有理数的混合运算教案北师大版(优质17篇)
教案应该注意教学步骤的合理性,注重知识的逐步展开和巩固。教案的编写还需要合理利用教学资源,丰富教学形式,提高教学效果。以下是小编为大家收集的教案范例,供大家参考和借鉴。
有理数的混合运算教案北师大版篇一
1、要求学生理解加减混合运算统一为加法运算的意义。
2、能初步掌握有关有理数的加减混合运算。
重点:如何更准确地把加减混合运算统一成加法。
难点:将一个加减混合运算式写成省略加号的和的形式。
一、知识导向:
本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。
二、新课:
1、知识基础:
其一:有理数的加法法则;
其二:有理数的减法法则。
其三:“+”、“-”在不同情形的意义(运算符号及性质符号)
2、知识形成:
(引例)计算:
根据减法法则,按照运算顺序,有:
原式
在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:
这个式子仍看作和式,有两种读法,
按性质符号:读作“负8、正10、负6、负4的和”
按运算意义:读作“负8加上10减去6减去4”
例:把写成省略加号的和的形式,并把它读出来(两种读法)。
例:按运算顺序直接计算:
三、巩固训练:
p46.1、2
四、知识小结:
本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。
五、家庭作业:
p471、23
六、每日预题:
如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?
有理数的混合运算教案北师大版篇二
一、选择题(共10题)。
1.下列关于有理数的加法说法错误的是()。
a.同号两数相加,取相同的符号,并把绝对值相加。
b.异号两数相加,绝对值相等时和为0。
c.互为相反数的两数相加得0。
d.绝对值不等时,取绝对值较小的数的符号作为和的符号。
答案:d。
分析:考查有理数的的加法法则。
有理数的混合运算教案北师大版篇三
2.会用计算器进行较繁杂的有理数混合运算.
教学重点。
也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:
先乘方,再乘除,最后加减.如果有括号,先进行括号内的运算.
你会根据有理数的运算顺序计算上面的算式吗?
有理数的混合运算教案北师大版篇四
在计算时要恰当地运用交换律,结合律、分配率可以使计算简便;进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法。
在进行有理数混合运算时同学们经常出错的几点有:(1)符号错误;如(-2)和-2;(2)运算顺序发生错误,如2÷1/3*3=2÷1=2,是错误的;(3)知识理解错误;(4)去括号法则时,注意括号前面的符号,如果是“-”注意括号内都变号。
有理数的混合运算教案北师大版篇五
3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。
学习重难点:
2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
学习过程:
任务一:温故知新。
1、完成课本44页习题2.7的第1、2题,写在作业本上。
有理数的混合运算教案北师大版篇六
学习小组交换批改,发现问题进行交流,比较不同的解法。鼓励学生大胆尝试,通过交流探究,提高学生的思维能力。
练习后由学生自讲思路。
运算法则:先算乘方,再算乘除,最后算加减。
进一步让学生了解运算律的应用可以简化运算。
教学反思:本节课是有理数混合运算的习题课,通过“24点”游戏这个活动,使学生熟练驾驭有理数的基本运算。在课堂上学生看书、讨论、计算,一直在紧张的动脑,这样学生的学习积极性极大的调动起来,不仅使学生理解了知识,增强了能力,而且培养了合作精神,良好的学习习惯,教学效果比较理想。但是活动设计是课本中的一个数学活动设计,在教学过程中,简单的拿来主义,没有进行消化分析,一部分学生一时不知如何进行24点的变式。应设计符合学生心理特点的、有趣的.变式训练,尽可能的将各种运算形式在随机抽取的过程中出现,达到训练的目的。
回顾与反思。
教师巡视并做个别指导。
这节课你有哪些收获?
