数据中国心得体会(模板18篇)
心得体会是对自己在学习或工作中所获得经验和感悟的总结。在写心得体会时,可以借鉴他人的经验和见解,但要注意保持自己的独立思考和独特观点。以下是小编为大家准备的一些心得体会范文,希望能给大家一些借鉴和启发。通过阅读这些范文,你可以了解到别人的经验和教训,可以在自己的学习和工作中进行参考。当然,这些范文只是供您参考,具体的心得体会要根据自己的实际情况和经历来写,不能生搬硬套。希望大家在撰写心得体会时能够充分发挥自己的思考和创造能力,写出有深度、有价值的心得体会。给大家送上这些范文,希望对大家有所帮助,一起来看看吧。
数据中国心得体会篇一
在信息时代的今天,数据已经成为我们生活中不可缺少的一部分。而对于数据的准确性和可信度也成为人们越来越关注的问题。为了测试和验证系统的性能,人们经常需要使用一些假数据来模拟真实情况。而我在进行假数据处理的过程中,不仅学到了很多有关数据的知识,也深刻体会到了假数据的重要性。下面将以我在假数据处理过程中的体会为切入点,进行阐述。
首先,假数据的准备是至关重要的。在处理假数据时,准备工作不可忽视。首先需要明确假数据的用途和目的,然后确定所需的字段和数据类型。为了模拟真实情况,假数据应该具有一定的逻辑关系和合理性。例如,在模拟一个用户注册系统时,需要生成一些合法的用户名、密码和手机号码等信息。如果假数据的准备不充分,可能会导致测试结果与实际使用情况差异较大,进而影响系统的性能和稳定性。
其次,假数据的生成要考虑数据分布的特点。在大数据时代,数据的分布特点是非常重要的。假数据的生成应该符合实际数据的分布情况,以保持模拟效果的准确性。例如,对于一组身高数据,正常情况下应该呈现出一个正态分布的特点。在生成假数据时,我们可以使用一些数学方法和算法来模拟正态分布,以确保生成的假数据能够反映出真实数据的特点。另外,还需要考虑到异常数据的生成,以测试系统对异常情况的处理能力。
第三,假数据需要具备一定的随机性。随机是指数据生成的不可预测性和不重复性。为了模拟真实情况,假数据的生成应该具备一定的随机性。在现实世界中,很少有一成不变的数据,所以假数据也应该能够反映出这一特点。为了达到这个目的,我们可以使用随机数生成器来生成随机的数据。同时,还需要考虑到数据的相互依赖关系,以确保生成的假数据之间的关系具有一定的随机性。
第四,假数据的质量和准确性是评估数据模型的关键指标。在进行数据处理和模型验证时,数据的质量和准确性是非常重要的。无论是真实数据还是假数据,都应该保持数据的质量和准确性。在生成假数据的过程中,我们应该对数据进行合理性校验和数据去重。同时,还需要注意数据的完整性,避免生成不完整或重复的数据。只有保证了数据的质量和准确性,才能更好地评估和验证系统的性能和稳定性。
最后,假数据的使用应当谨慎和合理。假数据只是一个工具,它可以用来帮助我们测试和验证系统的性能,但并不代表现实情况。因此,在使用假数据时,应当谨慎对待。首先需要明确假数据的用途和限制,避免过度依赖假数据而忽视真实数据的特点。其次,在进行数据分析和决策时,应当将假数据与真实数据结合起来进行分析和判断。只有在合理的情况下使用假数据,才能更好地指导实际的决策和行动。
综上所述,假数据在测试和验证系统性能时发挥着非常重要的作用。通过对假数据的准备、生成、随机性、质量和使用等方面的探讨和思考,我深刻体会到了假数据的重要性。只有在合理的情况下使用假数据,并结合真实数据进行分析和决策,我们才能更加准确地了解和评估系统的性能和稳定性。因此,在进行假数据处理时,我们应当注重假数据的准备和生成,同时也要注意数据的质量和准确性,以确保得到可靠的测试和验证结果。
数据中国心得体会篇二
随着互联网技术的快速发展,人们开始关注云数据的使用和管理。云数据是以无形的形式储存在网络中的数据,其便捷性和安全性使之成为现代生活中不可或缺的一部分。在我使用云数据的过程中,我汲取了一些宝贵的心得体会。下面将从便捷性、安全性、隐私保护、共享与合作以及未来发展五个方面来探讨我的云数据心得体会。
首先,云数据给我们带来了极大的便捷性。通过云数据,我们可以随时随地访问我们的文件和数据,不再需要繁琐的传输和存储过程。无论是在家中、办公室还是旅途中,只需连接互联网,我们就能轻松获取和管理我们的数据。这个便利性不仅提高了我们的工作效率,还给我们的生活带来了极大的方便。无论是查看电影、听音乐、阅读书籍,云数据的运用让我们的娱乐生活更加多样化和自由化。
其次,云数据的安全性备受关注。毋庸置疑,个人文件和数据的安全性是我们最为关注的问题之一。好在云数据提供了高度的安全保障,采取了多层级的密码加密和访问控制措施,确保个人数据不受到未授权访问和使用。此外,云数据还备份于多个服务器,即便单个服务器出现问题,我们仍然能够轻松恢复数据。云数据供应商也时刻关注网络安全的最新动态,不断提升技术,以确保我们的数据始终得到最佳的保护。
第三,隐私保护也是云数据的一大关注点。在我们使用云数据的过程中,我们可能面临着数据泄露和隐私侵犯的风险。为了保护我们的隐私,云数据供应商注重用户身份验证与访问控制,并提供了多种隐私保护设置来确保个人数据不被滥用。同时,云数据供应商也会明确说明他们对于个人信息的收集和使用范围,以增加用户对于隐私保护的信任。作为用户,我们应该选择知名、信赖的云数据供应商,同时也要对自己的隐私做好监控和保护。
