 233.3%
2.写百分数:(两组互相看)
百分之七百分之四十六
百分之五点三百分之三百一十点六
百分之五十五百分之四百
百分之零点一百分之百
3.把下图中的阴影部分用百分数表示,说说阴影部分、空白部分各占整体的百分之几
4.用阴影表示下面的百分数,说说百分数表示谁占谁的百分之几
5.判断:(用手势表示)
(1)一本书,已经看了它的75%,还有25%没有看
(2)一根绳子长50%米
(3)分母是100的分数叫百分数
(4)火车的速度比汽车快25%,火车的速度是汽车速度的125%
6.看图填空:
把()看做单位一,()占()的60%,没走的路程占()的()%
把()看做单位一,()相当于()的32%,苹果树是()的()%
把()看作单位一,()相当于()的27%,现在用电是原来的()%
四、总结:
看着黑板概括一下今天的学习内容,你学会了什么?什么是百分数?怎样写?与分数有什么不同?
四、布置作业:
1.读书,复习今天的学习内容
2.书第68页5~8
张齐华分数的意义教学设计篇7
学习内容:
课本第97页例1及“做一做”,第99页练习十九第1、2、3题。
学习目标:
1.我会用分数与小数的关系,把小数化成分数。
2.我能应用所学数学知识解决问题的能力。
学习重难点:
小数化分数的方法。
学习过程:
一、导入新课
请大家回忆一下,说说小数的意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?
二、合作探究、检查独学
1.自学例1,小组合作交流
用分数表示:
用小数表示:
这两个结果有什么关系:
2.用自己的话说一说怎样把小数化成分数?应注意什么问题?
①我的想法:
②完成课本97页“自己试一试”三个填空题。
3.小组代表展示、汇报
4.总结升华
5.我能行:“做一做”把下列小数化成分数。
0.4=0.05=0.37=