学生分组练习使学生进一步理解正确运用运算法则和运算律,可以使运算更简便。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。学生尝试小结,梳理知识,自由发表心得,能锻炼学生语言表达能力。
质疑。
问难教师点拨:对本章内容你还有哪些疑惑?学生质疑答疑鼓励积极思考,查漏补缺。
布置。
作业展示问题:。
针对小组收获,互出一题并解答.学生解答可调动不同层次的学生的积极性,进一步起到查漏补缺的作用。
板书设计:。
回顾与反思。
有理数。
相绝数加乘乘运运。
反对轴减除方算算。
数值律顺序。
教学反思:本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和有理数的运算这两个主要内容,这是有理数的基础知识,也是复习的重点.此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力。但是本节教学设计中,没有拔高能力题的设计,所以尖子生有“吃不饱”的现象。
有理数的混合运算教案北师大版篇七
2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力,数学教案-有理数的加减混合运算。
教学建议。
(一)重点、难点分析。
(二)知识结构。
(三)教法建议。
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.。
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。
有理数的混合运算教案北师大版篇八
2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7应变成12+7-5,而不能变成12-7+5。
有理数的混合运算教案北师大版篇九
1、要求学生理解加减混合运算统一为加法运算的意义。
难点:将一个加减混合运算式写成省略加号的和的形式。
一、知识导向:
本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。
二、新课:
1、知识基础:
其三:“+”、“-”在不同情形的意义(运算符号及性质符号)。
2、知识形成:
(引例)计算:
根据减法法则,按照运算顺序,有:
原式。
在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:
这个式子仍看作和式,有两种读法,
按性质符号:读作“负8、正10、负6、负4的和”
按运算意义:读作“负8加上10减去6减去4”
例:把写成省略加号的和的形式,并把它读出来(两种读法)。
例:按运算顺序直接计算:
三、巩固训练:
p46.1、2。
四、知识小结:
本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。
五、家庭作业:
p471、23。
六、每日预题:
有理数的混合运算教案北师大版篇十
1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化.
(二)能力训练点。
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点。
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点。
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导。
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.
2.学生写法:练习寻找简单的一般性的方法练习巩固.
三、重点、难点、疑点及解决办法。
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排。
1课时。
五、教具学具准备。
投影仪或电脑、自制胶片.
六、师生互动活动设计。
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤。
(一)创设情境,复习引入。
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7.
师:(1)读出这两个算式.
(2)+、-读作什么?是哪种符号?
+、-又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
有理数的混合运算教案北师大版篇十一
——24点游戏。
上课学校:高桥-东陆学校执教者:丁迎华班级:预备2班。
地点:预备2班时间:3月16日。
一、背景分析:
1.学情分析:考虑到预备班的学生年龄偏小,而且由于数学学科的特点,比较枯燥,特在教学中安排了一节24点游戏内容,以提高学生的学习兴趣,发挥学生的积极性和参与性。
2.教材分析:本节课是在学完有理数这一章之后的研究性阅读材料,可以通过本节课的学习旨在提高学生四则运算的速度和心算的能力。
教学目标:
1.熟练掌握运算律、提高四则运算的速度和心算的能力;
2.培养学习数学的兴趣;
3.通过合作解决新的问题。
二、教学重点、难点:
1.运算速度和心算能力;
2.培养合作精神;
3.体会游戏规则的变化其实是由数的范围发生了变化。
三、教学设计:
二期课改的理念是“以学生发展为本”,充分发挥学生的主观能动性,积极参与课堂活动,在教学过程中,教师要充分发挥情感因素在教学中的作用,与学生建立平等合作的关系,确立学生在学习中的主体地位。特别是在数学教学中,由于数学学科的逻辑性和思维性很强,学习数学对于学生来说感到非常的枯燥、乏味,学生只是为了学而学,没有主动学习的兴趣,所以在新教材的编排里,编入了24点游戏一节阅读材料,因此我在上完有理数以后,利用24点游戏,通过与数的计算有关的游戏,学会从生活和游戏中体验数学,感悟数学,感受数学美,培养喜欢数学的情感,从而激发学生的学习兴趣和团队合作、参与竞争等能力。
四、教学过程:
1.拿出教具,扑克牌,引出课题。
2.说出24点游戏规则。
3.电脑随机选择8组数据,在这期间可以考察学生对运算律和运算顺序的熟练程度。
4.教师给出1,5,5,5四个数,给出新的法则,引进分数。
5.教师继续给出新的法则,引进负数。
6.学生小结。
7.课后思考。
有理数的混合运算教案北师大版篇十二
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和。
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4、先把正数与负数分别相加,可以使运算简便。
5、在交换加数的位置时,要连同前面的符号一起交换。如。
12-5+7应变成12+7-5,而不能变成12-7+5。
教学设计示例一。
一、素质目标。
(一)知识教学点。
1.了解:代数和的概念.。
2.理解:有理数加减法可以互相转化.。
(二)能力训练点。
培养学生的口头表达能力及计算的准确能力.。
(三)德育渗透点。
(四)美育渗透点。
有理数的混合运算教案北师大版篇十三
3.注意培养学生的运算能力。
重点:.