第四,云数据的共享与合作也是其令人称道之处。通过云数据,我们可以方便地与他人共享和协作。比如在工作中,我们可以和同事们共享文件和数据,在信息交流和团队合作中起到了重要的作用。通过实时同步和版本管理的功能,我们可以在不同的时间和地点、使用不同的设备访问和编辑同一个文件,各方的修改不会互相冲突,大大提高了工作效率。这种共享与合作的模式使我们更好地协同工作,促进了团队的合作和创新。
最后,云数据的未来发展充满了无限可能。随着技术的不断进步,云数据的存储容量和速度将会不断提升,使得我们能够存储和处理更大量级的数据。同时,云数据也将渗透到更多的领域,如医疗、教育、智能家居等。此外,人工智能和大数据分析也将与云数据相结合,为我们提供更智能化、个性化的服务。云数据的未来发展无疑将对我们的生活和工作产生巨大影响。
总结起来,云数据给我们带来了极大的便捷性和安全性,并在隐私保护、共享与合作以及未来发展等方面都有着积极的作用。然而,我们也要注意隐私保护和安全风险,选择合适的云数据供应商,并合理利用云数据服务。只有这样,我们才能更好地享受云数据的便利,并使其对我们的生活和工作带来更大的帮助。
数据中国心得体会篇三
探寻脱贫攻坚决胜“密码”
2月25日上午,全国脱贫攻坚总结表彰大会在京举行。习近平总书记在会上庄严宣告,现行标准下9899万农村贫困人口全部脱贫,832个贫困县全部摘帽,12.8万个贫困村全部出列,区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹。八年的持续奋斗,党团结带领全国各族人民如期完成了目标任务,脱贫攻坚战役中经历的磨难与考验,凝结的实践和认识,充分展现了中国精神、中国力量、中国担当,必将成为激励我们接续奋斗的不竭动力。
党建引领,制度定盘,风雨无阻推向前。脱贫攻坚是一项涉及到方方面面的伟大工程,不仅需要充分调动全社会力量和资源、即时做出整体性研判和指挥,还需要具有强大的执行力,而保证这一切顺利推进的,正是中国共产党的坚强领导和中国特色社会主义制度的强大支撑。在脱贫攻坚这场大棋局中,党中央坐镇军帐中,因势利导强化资金、人力投入,细化优化各项扶贫政策,五级书记层层联动,建立起各负其责、科学严密的责任体系,一面面党旗在脱贫一线高高飘扬,党建优势转化为脱贫攻坚的合力,为战役的决胜提供了坚强的组织保障。脱贫攻坚目标如期完成,还得益于我国集中力量办大事的制度优势,脱贫事业开展以来,一支支扶贫工作队进驻深山,一个个对口帮扶项目注入活力,在工作中汇集了专项扶贫、行业扶贫、社会扶贫等多方力量,形成万众一心的大扶贫格局,成为脱贫攻坚取得胜利的重要保证。
靶心不偏、把脉症结,绣花功夫暖人心。脱贫攻坚贵在精准,重在精准,成败之举在于精准,在脱贫这场攻坚战中,精准施策一以贯之在脱贫的各项要求中,最大限度保证了扶贫之力落地见效。为实现精准识别,各地通过“建档立卡”这一举措,实现了贫困户数据对接到村到户到人,一户一册、动态更新,使得精准查“账”有据可循,扶贫开发进入“滴灌式”发展阶段。精准帮扶是脱贫攻坚中的关键一环,基于每户致贫原因、脱贫现状、现实需求等存在不同的情况,各地扶贫机关因时因势、因户因人精准施策,针对环境恶劣的偏远落后地区开展易地搬迁扶贫,针对有劳动能力但自己就业无门的贫困户开展产业扶贫和就业扶贫,针对从事种植业生产的贫困户开展电商扶贫……同时,针对每个家庭的就医需求、教育需求开展医疗救助与教育帮扶行动,确保扶贫政策发挥精准效能。同时,各地通过销号管理,严把精准退出关,通过开展“挂牌督战”,层层督查,确保每一户退出贫困户序列的困难家庭经得起时间和实践检验。
破除等靠,智志双提,内生动力管长远。习近平总书记指出,“摆脱贫困,其意义首先在于摆脱意识和思路的‘贫困’”,脱贫致富终究要靠贫困群众自己的辛勤劳动来实现。在脱贫攻坚工作中,各地通过引导贫困群众发展生产、培育务工就业基本技能、出台补贴激励政策、改善贫困家庭子女教育条件等方式,充分调动起贫困群众的积极性、主动性、创造性,助力贫困群众自我发展能力不断提升。各地还通过加强宣传教育,潜移默化改变贫困群众的等靠要思想和畏难情绪,“人穷志不短,脱贫才光荣”“破除等靠要,致富靠双手”等标语的背后体现的是困难群众自立自强的信心与不甘落后的斗志,在脱贫进程中逐步实现了“要我脱贫”到“我要脱贫”的转变,“思想脱贫”成为源头活水,帮助困难群众实现从“等靠要”到“比致富”的转变,真正远离贫穷的困扰。
使命在肩,勤勤恳恳,久久为功出实效。脚上沾满了多少泥土,心中就装满了多少真情,在脱贫攻坚这场硬战的背后,数以万计扶贫工作者在全力支撑着,“一切为了贫困群众对美好生活的期待”,这句话成为他们的责任和目标。不信天不信命、向绝壁上开辟脱贫致富路的毛相林,不畏洪水呼啸、心系贫困群众的扶贫干部黄文秀,一辈子修一条渠的当代愚公黄大发……从黄土高坡到雪域高原,从西北边陲到云贵高原,扶贫干部用实干苦干换来脱贫攻坚的凝聚力和战斗力,他们留下了尚未成年的孩子、搁置了即将步入婚姻殿堂的爱人,减少了回家探望父母的次数,牺牲小家换来大家,用自己的辛苦指数换来贫困群众的幸福指数。这是一场流汗又流血的“战斗”,在工作中,有超过1800人将生命永远定格在了脱贫攻坚征程上,他们以超常规的付出,诠释了共产党人的初心使命。汗渍和血渍记录下扶贫干部们为人民服务的可敬模样,弘扬了他们胸怀大爱、无私无畏的崇高精神,把爱与希望播撒在每个人心中生根发芽,融汇成民族复兴路上取之不尽、用之不竭的强大动能。
数据中国心得体会篇四
