数字图像处理实验心得(热门19篇)
观察和思考是写作的灵感来源,我们可以通过关注身边的事物和思考其中的道理来提升自己的写作能力。总结的内容应该紧密围绕主题展开,不要过多涉及与主题无关的内容。接下来,我们将分享一些总结范例,旨在帮助大家更好地完成总结写作任务。
数字图像处理实验心得篇一
实验目的:本实验内容旨在让学生通过用vc等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。为学生进一步学习数字摄影测量、遥感和地理信息系统等专业课程以及应用图像处理解决实际问题奠定基础。
二、实验原理和方法。
(1)raw格式到bmp格式的转换:
raw格式:raw格式文件是按照数字图像组成的二维矩阵,将像素按行列号顺序存储在文件中。这种文件只含有图像像素数据,不含有信息头,因此,在读图像时,需要根据文件大小,计算图像所包含的行列号,或者需要事先知道图像大小(矩阵大小)。raw文件按图像上行到下行、左列到右列顺序存储。
bmp格式:bmp文件数据区按图像上下行到上行、左列列到右列顺序存储到数据区。bmp文件由文件头、信息头、颜色表、数据区四个部分组成。
做raw格式文件到bmp格式文件的转化,先要为bmp格式文件申请四部分的内存:文件头,位图信息头,颜色表,图象数据,然后根据输入值以及raw文件信息,bmp格式文件信息计算出这几部分的值,赋给他们,写到bmp文件中去。
(2)灰度图象的线性拉伸:
灰度变化是点运算,将原图象的每个像素的灰度值改成线性变化之后的灰度即可。
灰度的线性变换就是指图像的中所有点的灰度按照线性灰度变换函数进行变换。灰度变换方程如下:
该方程为线性方程。式中参数为输入图像的像素的灰度值,参数为输出图像的。
灰度值。
设原图象的灰度范围为[a,b],变化之后的范围为[a’,b’],则:
fa=(b’-a’)/(b-a)。
fb=-(b’-a’)/(b-a)*a+a’。
如果算出来的值大于255,则让它等于255,小于0则让其等于0。
(3)局部处理(3*3高通滤波,3*3低通滤波):
局部处理在处理某一像素时,利用与该像素相邻的一组像素,经过某种变换得到处理后图像中某一点的像素值。目标像素的邻域一般是由像素组成的二维矩阵,该矩阵的大小为奇数,目标像素位于该矩阵的中央,即目标像素就是区域的中心像素。经过处理后,目标像素的值为经过特定算法计算后所得的结果。
实际上都是利用卷积来实现的,卷积往往用一个矩阵表示,将矩阵的中心对齐某个像素,矩阵中的值乘到相应的像素中去,然后将所有乘积加起来就得到中心像素的灰度值。边界像素不做处理,仍为原来的灰度值。求出的像素灰度值若超过[0~255],则向离其最近的属于该范围的`像素值靠拢。
3*3低通滤波的算子见表1。
3*3高通滤波的算子见表2。
表格1。
1/9。
1/9。
1/9。
1/9。
1/9。
1/9。
1/9。
1/9。
1/9。
表格2。
-1。
-1。
-1。
-1。
9
-1。
-1。
-1。
-1。
(4)图象几何处理(图象平移,图象缩放):
对于图像平移来说,若平移量是(tx,ty),像素在原图像中的坐标为(x0,y0),则变化后的坐标为(x1,y1),x1=x0+tx,y1=y0+ty。平移只需改变像素的灰度值,不必改变位图信息头和调色板内容。
对于图像缩放,假设放大因子为ratio,缩放的变换矩阵为:
图像信息头中新图像的宽度和高度都变为原来宽度和高度分别与水平垂直比例的乘积,图像大小变为新宽度(变为4的整数倍)与新高度的乘积。
(5)灰度图象中值滤波:
中值滤波也属于局部处理的一种,将窗口中的各个像素排序之后排序,取中值赋给模板中心的像素,所以窗口中个数一般是基数。
我用的中值滤波窗口是十字丝的9个数的窗口。
(6)灰度图象边缘检测:
边缘检测有三种算子:roberts,prewit,sobel。三种算子都是做一阶差分的,通过算子算出各个像素的梯度值,将水平梯度的绝对值和垂直梯度的绝对值相加,若此梯度值大于某个阈值,则将其灰度值赋为255,否则赋为0。
(7)图象旋转:
图像旋转一般是以图像中心为中心顺时针旋转,利用图像的四个角点求出图像旋转后的大小。
先计算以图像中心为原点坐标系下原图像四个角点的坐标值,按照旋转矩阵计算其旋转之后的坐标值,根据四个角点的新坐标值计算出最大宽度和高度作为新图像的宽度和高度值,按照计算值修改位图信息头,申请一块新内存,存储旋转后图像的灰度值。
旋转矩阵如下:
同样要求各个像素在原图像中的坐标,先将新图像的坐标系平移到图像中心,做逆时针旋转,然后再平移到屏幕左上角,然后将原图像对应坐标的值赋给新图像。
(8)图象二值化:
判断分析法:假定图像的灰度区间为[0,l-1],则选择一阈值t将图像的像素分为两组。
为最大值所对应的t,就是所求判断分析法的分割阈值。
搜寻到阈值之后,灰度值小于阈值的像素赋0,其他的赋1,修改文件信息头,调色板,申请新内存。
(9)图象直方图:
统计各灰度值出现的频数,以及像素的总个数,用频数除以总个数作为频率,以灰度值作为横坐标,频率作为纵坐标绘图。
三、实验过程和步骤。
首先要建立一个基于mfc的多文档工程,将视图基类改为滚动视图,以自己的学号命名。
我用的是书上给的cdib类,类里面有获取bmp宽度,高度的函数,有指向位图信息头的指针,指向图象数据的指针,因此我在文档类(doc类)里定义了一个cdib类的对象,打开以及保存文件的时候利用这个对象去调用cdib里读取与存储文件的函数,并且可以利用这个对象的两个指针对打开的图象进行各种操作。