难点:准确地掌握有理数的运算顺序和运算中的符号问题。
1.计算(五分钟练习):
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5).
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行。
:(1)运算顺序如何?
(2)符号如何?
:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相同。
:运算顺序如何确定?
注意结果中的负号不能丢。
计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减。
计算:
(1)(-3)×(-5)2;(2)[(-3)×(-5)]2;
(3)(-3)2-(-6);(4)(-4×32)-(-4×3)2.
:运算顺序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75.
(2)[(-3)×(-5)]2=(15)2=225.
(3)(-3)2-(-6)=9-(-6)=9+6=15.
(4)(-4×32)-(-4×3)2。
=(-4×9)-(-12)2。
=-180.
:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方。(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减。
计算:
(1)-72;(2)(-7)2;(3)-(-7)2;
(7)(-8÷23)-(-8÷2)3.
计算。
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4.
:(1)存在哪几级运算?
(2)运算顺序如何确定?
=4-(-25)×(-1)+87÷(-3)×1(先乘方)。
=-50.(最后相加)。
:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1.
计算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15.
3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号。
计算:
1.先乘方,再乘除,最后加减;
2.同级运算从左到右按顺序运算;
3.若有括号,先小再中最后大,依次计算。
1.计算:
2.计算:
(1)-8+4÷(-2);(2)6-(-12)÷(-3);
(3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);
3.计算:
4.计算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5.
5*.计算(题中的字母均为自然数):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)[(-2)4+(-4)2·(-1)7]2m·(53+35).
有理数的混合运算教案北师大版篇十四
教学目标:
1、使学生理解并掌握不含括号的混合式题的运算顺序,自主、熟练的计算含有乘除混合的三步计算式题.
2、培养学生的学习兴趣,养成认真审题、仔细验算的良好习惯。
教学重点:
使学生掌握混合运算顺序,能熟练地进行计算。
教学难点:
帮助学生利用知识的迁移,探索混合运算的运算顺序。
教学过程:
一、口算引入
1、计算:140×3+280 400—400÷8
以上各式中都含有哪些运算?它们的运算顺序是什么?
使学生明确:当只有加减或乘除法时,按从左到右的顺序计算;当既有乘除法又有加减法,要先算乘法或除法,再算加法或减法。
学生练习,指名板演。
2、今天我们继续学习混和运算。
板书:不带括号的混和运算。
二、教学新课
1、学习例题。
学生列式:12×3+15×4或15×4+12×3
(2)学生分小组讨论上述问题并汇报。
(3)师:在没有括号的混合运算中应该先算乘除,后算加减。学生在书上完成。
2、试一试:150+120÷6×5。
学生在书上独立完成,指明说一说是怎样计算的?