中国知网是一个面向全球提供学术信息服务的综合性数据库,拥有众多学术期刊、论文、会议论文、博硕论文等多种学术资源,涵盖了文化、教育、经济、政治、社会等各个领域。通过中国知网,用户可以快速查找、下载、阅读这些学术资源,洞悉最新学术研究动态,了解行业发展趋势和创新思想。
第二段:使用中国知网的体验
在使用中国知网的过程中,我发现它的检索功能非常强大,可以通过关键词、作者、文献类型、时间等多种方式进行检索,而且检索结果还能够进行筛选和排序,让用户能够更快、更准确地找到自己需要的文献。此外,中国知网的文献数量也非常丰富,涉及的领域也非常广泛,让我能够在自己的领域内更全面地了解最新研究进展和学术资讯。总体来说,使用中国知网的过程非常顺畅、快捷,为我的学术研究提供了很大的便利和帮助。
第三段:中国知网在我学术研究中的作用
作为一名研究人员,我一直在使用中国知网进行学术研究,其中最大的作用是帮助我发现最新的研究趋势和热点,了解最新的理论框架、方法和实践案例。此外,中国知网还可以帮助我查找国内外的学术交流会议和展览,结交更多同行学者,分享研究成果和进展。通过中国知网的帮助,我的学术研究不断地迈上新的台阶,得到了更多的认可和支持。
第四段:使用中国知网的建议
尽管中国知网具有很多优点,但在我的使用过程中,我也发现其存在一些不足之处。例如,检索结果的相关性有时候并不太高,甚至会出现大量的重复文献,这给用户带来了很大的不便。此外,在文献下载方面,中国知网也存在一些版权问题,限制了用户的使用范围。因此,我建议中国知网应加强检索算法的优化,提高检索结果的相关性和准确性,同时在版权方面积极探索新的解决方案,让用户能够更便捷、更自由地使用学术资源。
第五段:结论
综上所述,中国知网是一款非常实用、丰富的学术资源平台,其在提供学术研究资讯和支持方面的价值已经得到广泛的认可和推崇。同时,我们也应该看到,它还存在一些不足之处,需要进一步的提升和完善。相信随着系统的不断升级和用户反馈的不断改进,中国知网将会变得更加强大、更加优秀,为广大学术研究者带来更多的价值和帮助。
数据中国心得体会篇五
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏。
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。
问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。
解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)。
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2图一:
图二:
解决办法:解决办法:图2步骤1:从图1到图2后,将目标下的“服务器”成自己的sqlserver服务器名称行sqlservermanagementstudio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了。
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
理大数据的规模。大数据进修学习内容模板:
linux安装,文件系统,系统性能分析hadoop学习原理。
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。
总结。
大数据时代是信息化社会发展必然趋势在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中随着新兴技术的发展与互联网底层技术的革新数据正在呈指数级增长所有数据的产生形式都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。
三、
结语。
数据中国心得体会篇六
云数据是当今信息科技中的重要一环,随着云计算技术的不断发展,对于个人用户和企业来说,云数据已经变得无处不在。云数据给我们的生活带来了很多便利和机遇,通过云数据的存储和处理,我们可以随时随地获取我们所需的信息,提高了我们的工作效率,也为企业的发展提供了无限可能。在使用云数据的过程中,我深深感受到了它所带来的种种好处,并得出了以下几点心得体会。
首先,云数据的存储和备份功能非常强大。传统的数据存储往往需要我们花费大量的人力和物力来进行维护和管理,同时还需要考虑到数据安全的问题。而云存储则解决了这些问题,只需要一个互联网连接就可以实现数据的存储和备份。无论是个人用户还是企业,只要有云数据的支持,数据的安全性就可以得到更好的保障。通过云数据的存储和备份,我们可以在任何时间、任何地点访问我们的数据,并且不会受到设备损坏、数据丢失等问题的困扰。
其次,云数据为我们提供了更多的合作和分享机会。云数据的特点之一就是可以实现多人同时编辑、共享文件和信息。这为个人用户和企业带来了更高效的合作和沟通方式。无论是开展团队项目还是远程办公,云数据都提供了便利的条件。通过云数据的支持,我们可以随时与团队成员进行信息交流和文件传送,避免了传统的邮件发送和文件传输的繁琐过程。同时,云数据还可以让我们轻松地与朋友、家人分享照片、视频等文件,增加了生活的乐趣。
此外,云数据的智能化分析功能为个人用户和企业的决策提供了有力的支持。云数据不仅可以存储和备份我们的数据,更重要的是它可以对这些数据进行智能化分析,提取出有价值的信息和规律。对于个人用户来说,云数据的智能化分析可以帮助我们更好地了解自己的行为习惯、健康状态等,从而更好地调整自己的生活方式。对于企业来说,云数据的智能化分析可以帮助我们预测市场需求、优化生产流程等,提升企业的竞争力。云数据的智能化分析功能极大地拓展了我们的信息处理和决策能力。