格式到bmp格式的转换:
首先建立一个rawtobmp的对话框,在上面加上四个编辑框(一个输入打开文件的路径一个输入保存文件的路径,另两个),两个按钮,以及默认的确认,取消按钮。利用类向导插入此对话框类,并且为前两个编辑框定义cstring的两个变量,用来存储打开与保存文件的路径。同时为两个浏览按钮添加消息响应函数,在消息函数里创建cfiledialog对象,利用此对象的函数将两个路径值赋给前两个编辑框的成员变量。再为ok键添加消息响应函数,分别定义bmp格式文件前三部分数据变量,计算出各变量的值,并且利用一个cfile对象获取raw图象的数据,利用另一个cfile对象将数据存储到所输入的路径的文件中去,cfile对象的read函数会自动创建一个文件。
然后在菜单上新建一个菜单,为菜单添加消息响应函数,在其消息响应函数里创建rowtobmp对话框。这样点击菜单后就会弹出一个对话框,按确定键之后就可以读取raw文件并且存储bmp文件,完成整个消息循环。
2.灰度图象的线性拉伸:
数字图像处理实验心得篇二
学号:08370902。
班级:1310809。
在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。
图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和vlsl的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。
由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。
图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。
图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。
图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。
图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。
图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。
图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。
1)数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存。
储容量等要求较高。
2)数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。
3)数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同。
或接近的灰度。所以,图像处理中信息压缩的潜力很大。
4)数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。
1)再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或。
复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。
2)处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于图像数字化设。
备的能力。
像。只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
4)灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面,随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
航天和航空技术:在飞机遥感和卫星遥感技术中用配备有高级计算机的图像处理系统来判读分析,既节省人力又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。生物医学工程:除了ct技术之外,还有对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。
通信工程:当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、dpcm编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
工业和工程领域:图像处理技术有着广泛的应用,如自动装配线中检测零件的质量并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。
军事方面:图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。文化艺术:电视画面的数字编辑、动画的制作、电子图像游戏、纺织工艺品设计、服装设计与制作、发型设计、文物资料照片的复制和修复、运动员动作分析和评分等等。
视频和多媒体系统:电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。
电子商务:图像处理技术在电子商务中也大有可为,如身份认证、产品防伪、水印技术等。