通过刚才两道混合运算的解答,你能总结一下没有括号的三步混合运算顺序是怎样的吗? 使学生明确:在一道既有乘除法又有加减法的混合式题里,应先算乘除法,后算加减法;乘除连在一起,或加减连在一起,要从左往右依次计算。
三、巩固练习
1、“想想做做”1。
学生独立完成,展示个别学生作业。
注意强调运算顺序和书写格式.要明确:在没有括号的三步混合运算式题里,要先算乘除后算加减法。
2、说出运算顺序,并口算出计算结果。
48÷4+2×4
48÷4+20÷4
48-4+2×4
48+4+2×4
3、“想想做做”5。
学生先列式解答,再交流、汇报思考过程和解题方法。
四、课堂小结
五、布置作业
“想想做做”6。
有理数的混合运算教案北师大版篇十五
1.在解决现实问题的过程中,经历抽象出混合算式的过程,理解混合运算(两步计算)的意义和运算顺序,体会混合运算与生活的密切联系。2.能初步学会借助直观图等方式,分析、表示数量关系,会用分步列式或者综合列式解决实际问题,感受解决问题策略的多样性,能有条理地叙述自己的思考过程,逐步积累、提高解决问题的经验和能力。
3.体会“先乘除后加减”的合理性以及小括号在混合运算中的作用,掌握混合运算的运算顺序,能进行简单的整数混合运算(两步),激发运用数学知识解决实际问题的兴趣。
第1课时小熊购物(一)(乘加、乘减混合运算及其应用)
教学目标:
1.结合分步解决“小熊购物”问题的探索过程,感受画图策略的意义和价值,体验混合运算中“先算乘法、再算加法”的合理性。2.会运用“先算乘法、再算加法”的运算顺序正确的进行计算。
3.初步尝试借助直观图表示乘加、乘减等实际问题的数量关系,发展分析和解决问题的能力。教学重点:
掌握混合运算的运算顺序并能正确进行计算。教学难点:
理解混合运算算式表示的实际意义和运算顺序的合理性。教学准备:课件、食物面包、饼干、饮料的图片。
1
2
板书设计:
小熊购物分步:3×4=12(元)综合:3×4+6
12+6=18(元)=12+6
(元)先算乘法,再算加法
第2课时小熊购物(二)(乘加、乘减混合运算及其应用)
教学目标:
1.结合分步解决“小熊购物”问题的探索过程,感受画图策略的意义和价值,体验混合运算中“先算乘法、再算加法”的合理性。2.会运用“先算乘法、再算加法”的运算顺序正确的进行计算。
3.初步尝试借助直观图表示乘加、乘减等实际问题的数量关系,发展分析和解决问题的能力。教学重点:
掌握混合运算的运算顺序并能正确进行计算。教学难点:
理解混合运算算式表示的实际意义和运算顺序的合理性。
3
教学准备:课件、食物面包、饼干、饮料的图片。
4
板书设计:
小熊购物(二)先算乘法,再算加减法
第3课时买文具(一)(除加、除减混合运算及其应用)
教学目标:
1结合解决“买文具”问题的探索过程,感受画图策略的意义和价值,体验“先算除法,再算加减法”解决两步运算问题的合理性。2.理解并掌握除加、除减混合运算的运算顺序,能正确进行计算。
3.进一步学习借助直观图分析数量关系,会解决除加、除减混合运算的实际问题,发展解决问题的能力。教学重点:
5
有理数的混合运算教案北师大版篇十六
在反思中教师可以找到自己的不足,在反思中可以充实自己,下面是小编为大家收集的关于《混合运算》教学反思,希望能够帮到您!