最后,云数据的发展也带来了一些挑战和问题。随着云数据的规模越来越大,数据隐私和安全性成为云数据发展的一个瓶颈。个人用户和企业需要对自己的数据进行更有效的管理和保护,以防止数据泄漏和滥用的风险。同时,云数据也需要提供更加友好和便捷的操作界面,让用户更加方便地使用和管理自己的数据。对于企业来说,云数据的数据分析和挖掘能力也需要不断提升,以满足企业更高级别的信息处理需求。
综上所述,云数据的兴起和发展给我们的生活带来了极大的变化,同时也为个人用户和企业提供了更多的机会和挑战。通过云数据的存储、备份、合作和智能化分析功能,我们可以更好地管理和利用自己的数据,提高生产力和决策能力。然而,我们也需要面对与云数据相关的一系列问题和挑战,不断探索和创新,使云数据更好地服务于个人用户和企业的需求。
数据中国心得体会篇七
数据是我们生活中无处不在的一部分,它们可以告诉我们关于世界的事实和趋势。无论是在商业领域还是科学研究中,数据都扮演着重要的角色。通过收集和分析数据,我们可以为决策提供依据,预测未来的趋势,并发现隐藏在表面之下的问题和机会。然而,要正确地理解和使用数据,并从中获得有价值的信息,需要具备一定的技能和经验。
第二段:选择正确的数据。
在看数据之前,首先要确保选择正确的数据源。数据的质量和准确性直接影响着分析的结果。因此,我们应该选择来自可靠和可信赖的来源的数据,尽量避免依赖于没有经过验证的数据。此外,了解数据的背景和收集方法也非常重要,因为这将有助于我们理解数据的局限性和任何潜在的偏见。
第三段:数据的可视化和解读。
将数据转化为可视化的形式能够更好地帮助我们理解和解读数据。通过图表、图像和其他可视化工具,我们可以更清晰地看到数据之间的关联和趋势。同时,我们也应该学会阅读和解读这些图表,以获得更深入的洞察力。例如,在柱状图中,我们可以比较不同类别之间的差异;在趋势图中,我们可以分析随时间的变化等。通过这种方式,我们能够更好地理解数据,从而做出明智的决策。
第四段:数据的潜在陷阱。
尽管数据可以为我们提供有价值的信息,但我们也必须注意数据背后的潜在陷阱。首先,数据可能会被误解或被用来支持错误的观点。我们应该保持警惕,并避免从数据中得出太过草率的结论。其次,数据的选择和解释也可能受到个人或机构的偏见影响。因此,我们应该保持独立的思考,并尽量获取多方面的视角。最后,数据分析也有可能被过度依赖,而忽视了其他因素的影响。数据只是决策的一个补充,而不是唯一的决策依据。
第五段:数据的应用和未来发展。
随着技术的发展和数据的大规模产生,数据分析的应用也变得越来越广泛。无论是在商业、医疗、金融还是社交媒体等领域,数据分析已经成为推动创新和发展的重要工具。未来,我们可以预见数据分析将继续深入我们的生活,并对我们的决策产生更大的影响。因此,我们应该继续学习和了解数据分析的最新趋势和技术,以便更好地应用数据,做出更明智的决策。
总结:通过正确选择数据源、适当的可视化和解读,以及警惕数据的潜在陷阱,数据分析可以为我们提供有价值的信息和洞察力。对数据的正确使用和理解是我们在信息时代中进行决策和创新的必要技能。随着技术的进一步发展,数据分析将继续在各个领域中发挥重要作用。
数据中国心得体会篇八
随着云计算和物联网的日渐普及,大数据逐渐成为各行各业的核心资源。然而,海量的数据需要采取一些有效措施来处理和分析,以便提高数据质量和精度。由此,数据预处理成为数据挖掘中必不可少的环节。在这篇文章中,我将分享一些在大数据预处理方面的心得体会,希望能够帮助读者更好地应对这一挑战。
第二段:数据预处理的重要性
作为数据挖掘的第一步,预处理的作用不能被忽视。一方面,在真实世界中采集的数据往往不够完整和准确,需要通过数据预处理来清理和过滤;另一方面,数据预处理还可以通过特征选取、数据变换和数据采样等方式,将原始数据转化为更符合建模需求的格式,从而提高建模的精度和效率。
第三段:常用的数据预处理方法
数据预处理的方法有很多,要根据不同的数据情况和建模目的来选择适当的方法。在我实际工作中,用到比较多的包括数据清理、数据变换和离散化等方法。其中,数据清理主要包括异常值处理、缺失值填充和重复值删除等;数据变换主要包括归一化、标准化和主成分分析等;而离散化则可以将连续值离散化为有限个数的区间值,方便后续分类和聚类等操作。
第四段:实践中的应用
虽然看起来理论很简单,但在实践中往往遇到各种各样的问题。比如,有时候需要自己编写一些脚本来自动化数据预处理的过程。而这需要我们对数据的文件格式、数据类型和编程技巧都非常熟悉。此外,在实际数据处理中,还需要经常性地检查和验证处理结果,确保数据质量达到预期。
第五段:总结
综上所述,数据预处理是数据挖掘中非常重要的一步,它可以提高数据质量、加快建模速度和提升建模效果。在实际应用中,我们需要结合具体业务情况和数据特征来选择适当的预处理方法,同时也需要不断总结经验,提高处理效率和精度。总之,数据预处理是数据挖掘中的一道不可或缺的工序,只有通过正确的方式和方法,才能获得可靠和准确的数据信息。
数据中国心得体会篇九
数据库作为信息科学与技术领域的重要组成部分,已经被广泛应用于各行各业。在日常工作中,我有幸接触到了数据库的使用与管理,并深深感受到了它的重要性。在这篇文章中,我将分享我对数据库的心得体会,包括数据库的优势、数据库的应用前景、数据库的管理经验以及如何充分发挥数据库的价值。