在这门课程的最后,代课老师给我们讲授了数字视频处理,让我们了解到数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,p2卡,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过pc,特定的播放器等播放出来。了解了数字视频发展过程和视频压缩的概念和分类等。
很具有教学性,这两个软件也运用的很广。
matlab全称是matrixlaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用中matlab中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了matlab在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
photoshop是adobe公司旗下最为出名的图像处理软件之一,集图像扫描、编辑修改、图像制作、广告创意,图像输入与输出于一体的图形图像处理软件,深受广大平面设计人员和电脑美术爱好者的喜爱。
如果能理论和实践相结合,相信我们会把数字图像处理理解的跟透彻,同时也锻炼了大家的动手能力。希望老师能考虑我的这点建议,多开设实际动手的课程。
数字图像处理实验心得篇三
随着科学技术的不断发展,数字实验箱已经成为许多学生在学习科学课程时必备的工具之一。这个小巧而功能强大的装置,不仅能够帮助学生更好地理解科学知识,还能够培养其动手实践的能力和创新思维。在我使用数字实验箱的过程中,不仅加深了对科学知识的理解,还体会到了它带给我的乐趣和意义。以下将结合个人经历,对数字实验箱的心得体会进行探讨。
首先,数字实验箱给我带来了极大的方便。相较于传统的实验装置,数字实验箱的优势在于其小巧便携,可以随时随地进行实验。无论是在学校的实验室还是在家里的书桌上,我都能够迅速搭建实验电路并实践操作。这使得学习变得更加自由,不再受时间和空间的限制。即便只是在晚上一个人坐在房间里,我依然能够借助数字实验箱进行探索。这种自由与便利的使用方式,为我在学习科学过程中增添了无穷的乐趣。
其次,数字实验箱培养了我动手实践的能力。在课堂上,老师讲解过很多理论知识,但只有亲自动手实践,才能真正理解其中的奥妙。数字实验箱给了我一个实践的舞台,让我能够亲自运用相关理论知识,搭建电路,进行实验。当我一步步将元件拼接起来,然后按下开关,看到指示灯亮起,感受到电流的流动时,我体会到了手指触及真理的惊喜。数字实验箱让我学会了实践的重要性,激发了我对科学的热爱。
然而,体验数字实验箱也不是一帆风顺的。在实验的过程中,我也遇到了一些困难和挑战。有时,电路连接错误,导致实验结果与理论不符。有时,设备故障或损坏,造成整个实验无法继续进行。这时,我需要静下心来思考问题所在,并通过查找资料或向同学请教,寻找解决办法。通过这个过程,我不仅学会了从失败中吸取教训,也提高了解决问题的能力。这些挑战锻炼了我的耐心和毅力,让我变得更加坚韧。
此外,数字实验箱还培养了我的创新思维。在实践过程中,我有时会思考如何让实验效果更加优秀或者更具创意。我会尝试使用不同种类的元件,改变连接方式,或者尝试进行其他改进。有时,我还会和同学们分享我的想法,听取他们的建议和意见。这样的交流与合作,让我不仅拓宽了视野,还能够从他人的创意中受益,开发出更多新颖的实验项目。数字实验箱激发了我的创新思维,让我在学习科学的过程中得到了更多的乐趣。
综上所述,数字实验箱在我学习科学知识的过程中发挥了重要的作用。它为我提供了方便、培养了动手实践的能力,锻炼了解决问题的能力,激发了创新思维。但我们也要承认,数字实验箱只是一个工具,它能帮助我们更好地学习科学,但最终还是要靠自己的努力和学习。希望在未来的学习中,我能够继续发挥数字实验箱的作用,不断提高自己的科学素养,为科学进步做出自己的贡献。
数字图像处理实验心得篇四
经过这几周的学习,我从一个什么都不了解的小白,变成了一个明白这门课程的意义的初学者,觉得学到了不少有用同时又很有趣的知识,也对数字图象处理有了新的理解。老师从数字图像处理的意义讲起,中间介绍了许多目前仍在应用的相关技术,让我明白了图像处理在我们生活中的重要性,下面我来谈谈我自己的学习成果和感受。
图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和vlsl的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。
从定义上来说,图像处理是指按照一定的目标,用一系列的操作,来“改造”图像的方法。我觉得字面上的意思就是,对图像进行处理,得到自己想要的效果。图象处理的内容有很多种:几何处理,算术处理、图像增强、图像复原、图像重建、图像识别、图像压缩。而目前进行图像处理就是指用计算机对图像进行空域法和变换域法。资料上介绍说,数字图象处理起源于20世纪20年代,那时第一次通过海底电缆传输图像;1921年人们用电报打印机采用特殊字符在编码纸带中产生图像;1922年在信号两次穿越大西洋后,从穿孔纸带得到数字图像;1929年从伦敦到纽约用15级色调设备传送照片。到了20世纪60年代早期,计算机发展,有了第一台可执行有意义的图像处理任务的大型计算机,美国利用航天器传送了第一张月球照片。从20世纪60年代末到70年代初,开始用于医学图像、地球遥感、天文学等领域,如ct图像和x射线图像。至今,数字图象处理仍旧广泛应用于工业、医学、地理学、考古学、物理学、天文学等多个领域。比如,太空技术中的航天技术、空间防御、天文学;生物科学的生物学和医学;刑事(物证)上的指纹、人脸分析;国防方面的军事探测,导弹目标识别;工业应用中的产品检测还有日常生活中的照片编辑、影视制作。