“数学源于生活”。尽管运算顺序是一定的,但在课堂上我还是再现了学生熟悉的生活情境:到文具店购买文具,从中自然地提出数学问题,把解决实际问题与计算教学紧密结合,使学生体会数学与生活的联系,有利于激发学生的学习兴趣,也便于学生积极调动已有的生活经验和知识解决问题。情境的创设也能促进学生对运算顺序的理解。
教学新知时,引导学生结合现实素材,借助生活经验,通过解决“小军买3本笔记本和一个书包一共要多少元”、“小晴买2盒水彩笔,付出50元,应找回多少元”这两个问题,让学生亲历学习过程,主动地接受新知。使学生在解决实际问题中初步体会,逐渐学会,学习思辨,掌握技能。
学习知识是为了运用这些知识解决生活中的问题,从而体会的数学和生活的联系,以及数学在生活中的价值。在这一环节中,我设计了一系列由易到难的题目。首先让学生运用所学的运算顺序算一算,再出六道题其中有两道是以前学过的同级运算让学生辩一辩,最后出三道改错题让学生改一改。学生在这一系列的练习中不仅巩固了所学的知识,同时也体会到了这些知识的价值。
学生通过自主探索获得了新知,再通过交流评价引导学生对所学知识有一个整体的把握。在这一环节主要引导学生交流一下你有什么收获。最后利用智慧岛对今天所学的知识进行一个适度的拓展。
通过这节课的教学,我产生了几个困惑:
2、学生列出20+(3×5)时,如何解释这里不需要小括号?
核心提示:本节课采用情境串教学,设计了大量的游戏性、活动性的教学环节,符合儿童天性好玩、好动的特点,能激发学生浓厚的学习兴趣与高涨的学习热情,引导学生主动地学习。 1、关注学生的生活经验和知识背景 课堂教学活动建立在学生已有的知识经验基础之上,由小红回姥姥家的实际问题引入,这样贴近生活,既使学生感受到生活离不...
本节课采用情境串教学,设计了大量的游戏性、活动性的教学环节,符合儿童天性好玩、好动的特点,能激发学生浓厚的学习兴趣与高涨的学习热情,引导学生主动地学习。
课堂教学活动建立在学生已有的知识经验基础之上,由小红回姥姥家的实际问题引入,这样贴近生活,既使学生感受到生活离不开数学,数学源于生活,又使他们对数学产生浓厚的兴趣和亲切感。
动手实践、自主探索和合作交流是学生学习数学的重要方式。在学生独立思考、自主探索的基础上,教师组织学生进行合作交流,是本节课的重点环节。教师相信、鼓励学生,放手让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己或正确或错误的思维过程。
加强估算教学,有利于让学生感受解决问题策略的多样化与灵活性,可以保证让每个学生在掌握一般方法的前提下,让全体学生得到发展。
4、结合教学内容,不失时机地渗透德育,真正做到既教书又育人,实现三维目标的有机融合。
有理数的混合运算教案北师大版篇十七
在本单元之前,学生已经基本掌握了整数的四则计算,能进行连加、连减、加减混合以及连乘、连除、乘除混合等同级的两步运算,还初步接触过乘加、乘减。本单元教学混合运算,内容包括四则混合运算顺序和列综合算式解答两步计算的实际问题,这两部分内容是相辅相成、有机结合的。
计算工具在当今社会和现实生活中已经相当普及了,人们已经不大需要使用纸笔进行大数目、多步数的计算。但是,四则计算的原理与方法、混合运算的顺序、步骤仍然是基础教育阶段的重要教学内容。因为这些知识及其思想方法是学生继续学习其他数学知识的基础,是更好地使用计算工具的前提,也是发展数学思考、提高学生智力水平的载体。
整数四则混合运算以两步为主,不超过三步,本单元教学的混合运算都只有两步计算。教材按算式中含有的运算,把运算顺序的教学分成三段进行:先教学算式中有乘法和加(减)法的,再教学算式中有除法和加(减)法的,最后教学算式中有小括号的。