首先,数据库作为一种可靠的数据存储方式,具有许多优势。首先,数据库可以高效地存储和管理大量的数据。通过建立适当的数据结构,数据库可以使数据按照一定的规则进行存储,提高数据的检索和处理效率。其次,数据库具有较高的数据安全性。数据库可以通过设置访问权限和加密机制实现对数据的保护,防止数据泄露和非法访问。此外,数据库还可以支持多用户同时访问,并通过并发控制技术保证数据的一致性和完整性。这些优势使数据库成为了现代信息管理与处理的重要工具。
其次,数据库在不同领域有着广阔的应用前景。无论是商业企业、科研院所还是政府部门,都有大量的数据需要被存储、管理和分析。数据库可以帮助这些组织高效地处理和利用这些数据,提供更好的决策支持。例如,在电商行业中,数据库能够存储商品信息、用户购买记录等数据,并为用户提供个性化的推荐服务。在医疗行业中,数据库可以管理患者的病历、医药信息等数据,并辅助医生进行诊断和治疗。因此,数据库在未来的发展中将发挥越来越重要的作用。
然而,尽管数据库具有许多优势和广泛的应用前景,但其管理也是一个不可忽视的问题。在实际的数据库管理中,我学到了一些有关数据库管理的经验。首先,为了保证数据的完整性和一致性,我们应该制定合理的数据库设计和规范的数据录入流程。只有良好的数据库结构和严谨的数据录入过程,才能保证数据的质量。其次,定期对数据库进行备份是非常重要的。备份操作可以帮助我们在意外崩溃或数据丢失时恢复数据,保障数据的安全性。此外,及时进行数据库性能优化也是数据库管理的重要任务。通过分析数据库的使用情况和性能指标,我们可以发现潜在的瓶颈,并进行调整和优化,提高数据库的运行效率。
最后,要充分发挥数据库的价值,我们需要注重数据库的数据分析和挖掘。数据库中积累了大量的数据,如果仅仅用作存储和管理,并未真正发挥其潜能。通过运用数据分析和挖掘技术,我们可以从数据库中挖掘出有价值的信息,并为企业和决策者提供更多的洞察力。例如,在市场竞争激烈的电商行业,通过对用户购买记录进行分析,我们可以了解用户的消费习惯和需求,从而优化产品设计和推广策略。因此,数据分析和挖掘是数据库的重要应用方向,也是提高数据库价值的关键。
综上所述,数据库作为信息管理与处理的重要工具,具有诸多优势和广阔的应用前景。在实际的数据库管理中,我们应该注重数据库设计、规范数据录入流程,并定期进行备份和性能优化。最重要的是,要善于运用数据分析和挖掘技术,充分发挥数据库的价值。随着信息化进程的加速,数据库将越来越重要,我们应该不断学习和探索,为数据库的应用与发展贡献力量。
数据中国心得体会篇十
在现如今这个数据化的时代,数据库成为了各个领域处理信息的重要工具,因此熟练掌握数据库的使用已经成为了程序员和数据分析师的必备技能之一。其中,数据库创建数据表是数据库操作中的一个重要环节,它不仅关系到数据的有效性和信息处理效率,也直接影响到了后续操作的顺利进行。在实际数据库操作中,我深刻体会到了数据表创建的重要性,并通过不断实践总结出了一定的经验和心得,下文将详细介绍。
第二段:明确需求,灵活设计数据表
在创建数据表时,首先需要明确需求,以此为基础来制定数据表的结构和字段。在明确需求时,需要考虑到数据类型、数据精度、数据格式以及数据存储环境等细节问题,这有助于避免后续操作中出现数据冗余以及数据不匹配的问题。同时,需要注意在数据表的设计过程中,灵活设置数据表结构以适应不同的需求场景,这样能够更好地提高数据的应用价值。
第三段:规范字段设置,提高数据表整体性能
在数据表的创建过程中,字段是数据表的核心组成部分之一。因此,在设置字段时,需要尽可能的规范化,严格控制字段的名称、数据类型及数据长度等相关元素,避免数据表出现不必要的重复或者出错,增加数据存储和读取的难度。同时,在设置字段的过程中也要保证不同字段之间之间的关系合理性,保证数据表整体性能的有效提升。
第四段:注重索引设计,促进数据查询效率
在数据表查询的过程中,索引是提高数据查询效率的重要手段之一。因此,在数据库创建数据表时,需要注重索引的设置,合理设置索引字段,提高查询效率。在设置索引的过程中,需要权衡优化效果和额外的存储负担,同时也要注意控制索引的数量和位置,从而提高数据表的整体查询响应速度。
第五段:保持数据表更新,优化数据性能
在实际使用数据库处理数据的过程中,数据会不断变化和更新,因此保持数据表更新也是数据有效性和整体性能的重要保证。在更新数据表时,需要考虑到数据表大小、数据量以及数据复杂度等相关因素,及时优化数据性能,减少存储压力。同时通过数据表的备份和监控,及时发现和处理数据表出错和阻塞等问题,优化数据处理流程,提高数据处理效率。
总结:
总之,数据库创建数据表是数据库操作中的重要环节之一,通过逐步深入的了解数据表创建原理和不断实践总结,我相信可以更好地掌握数据库的操作技能,提高数据查询和处理效率,并在具体的业务中实现更高效的统计分析和决策。因此,在实际的数据管理和分析中,我们需要时刻关注数据的更新和管理,不断完善和优化数据库的运作,提高数据的真实性、完整性和可用性,以实现更好地实现业务目标。
数据中国心得体会篇十一
在当今快速发展的数字时代中,数据已经成为我们日常生活中不可或缺的重要资源。随着数字化和网络化的加速发展,数据不断涌现并迅速成长。数据分析的重要性也愈发凸显。数据部的目的就是收集、整理、分析和利用数据,以为公司提供支持决策和提升效率等方面的服务。在这样的背景下,我在数据部工作的体验让我有了不少心得和感悟。