从概念上来说,数字图像用f(x,y)表示一幅图像,x,y,f为有限、离散值。图像处理涉及到图像的分析和计算机视觉,其中分为低级处理、中级处理、高级处理。低级处理是指输入输出均为图像(如图像缩放、图像平滑);中级处理是输入图像,然后输出提取的特征(如区域分割、边界检测);高级处理则是理解识别的图像(如无人机驾驶,自动机器人)。数字图像处理的几个基本目的是:
图像输入-图像处理(增强、复原、编码和压缩)-图像输出。以人为最终的信息接收者,其主要目的是改善图像的质量。
图像输入-图像预处理(增强、复原)-图像分割-特征提取-图像分类-图像输出。另一类图像处理以机器为对象,目的是使机器或计算机能自动识别目标,称为图像识别。
图像输入-图像预处理-图像描述-图像分析和理解-图像解释。利用计算机系统解释图像,实现类似人类视觉系统理解外部知识,被称为图像理解或计算机视觉。其正确的理解要有知识的引导,与人工智能等学科有密切联系。当前理论上有不小进展,但仍是一个有待进一步探索的领域。
1)图像变换:如傅里叶变换、沃尔什变换、离散余弦变换(dct)等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。目前小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像编码压缩。
图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少存储器容量。压缩可以在不失真前提下获得,也可以在允许的失真条件下进行。编码是压缩技术最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3)图像增强和复原。
目的是提高图像的质量,如去除噪声,提高清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强调低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,建立“降质模型”,再采用某种方法,恢复或重建原来的图像。
4)图像分割。
图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中物体的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
数字图像处理的特点主要表现在数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高;数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求;数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。
数字图像处理的优点主要表现在再现性好、处理精度高、适用面宽、灵活性高等方面。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。
通讯技术---图像传真,电视电话,威信通讯,数字电视;
宇宙探索---其他星体图片处理;
气象预报---天气云图测绘、传输;
高能物理---核子泡室图片分析;
军事技术---航空及卫星侦察照片的判读,导弹制导,雷达、声纳图像处理,军事仿真;
侦缉破案---指纹识别,印鉴、伪钞识别,手迹分析;考古---恢复珍贵的文物图片,名画,壁画。
由此可见,数字图像在我们日常生活中占有多大的地位。它是我们生活中接触最多的图形类别,它伴随人们的生活、学习、工作,并在军事、医学和工业方面发挥着极大的作用,可谓随处可见,尤其在生活方面作为学生的我们会在外出旅游、生活、工作中拍下许多数字相片,现在已经进入信息化时代,图像作为信息的重要载体在信息传输方面有着声音、文字等信息载体不可替代的作用,并且近年来图像处理领域,数字图象处理技术取得了飞速发展。
通过课程学习,我们虽说还没有完全掌握数字图像处理技术,但也收获不少,对于数字图像方面有了更深入的了解,更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常见处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的rgb图像和灰度图像有了明确的理解,这对大家以后应用photoshop等图像处理软件对图像进行处理打下了坚实的基础。
虽然这门课是只有7周理论课,但老师所讲的内容让我非常感兴趣,数字图象处理的应用贯通各个行业,遍布我们生活的电子产品,这让我学习后感觉离这些产品的使用和了解更进了一步。学习数字图象处理对我们学电子工程的学生非常有用,无论以后是否从事相关工作都让我感觉受益良多。随着现代电子技术发展的越来越快,我相信图像处理技术一定会有更大的进步,从国防到娱乐给我们的生活带来更多的便利,和更好的科学技术。
数字图像处理实验心得篇五
数字图像处理的信息源基本是二维数据,处理信息量较大。对计算机运算速度、存储空间等要求高。