1 结合现实素材,让学生体会运算顺序。运算顺序是进行四则混合运算时应该遵循的规则。为什么在有乘(除)法和加(减)法的混合运算中要先算乘(除)法?为什么要先算小括号里的运算?教材让学生结合现实的素材体会这些运算顺序的合理性,这就是把运算顺序的教学和列综合算式解决实际问题的教学结合在一起的主要原因。在教学运算顺序时,教材在三段内容里设计了不同的教学方法。
(1) 第30页例题的教学方法是先唤醒已有经验,再扩大外延,在同一类型的多种具体现象中抽取共同的特征,发现的规律就是教学的运算顺序。例题先从“买3本笔记本和1个书包一共用去多少钱”这个实际问题列出综合算式5×3+20,这个算式是学生已经接触过的“乘加”,他们已经有“先算乘法”的经验,教材及时指导学生用递等式表示计算的步骤。然后,例题从“买2盒水彩笔,付出50元,应找回多少元”这个实际问题列出算式50-18×2,让学生结合这个实际问题要先算2盒水彩笔的钱理解这个算式要先算乘法。最后,教材在上面两个实际问题和两个综合算式里归纳“算式中有乘法和加、减法,要先算乘法”。在这段内容里,运算顺序是教学的重点,教材结合解决实际问题有效地突出了运算顺序;用递等式表达计算步骤是教学的难点,教材在例题里画出蓝线引导学生把各步计算的结果写在它的上面,从而知道第一步计算的得数应该写在什么位置。“想想做做”围绕按照运算顺序进行混合运算和写出计算步骤这两个主要内容而设计,第1、2题“说一说每一题应先算什么”以及改错练习,都能有效地帮助学生掌握运算顺序。第4题把乘加、乘减分别与加减混合、乘除混合设计成题组,学生边计算边比较,温故而知新。把乘加、加乘安排在一起的题组,再次鲜明地突出了运算顺序。
(2) 第32页的例题仍然按“解决实际问题——计算数学式子——概括运算顺序”的线索编写,但给学生的探索空间比前面的例题大得多。教材采用和前面相似的教学线索,给学生留出运用已有的数学活动经验的空间,有利于学生通过自主探索获得数学知识。首先是教材提出买1枝钢笔和1个订书机一共要多少钱的问题后,让学生独立地列综合算式。他们可能列式80÷10+12,也可能列式12+80÷10。列出的两个算式虽然不完全相同,但都要先算1枝钢笔的价钱。其次是教材让学生独立地计算列出的综合算式,按照自己的计算步骤细致地算一遍,在计算和比较这两个算式中能看到相同的运算顺序。再次是让学生列综合算式解决1盒水彩笔比1枝钢笔贵多少元这个问题,体会在有除法也有减法时的运算顺序。这样,运算顺序就不再是机械告诉学生的,而是学生在学习活动中自己领悟的;运算顺序就不再是对学生的硬性规定,而是解决问题的需要。学生已经初步有了用递等式表达运算顺序的经验,例题没有在综合算式中加蓝线指导第一步计算得到的商的书写位置。教学时要让学生看到,列出的两个综合算式虽然都是先算除法,但由于除法在综合算式中的位置不同,所以商应写的位置也不同。
(3) 第34页的例题凸现新的矛盾教学小括号,在了解小括号的作用的基础上,知道含有小括号的算式的运算顺序。在列综合算式时出现了一个矛盾:解决实际问题要先算买了1个书包后还剩下多少钱(即先算综合算式里的减法),而算式50-20÷5应该先算除法(已有的运算顺序)。怎样解决这个矛盾?教材告诉学生:这里要先算减法,综合算式里必须添上小括号。这句话既引出了小括号,又阐述了小括号的作用。因此,算式中有括号时,应该先算括号里的运算。在“想想做做”里设计了多种形式的练习,第1题着重练习算式中有括号,应先算括号里的运算。第2题汇集了各种两步运算的题,有括号的和没有括号的,只有同级运算的和含有两级运算的,这些题综合在一起通过计算和比较,帮助学生全面掌握运算顺序。而且把6小题分成三组,同组两小题的差别只是有或没有小括号,通过计算和比较能使学生进一步体会加上或去掉小括号都改变了原来的运算顺序,最终改变了算式的结果。第7题通过对同一组的两道题的算一算和比一比,让学生发现减法的一个性质,为以后教学简便运算作铺垫。