第二段:学习的重要性。
在数据部工作的过程中,我最深的感受就是学习的重要性。作为一名新人,我必须不断学习和研究各种数据分析工具和技术,以更好地处理和分析数据。我必须了解公司的业务模式和运营策略,以便为公司提供更好的数据分析和业务建议。学习成为了一种必备的天赋和技能,让我在数据分析师的职位上持续发展。在这个过程中,我发现一个秘诀:保持好奇心和对知识的渴望。
第三段:团队协作的重要性。
数据部是一个关键部门,我们的职责是为整个公司提供数据分析服务。团队协作的关键也就显而易见了。只有我们齐心协力才能更好地实现我们的目标。在数据部工作,我学到了团队合作的艺术,这在我的职业生涯中很重要。每个人都应该扮演自己最擅长的角色并为公司和团队的发展做出贡献。在这个过程中,我们需要平衡个人的需要和团队目标,同时在各种困难和挑战中相互支持和鼓励。
第四段:注意细节。
在数据部工作,我们处理的数据非常丰富和复杂。这需要我们非常关注细节和精度,从而对处理和分析数据的质量和结果产生重大影响。我学到了要时刻警惕数据中可能存在的错误和偏差,这帮助我在工作中更加高效和准确地完成任务。我意识到,我们细心地处理和分析数据可能是为公司带来重要而有意义的财务和业务决策的关键。
第五段:持续学习和改进。
最后,我在数据部工作的体验让我认识到,持续学习和改进是必不可少的元素。这不仅包括学习新技术和工具,还包括了不断反省和改进工作流程和业务流程。我们每天都应该总结并且反思工作中存在的问题,以及能够对业务和团队进行改进的方案。这种反思性思维可以不断提高我们工作的效率,同时创造更好的业务和团队成果。
总结:
在数据部的工作经验中,我学到了许多重要的事情,这些能够帮助我更好地处理和分析数据,提高团队合作的效率,提高工作质量和结果。我坚信在不断学习和改进的基础上,我能够在未来持续发展,并在职业生涯中获得更大的成功。
数据中国心得体会篇十二
随着大数据时代的到来,数据成为企业和个人获取信息和分析趋势的主要手段。然而,数据的数量和质量对数据分析的影响不能忽视。因此,在数据分析之前,数据预处理是必须的。数据预处理的目的是为了清理,转换,集成和规范数据,以便数据分析师可以准确地分析和解释数据并做出有效的决策。
二、数据清理
数据清理是数据预处理的第一个步骤,它主要是为了去除数据中的异常,重复,缺失或错误的数据。一方面,这可以帮助分析师得到更干净和准确的数据,另一方面,也可以提高数据分析的效率和可靠性。在我的工作中,我通常使用数据可视化工具和数据分析软件帮助我清理数据。这些工具非常强大,可以自动检测错误和异常数据,同时还提供了人工干预的选项。
三、数据转换
数据转换是数据预处理的第二个步骤,其主要目的是将不规则或不兼容的数据转换为标准的格式。例如,数据集中的日期格式可能不同,需要将它们转换为统一的日期格式。这里,我使用了Python的pandas库来处理更复杂的数据集。此外,我还经常使用Excel公式和宏来转换数据,这些工具非常灵活,可以快速有效地完成工作。
四、数据集成和规范化
数据集成是将多个不同来源的数据集合并成一个整体,以便进行更全面的数据分析。但要注意,数据的集成需要保证数据的一致性和完整性。因此,数据集成时需要规范化数据,消除数据之间的差异。在工作中,我通常使用SQL来集成和规范化数据,这使得数据处理更加高效和精确。
五、总结
数据预处理是数据分析过程中不可或缺的一步。只有经过数据预处理的数据才能够为我们提供准确和可靠的分析结果。数据预处理需要细心和耐心,同时,数据分析师也需要具备丰富的经验和技能。在我的实践中,我发现,学习数据预处理的过程是很有趣和有价值的,我相信随着数据分析的不断发展和应用,数据预处理的作用将越来越受到重视。
数据中国心得体会篇十三
数据表是数据库的核心组成部分,是存储数据的基本单位。在进行数据库设计和开发过程中,创建数据表是必不可少的环节,也是最为重要的一步。成功地创建数据表需要掌握一些技巧和方法,同时也需要一定的经验和心得积累。在我多年的数据库开发工作中,我逐步摸索出了一些创建数据表的心得体会,下面就和大家分享一下。
段落二:需求分析
在创建数据表之前,需要对数据进行需求分析。要根据实际的业务需求和数据的特性来确定数据表的结构,包括数据表的字段、属性、主键、索引等。在分析数据需求时,需要充分考虑数据的一致性、完整性和安全性等因素。同时要注意清理无用的字段和重复的数据,减少数据冗余,提高数据库的性能。
段落三:字段设计
在创建数据表时,字段设计是十分重要的环节。在字段的命名上,应该尽量做到简洁易懂、具有可读性和可维护性。在字段的数据类型和长度上,应该根据数据的类型和大小来选择,避免过大或过小的空间浪费。同时在选择字段的属性时,应该根据实际需求来进行选择,如是否要求唯一、是否允许为空等。在设计主键和外键时,要注意避免冲突和歧义,尽量使用自增长字段或GUID等方式来保证主键的唯一性和完整性。
段落四:索引设置
索引是提高数据库访问和查询效率的关键手段之一。在创建数据表时,需要根据数据的分布情况和查询条件来设定索引。在选择索引字段时,应该选择频繁使用和高选择性的字段,同时要注意避免创建过多的索引,因为过多的索引会导致数据库性能降低和空间浪费等问题。在选择索引类型时,应该根据实际需求来选择,如B-树索引、Hash索引等。
段落五:优化调试