数字图像处理的传输频带要求高。与语音信息相比,传输占用的频带要高几千倍。所以,就对图像压缩技术形成了有效的研究需求。
数字图像中每一个像素并非独立的,相互关联性较高。很多相邻像素之间有相同或相近的数值。
所以,图像处理技术中数据压缩的可能性较高。
由于图像是视觉三维意识的二维映射。因此,计算机要识别和处理三维形态就要进行适当的模糊处理或附加量的匹配。
处理后的数字图像是形成人为视觉理解和应用评估的依据,因此处理结果必然受到人为的意识形态的影响。所以,在计算机视觉研究中,人为的感知机理必然对计算机视觉的研究产生影响。
由于在图像处理中,像素阵列很大,在空间域中涉及计算量对计算机硬件的要求非常高,所以,必须引入图像的函数变换进行计算简化。利用函数变换的间接处理方法,如傅里叶变换、离散余弦变换、walsh变换等,不但可以降低计算强度,而且可以得到高效的计算。
图像的像素矩阵编码压缩技术可以降低定义图像数据的比特数量,并减少图像处理和传输时间,进而节省存储空间。
图像的增强处理过程中不涉及图像质量降低的主要成因,目的是要突出图像矩阵中敏感的像素群。图像的复原处理需要对图像质量降低的主要成因进行调查,进而采取相应滤波处理技术,复原和重构原有的像素矩阵。
图像分割处理是数字图像处理中的关键处理手段之一。是将图像中敏感的主要像素群作为主要处理对象,包括区域特征、边缘特征等,是对敏感像素群进行识别、理解和分析的基础数据特征。
作为最简单的.二值图像可采用其几何特性识别物体的特性,一般图像的理解方法采用二维形状理解,它有边界理解和区域理解两类方法。对于三维物体理解,有体积理解、表面理解、圆柱体的广义理解等。
图像识别处理基本采用传统的模式识别方式,有统计模式识别和结构模式识别两种,随着研究广泛进行,人工神经网络模式识别和模糊模式识别也得到不同程度的重视,进行广泛研究。
数字图像处理技术与模拟图像处理技术在基本原理上的差异之处,是数字化处理技术不可能在图像的传输、存储或复制等操作处理过程中,使图像质量有所降低。图像在数字化过程中精确地再现了原模拟图像,则在数字图像处理过程中就能够确保无损于图像的各项数字化指标。
依据现有的数字化技术,在图像数字化设备的性能满足要求的情况下,完全可以数字化模拟图像成为目标精度的二维数组。目前的数字化扫描仪能够将各个像素的灰度等级量化处理为48位甚至更高,这就说明数字化图像的精度可以满足几乎所有的应用需求。对于数字化处理设备来说,无论二位数组的规模,也不考虑像素的量化位数,处理过程基本是相同的。从原理的角度来看,无论图像的量化精度达到什么程度,在技术上都是可以完成的,只需要在处理修改过程中的数组技术参数。而在图像的模拟量化处理过程中,要想把量化处理精度提升,就需要采用非常高等级的硬件设备或大规模提升处理装置的技术参数等级,从技术经济方面考虑,是非常不合理的。
图像的信息来源是多样化的,一般情况下是可见光的感光图像,也可以是不可见光的波谱图形图像。从图像映射物体感官的角度,微观至电子显微镜采集的图像,宏观至大规模空天望远镜采集的图像。
不同信息来源的图像转换为数字化编码后,都可以表示为二维数组的灰度级图像,进而完成数字化处理过程。对于图像的不同信息来源,使用对应的图像信息量化技术,图像的数字化处理技术可以用于任何一类图像。
图像数字化处理技术基本上可以归类为图像的质感提升、像素分析和区域重构等手段。因为图像的模拟技术处理从数学上分析只可以进行线性分析,就局限了模拟图像处理技术可以完成的工作需求。
数字图像处理实验心得篇六
数字图像是我们生活中接触最多的图像各类,它伴随人们的生活、学习、工作,并在军事、医学、和工业方面发挥着极大的作用,可谓随处可见,尤其在生活方面作为学生的我们会在外出旅游、生活、工作中拆下许多数字相片,现在已进入信息化时代,图像作为信息的重要载体在信息传输方面有着声音、文字等信息载体不可替代的作用,并且近年来图像处理领域,数字图像处理技术取得了飞速发展,作为计算机类专业的大学生更加有必要对数字图像处理技术有一定的掌握,而大多人对于数字图像的知识却不全面,甚至一些基础知识也很模糊,比如各类繁多的各种图像格式之间的特点,不同的情况该用何种图像格式,还有关于图像的一些基本术语也不甚了解,尤为重要的是对于一些由于拍摄问题导致的令人不甚满意的照片该如何处理,或者如何对一些照片进行处理实现特殊的表现效果。所以对于数字图像处理这门课大家有着极大兴趣,在选课时几乎所有人都选了这门课。其中有的同学由于简单的学习过photoshop软件,因此对于数字图像处理已经有了一些基础,更加想利用这门课的学习加深自己数字图像处理的理解并提高在数字图像处理方面的能力。
字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的rgb图像和灰度图像有了明确的理解,这对大家以后应用photoshop等图像处理软件对图像进行处理打下了坚实的基础。更重要的是学习到了数字图像处理的思想。通过学习也是对c++编程应用的很好的实践与复习。
visualc++软件实现并进行调试,然而大部分人的c++实践能力以及编程能力还有待提高,尤其是对于矩阵进行操作的编程尤为是个考验,并且后半学期课程任务较重,加上队里的事务也很多,时间不是很充裕,这对于需要大量实践的数字图像处理课程就是个很大的问题。
在教员授课方面建议可以在课上多进行具体操作,这样可以提起大家学习的兴趣,也可以让大家在课下积极准备,然后在上课由学员进行演示,还可以加入一些数字图像处理的经典范例,加深同学们的学习热情。