2 在教学运算顺序的同时,教学列综合算式解决实际问题。
第一学段里的两步计算实际问题都是分步列式解答的,本单元教学列综合算式解答这些实际问题。在列分步算式解答两步计算的问题时,把这个问题分解成两个连续的简单问题,并分别列出两个简单问题的算式。列两步计算问题的综合算式,还要进一步在头脑中把两个简单问题和算式组织在一起,学生的思维在“组织在一起”的过程中得到发展,解决问题的能力在列综合算式的过程中得到提高。教材在教学综合算式时作了下面的安排。
(1) 初步体会。
第30页例题的第(1)小题,先让学生列分步式求“3本笔记本和1个书包一共用去多少钱”,然后告诉学生:把两个算式合在一起列成的是综合算式5×3+20。这是学生首次接触综合算式,他们观察教材列出的综合算式,能初步知道综合算式是分步算式合成的,初步体会到综合算式解答实际问题比列分步式要稍快一些。例题的第(2)小题指导学生联系已有的解决实际问题的经验,试着列综合算式。
教材让学生体会列综合算式的方法,可以先列出分步算式,再合并成综合算式,也可以直接列综合算式。不论采用哪种方法,都要依据解决问题的数量关系。第(1)小题是把3本笔记本的钱和1个书包的钱相加,第(2)小题是从50元里去掉2盒水彩笔的钱。“想想做做”里要解决的问题也是买两样东西应付多少钱或应找回多少钱,这些问题的数量关系学生比较熟悉,列综合算式不会有多大困难。
(2) 逐渐学会。
第32页的例题、“试一试”和“想想做做”里的实际问题与前面教学的内容相比,有两点不同。一是解决的问题不限于求总和与求剩余,还有求相差数(贵多少、便宜多少);二是要求不列分步算式,直接列综合算式。教材突出列综合算式时要依据问题的数量关系,引导学生逐渐养成先想解决问题的数量关系,再列综合算式的习惯。如例题里两个小卡通与学生的对话,讲的就是实际问题的数量关系,也是列综合算式时的依据。
(3) 学习思辨。
第34页例题的解题思路是先算出买书包后剩下的钱,再算剩下的钱还可以买多少本笔记本,解决问题的数量关系是剩下的钱除以笔记本的单价。在算式50-20÷ 5里,有减法也有除法,应该先算20÷5。为了先算这个算式里的减法,需要在算式里添上括号。这里就有对算式50-20÷5进行思辨的活动,在算式里添上括号是思辨的结果。类似第35页第5题要先算会议室的面积是多少平方米,再算平均每平方米铺多少块地砖。对算式384÷12×8进行思辨,就知道应该为12×8加上括号。对列出的综合算式进行思辨,看算式的运算顺序是否和解决实际问题的步骤一致,能及时发现列式中的错误,保障问题正确解决。
第36页第10题要求学生用不同的方法解答“应找回多少元”这个问题。这道题让学生在现实的问题情境中,再次体会减法的性质。
本单元教学列综合算式解答两步计算的实际问题,主要目的是让学生体会运算顺序。教学本单元后,学生解答两步计算实际问题可以列综合算式,也可以列分步算式,不要作统一规定。
另外,教材里还有部分实际问题要求学生用不同的方法解答,主要目的是锻炼思维。一是培养学生思维的开放性,体会条件信息里的联系是多向的。如第38页第10题里,从5个乒乓球装一袋和每4袋装一盒可以知道一盒里有5×4=20(个)乒乓球;从5个乒乓球装一袋和一共有800个乒乓球可以知道一共装800÷5=160(袋)。二是培养学生思维的连贯性。当求得一盒装20个乒乓球后,就可以通过800÷20继续求一共装多少盒;当求得一共装160袋后,就可以通过160÷4继续求一共装多少盒。对用不同方法解答实际问题,在教学中要适当地控制,不要频繁地提出一题多解的要求,要允许部分有困难的学生逐步达到这个要求。