创建数据表完成后,需要进行优化调试和性能测试。在数据表创建过程中,应该注意不要将多个表合并到一起,尽量减少跨表关联操作和多表联合查询。在SQL语句的编写上,应该充分利用优化工具和索引功能,避免使用过于复杂和低效的SQL语句。在进行性能测试时,需要模拟实际的访问和查询操作,监测数据表的响应时间、并发处理能力和内存使用情况等指标。
结语
数据库的设计和开发过程是一项复杂和繁琐的工作,需要综合考虑各种因素。创建数据表是其中的关键环节,需要认真对待。通过以上的几点心得体会,我相信可以更好地帮助大家完成数据表的创建工作,并提高数据库的效率和性能,更好地服务于实际业务需求。
数据中国心得体会篇十四
GDP作为国民经济核心指标,在经济发展中起着重要的作用。数据注重客观反映和分析经济增长情况,通过一系列指标反映出一个国家或地区经济状况和发展趋势。对于国家发展的决策者、经济学家以及普通公民,了解并掌握GDP数据及其分析方法,对于个人与国家都有很大的意义。
第二段:GDP数据的概念和统计方法。
GDP是指在一个特定时期(通常为一年),一个国家或地区生产和服务的总货值,即国民生产总值。统计方法是以区域和产业为核心,通过统一的计量单位,将经济活动的量化表现出来。GDP数据估算主要有三个方法:生产法、支出法和收入法。生产法即估算产出,包括生产各类商品和服务的生产者购买的商品和劳务、企业的耗费、政府颁发的补贴等等;支出法即按需求数量估算,包括民间个人和企业的消费、政府支出和输入和出口贸易;收入法则是估算各生产要素的所得收入总和,并从其中扣除临时收益。通过这些估算方法,我们可以得到一个国家或地区的GDP总值。
第三段:GDP数据的意义和作用。
GDP是一个国家或地区经济成长的重要指标,展现了一个国家或地区的经济实力和发展水平。GDP数据可以让政策制定者了解到国家或地区经济的状况,调整经济政策。企业家可以通过分析GDP数据,掌握市场趋势,及时调整销售策略。同时,GDP数据也能够直接或间接地反映出一个国家或地区的财政支出、社会福利、生活水平和环境状况等。这些数据对公众了解自己所处的经济环境和找到符合自身利益的选择与赚钱机会有很大的帮助。
第四段:GDP数据的局限性。
尽管GDP可以完整地反映一国经济的总体发展水平,但在实际的应用中,我们还需要注意到GDP数据的局限性。首先,GDP只是衡量经济的宏观指标,并不能准确反映一个社会的生产水平、生活质量和环境保护等多重指标。其次,GDP不能区分经济各部分所产生的贡献,使得原来侧重第二产业、第三产业的一些地区,发展第一产业的情况,可能会对GDP数据的上升产生影响。而且,受到水资源、能源等自然资源因素的制约,一些地区的GDP数据并不高,但其生态环境和文化遗产等对人们的生活质量具有更长期的意义。
第五段:结论。
总之,GDP是反映一个国家或地区经济总体发展水平的重要指标,具有不可替代的作用。但在应用GDP数据时,我们仍需综合考虑更多经济社会多方面指标,以实现更科学的经济发展。因此,我们需要对GDP数据加以深入分析和研究,更全面地理解GDP数据的意义和局限性,从而使我们的经济政策和社会生产更加科学化、规范化,实现区域和全球经济合作的可持续发展。
数据中国心得体会篇十五
数据,是当今互联网时代所离不开的一个重要组成部分,数据对于企业的经营管理、政府的政策制定以及科学研究等方面起到了重要的作用。在企业、政府、个人等不同领域中,数据的运用已经成为了一个不可或缺的重要角色。通过对数据的收集、处理、分析和运用,我们可以更好地了解不同领域中的实际情况,发现问题并加以改进,促进事业和社会的发展。作为一名程序员,我也深深地体会到了数据在我的行业中扮演着怎样的重要角色。
第二段:数据的重要性
在计算机领域,数据是计算机知识和技术体系的重要组成部分。数据可以为程序员提供更加高效和优质的数据资源,也可以帮助程序员更快地解决问题。同时,通过对数据的分析和整理,程序员可以更好地了解用户需求,提高产品质量和服务水平。因此,数据在计算机领域中的重要性是不可忽视的。
第三段:收集数据的方法
收集数据是数据分析的第一步,而丰富和具有代表性的数据是保证分析结果准确性的前提。现如今,数据的收集手段已经非常多元化,包括手动记录、硬件设备自动记录和互联网应用访问记录等。无论采取何种方式,数据的收集应该得到用户的授权,并保障数据的安全性和隐私性。
第四段:利用数据的方式
利用数据是数据分析的核心部分。数据的利用对于提高企业、政府和科研单位的效率和质量有着重要的推动作用。在实际应用中,数据主要有描述性分析、统计分析和预测分析等方式。这些方式可以帮助分析者更好地理解业务、把握市场趋势、设计新产品、优化流程、提高生产效率等。
第五段:数据安全问题
无论是在数据的收集、存储还是处理阶段,数据安全问题都是程序员必须关注的一大问题。在数据处理环节中,任何一环节的数据泄露都可能引起严重的后果。因此,程序员们需要对数据的安全问题高度重视,采取各种措施确保数据在安全性上的可靠性,比如,加密技术、访问控制、反病毒软件等。
总结:
正如上文所述,数据在计算机领域、企业、政府和科研等诸多领域中都有着重要的作用。数据的收集、处理、分析和运用是程序员们不可回避的技能。同时,数据的安全问题也是我们在使用数据时必须重视的问题。随着数据的不断增长和应用领域的扩展,数据所带来的变化和机遇也会越来越多,如果掌握好了数据所带来的一切,我们将会在各个领域中拥有更加广阔的前景。
数据中国心得体会篇十六
GDP(国内生产总值)是评估一个国家经济活动的重要指标。它衡量了一个国家一定时期内所有最终产品和服务的市场价值,是一个国家的经济活力的重要体现。在进行经济政策制定和国际贸易谈判等方面,GDP也常常被用作重要参考依据。本文将分享一些我在接触和研究GDP数据时的心得体会。