数字图像处理实验心得篇七
提高计算机对数字图像处理的速度,提高采集分辨率和显示分辨率,提高多媒体技术关键中图像数据的压缩,进行计算机识别和理解研究中按照人类的认知和思维方式工作并考虑到主观概率和非逻辑思维技术,规划统一的标准以实现图像的处理、传输和存储研究健康发展,以上几点都是数字图像处理技术合理发展的基本融汇技术基础。
同时,信息数据量更大的三维数字图像必将得到广泛应用研究,图像与图形相互融合后形成三维成像或多维成像的发展方向也正在众多应用中广泛推进。
5总结。
数字图像处理技术在社会的每个行业、每个领域都得到广泛的应用,数字图像处理的技术应用随时、随处都可以见到,得到充分的研究发展和应用推广,还不能充分满足日益增长的技术需求。数字图像处理技术不断地在自身发展和完善的同时,还与多个计算机分支学科的发展密不可分,有多个新的技术方向需要研究和创新,对数字图像处理技术的发展方向进行研究、探讨的重要性就显得尤为突出。
参考文献:。
[1]朱睿。数字图像处理技术现状与展望[j].中国科技博览,(14):7-28.
[4]谭海艳。数字图像压缩综述[j].科技经济市场,2011(8)。
数字图像处理实验心得篇八
在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。
图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程.数字图像处理是从20世纪60年代以来随着计算机技术和vlsl的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。
由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。
图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。
图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要。
求。
图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易。
分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。
图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的。
退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。
图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。
1)数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存。
带压缩技术提出了更高的要求。
3)数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同。
或接近的灰度。所以,图像处理中信息压缩的潜力很大。
4)数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。
1)再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或。
复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。
2)处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于图像数字化设。
备的能力.3)适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像。只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
4)灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每。
一部分均包含丰富的内容。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生。
活和工作的方方面面,随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
航天和航空技术:在飞机遥感和卫星遥感技术中用配备有高级计算机的图像处理系统来判读分析,既节省人力又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。生物医学工程:除了ct技术之外,还有对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。
通信工程:当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、dpcm编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
工业和工程领域:图像处理技术有着广泛的应用,如自动装配线中检测零件的质量并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。
军事方面:图像处理和识别主要用于导弹的精确末制导各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。