第二段:GDP数据的意义和来源
GDP数据是评估一个国家经济活动的重要指标。在国际上,各国间比较GDP数据可以了解一个国家经济活力的大小和优劣,更好地了解和分析国际贸易、外汇和债务等问题。GDP数据通常由政府、金融机构和经济学家发布和计算。它通常是按年度或季度来发布的,并且包括四个方面的支出:消费、投资、政府支出和净出口。政府常常使用GDP数据来制定和实施经济政策,投资者和企业也可以根据GDP数据评估一个国家的商业前景。
第三段:GDP数据的局限性
虽然GDP数据是评估一个国家经济活动的重要指标,但它并不完美,还存在一些局限性。例如,GDP数据不考虑黑色和灰色经济,这意味着这种非官方的和不上报的经济活动并不会反映在GDP数据中。此外,GDP数据也不能反映出环境和社会福利等非经济因素的变化,也不能确定经济增长是否真正有利于改善贫困状况和失业率,因为这些因素不被包括在GDP数据中。
第四段:如何更好地利用GDP数据
尽管GDP数据存在局限性,但我们仍然可以用一些方法来更好地利用这个指标。首先,我们需要与其他经济指标或者微观数据结合,例如收入分配、人均GDP、生产率等等,来全面评估和比较一个国家的经济活动。其次,我们可以从长期角度看待GDP数据,以便于评估经济活动的长期状态和走势,并根据其变化来调整经济政策。最后,我们还可以通过GDP数据了解不同国家经济的相似性和差异性,并更加了解和掌握全球经济变化和趋势。
第五段:总结与展望
GDP数据是一个国家经济活动的重要指标,在评估经济状况、制定经济政策和国际贸易谈判等方面有着重要作用。虽然GDP数据存在局限性,但我们仍然可以善用于它,结合其他经济指标和长期视角,评估并比较一个国家的经济状态和走势。未来,伴随着全球经济的发展和GDP计算方法的改善,我们相信GDP数据将更加可靠和全面,为我们认知和把握经济发展变化提供更多参考和支持。
数据中国心得体会篇十七
第一段: 介绍数据库创建数据表主题(100字)
随着信息技术的迅猛发展,数据库日益成为企业信息化建设的重要基石。而在数据库中,数据表是存储数据的最基本单位。因此,熟练掌握数据库创建数据表技能对于开展数据库工作具有重要意义。在这篇文章中,我将分享自己关于数据库创建数据表的心得体会,希望能够对读者有所启发。
第二段:数据表的设计(250字)
在创建数据表之前,需要先设计好数据表的结构。首先需要明确数据表所属的数据库,其次需要确定数据表所包含的字段及其数据类型(如整型、字符型、日期型等)。在设计数据表时,应当充分考虑数据表的可扩展性,例如可以通过增加字段或者创建新的数据表来扩展数据表的功能。此外,表的设计还应当考虑到约束规则,如主键约束、唯一约束、外键约束等。
第三段:数据表的创建(250字)
设计好数据表结构之后,接下来就是创建数据表。在创建数据表时,需要先通过SQL语句来定义表的结构,包括表的列及其属性、索引及其类型等。然后就可以创建表了。在创建表时,需要定义表的名称及其对应的数据库,采用CREATE TABLE语句即可。创建数据表需要注意表名的唯一性,还需要考虑到数据库的规范。
第四段: 数据表的优化 (300字)
创建好数据表之后,需要考虑数据表的优化问题。数据表优化的目的是为了提升数据检索的效率,降低数据库维护的成本。优化的方法有很多,例如采用合适的数据类型、合理的索引设计、分区技术等。其中,索引的设计是优化数据库查询效率的重要手段。使用索引可以在查询时快速定位符合条件的数据,从而提高查询效率。而分区技术则是一种更细致的优化手段,通过将大的数据表分割成多个独立的片段来提高查询效率。
第五段: 结论与启示 (300字)
数据库创建数据表是数据库工作中最基本的一环,掌握好这一技能对于提高数据库工作效率、保证数据质量具有重要意义。本文对数据库创建数据表技能的要点进行了总结,并分享了自己对于数据表的设计、创建和优化的心得体会。希望能够对读者有所启发,客观认识数据库创建数据表的重要性,进一步提高自己的数据库工作水平。
数据中国心得体会篇十八
《大数据时代》心得体会
信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。
信息和数据的定义。维基百科解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。
在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?金融业业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
一部似乎还没有写完的书
——读《大数据时代》有感及所思
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!
更何况还有两个更可怕的事情。
其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
合纤部 车民
2013年11月10日
一、学习总结
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现
对企业未来运营的预测。
二、心得体会
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。