文化艺术:电视画面的数字编辑、动画的制作、电子图像游戏、纺织工艺品设计、服装设计与制作、发型设计、文物资料照片的复制和修复、运动员动作分析和评分等等。
视频和多媒体系统:电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。
电子商务:图像处理技术在电子商务中也大有可为,如身份认证、产品防伪、水印技术等。
在这门课程的最后,代课老师给我们讲授了数字视频处理,让我们了解到数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,p2卡,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过pc,特定的播放器等播放出来。了解了数字视频发展过程和视频压缩的概念和分类等。
我们这门课程主要是上理论课,其中有很复杂的数学原理,专业术语多,基础知识要求高,理解起来有些困难。当初选择这门课是希望能有一些具体软件的教学。就我了解,视频处理的软件有maya、premiere、绘声绘影、windows自带的movemaker;处理数字图像的软件主要有matlab、photoshop、imagej(java图像处理程序)。其中,matlab和ps很具有教学性,这两个软件也运用的很广。
matlab全称是matrixlaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用matlab中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了matlab在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
photoshop是adobe公司旗下最为出名的图像处理软件之一,集图像扫描、编辑修改、图像制作、广告创意,图像输入与输出于一体的图形图像处理软件,深受广大平面设计人员和电脑美术爱好者的喜爱。
如果能理论和实践相结合,相信我们会把数字图像处理理解的跟透彻,同时也锻炼了大家的动手能力。希望老师能多开设实际动手的课程。
数字图像处理实验心得篇九
经历了四周共八个学时的焊接学基础实验,我觉得自己学到了很多东西,虽然大二的时候自己也在金工实习的时候学过电焊,但是那时候自己对焊接原理是完全不了解,到现在基本学习完了焊接学基础的理论教学再来做实验的我感觉轻松了,因为我懂得了很多焊接学的原理。
也知道了焊接不只是电焊,另外还有气焊等等。
这四周的焊接学实验我们总的来说学习了气焊和电焊,气焊中也分了对低碳钢、中碳钢和高碳钢的焊接,我们在焊接过程中可以明显的感觉到对于高中低碳钢的难易明显不同!
有一次课程我们学习的是铸铁的焊接,对于铸铁的流动性也明显可以感受到比较差!每次体验实验之前老师总是给我们介绍实验需要注意的事项以及实验内容!通过老师的介绍和之后亲身的体验可以说我们对于每次实验的内容都有很好的理解和体会。
对于这次的电焊实验我的记忆尤其深刻,因为在试验过程中我出现了很多问题,老师总会给我详细解释出现问题的原因和这些问题应该怎样解决,比如有一次的试验内容是薄板钢的对接。
两块薄薄的钢板,我很认真的摆放在试验板上焊接,我本以为这是最简单的焊接了,但是结果却不如意,当我用平焊的方式把这两块钢板焊接完以后才发现焊接后的钢板出现了严重的变形,原本平的钢板变得翘起来了!而且由于焊接技术不好使得焊缝很不平整有些地方甚至出现了焊穿的现象,面对这样的焊接产品我真是无地自容!但是老师给我详细解释了出现这些问题的原因,比如钢板翘起来了是因为焊接过程中的散热不均匀,这些现象可以用经验解决。
对于焊穿的那个窟窿老师握着我的手一点一点的把它填上了,老师告诉我这是由于汉弧太短以及焊接速度太慢造成的!他还鼓励我别灰心,我特感动!
透过这次实验,我大开眼界,正因这次实验个性是回转机构振动测量及谱分析和悬臂梁一阶固有频率及阻尼系数测试,需要用软件编程,并且用电脑显示输出。
能够说是半自动化。
因此在实验过程中我受易非浅:它让我深刻体会到实验前的理论知识准备,也就是要事前了解将要做的实验的有关质料,如:实验要求,实验资料,实验步骤,最重要的是要记录什么数据和怎样做数据处理,等等。
虽然做实验时,指导老师会讲解一下实验步骤和怎样记录数据,但是如果自己没有一些基础知识,那时是很难作得下去的,惟有胡乱按老师指使做,其实自己也不知道做什么。
在这次实验中,我学到很多东西,加强了我的动手潜质,并且培养了我的独立思考潜质。
个性是在做实验报告时,正因在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。
例如:数据处理时,遇到要进行数据获取,这就要求懂得labview软件一些基本操作;还有画图时,也要用软件画图,这也要求懂得excel软件的插入图表命令。
并且在做回转机构振动测量及谱分析实验,获取数据时,注意读取波形要改变采样频率,等等。
当然不只学到了这些,那里我就不多说了。
还有动手这次实验,使测试技术这门课的一些理论知识与实践相结合,更加深刻了我对测试技术这门课的认识,巩固了我的理论知识。
但是这次实验虽好,但是我认为它安排的时刻不是很好,还有测试技术考试时刻,正因这些时刻安排与我们的课程设计时刻有冲突,使我不能专心于任一项,结果不能保证每一个项目质量,因此如果有什么出错请指出!
数字图像处理实验心得篇十
试题生涯规划宣言写景实施的概述批复的同义词工作经历自我介绍,爱国文言文员工申请职业道德成语了警示语支部意见书感言留言:剖析材料乐府开学第一课,谚语三角形摘抄的文化建设材料!研修安全答辩状,简报创业项目。
数字图像处理实验心得篇十一
图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。你知道数字图像处理心得体会是什么吗?接下来就是本站小编为大家整理的关于数字图像处理心得体会,供大家阅读!
本人导师张崎,主要从事智能交通方面的研究。高年级学长曾做过车牌识别的研究。在学完数字图像处理这门课后,于是有了这篇关于车牌识别系统的心得体会。
仔细翻阅了几遍平时上课做的笔记,梳理了下各种图像处理方法在各中图像处理中起到的作用。结合对实际车牌识别过程的了解,谈谈自己对图像处理的各种方法在识别过程中起到的作用。
老师总说图像处理就是不讲道理,我觉得这就是最大的道理。为什么有人能够把不讲道理的东西做出来?这其中实际上蕴藏着深刻的道理。就像爱因斯坦证明布朗运动是毫无规律的运动一样,你发现他是毫无规律的,这其实就是他最大的规律。我想,只有对图像有了深刻的认识,才能完成这种你也说不出道理的事。
好了,现在我想结合这门课和车牌识别展开说说。
有时候,计算机跟人相比真的很傻,扔一张车牌尾号过来,不管它多么破旧、不清晰,人们能够轻而易举的读出上面的数字。而计算机呢?他要不停的运算、识别,而你算法上的一个小小漏洞,更会导致识别的大大不同。通过数字图像处理这门课的学习,我觉得可能通过下面的一些列步骤能较好的识别出车牌上的号码数字。
首先,我觉得我们需要将彩色的图片转换为灰色图像,这样便于计算机分析,计算机跟人刚好相反,好看的不一定好处理,而灰色的图像虽然不美观,但是正好适合计算机来处理。另一方面,将彩色图像转化为灰色图像也能减少图像所占的存储空间,简化和加快后续处理的工作。
其次,我觉得我们需要根据实际需要,对图像就行简单的预处理。我们应当让我们所关心的图像内容,显现的更加突出。而弱化那些我们所不关心的背景类似的东西。这里我觉得,我们就可以利用我们上课所学到的图像增强的知识了。需要注意的是,图像增强并不能增加原始图像的信息,只是通过某些技术有选择的突出对某一具体应用有价值的信息,即图像增强只通过突出某些信息,以增强对这些信息的辨识能力,而其他信息信息则被削弱,这就是我对图像增强的理解,我认为他是我们后期识别车牌的重要准备,增强的好坏直接影响了后期识别的准确度和速度。
然后,图像增强后,我觉得我们就应该对处理后的图像就行边缘检测,这里就直接会用到我们上课所学到的边缘检测的各种方法,边缘是图像的最基本特征,边缘部分集中了图像的大部分信息。边缘确定和提取对于整个图像场景的识别是非常重要的。而上一部的图像强也增强了边缘信息。
下一步,我认为就应该进行图像分割了,把各个字母数字单独分割出来,便于后续的进一步识别。
最后,就应该开始识别这些分割出来的图像,这一部分,我们课上内容并没有涉及,查阅了些资料,找到了比较可行的办法。即模式识别。我理解的过程是,首先我们应该建立一个标准模版库,然后通过将提取出来的样品与标准模版进行比较,来识别他们。
这就是上完数字图像处理课,我所能想到的车牌识别的整个过程,基本上需要用到我们所学的所有内容,而且都是比较基础的知识,我觉得,往往一个图像处理的问题,就是应该分成很多小问题来解决,一步步简化问题。一步步将图像中我们所最关心的内容提取出来。
毕竟没有深入学习过这方面的知识,本文纯属心得体会,过程中难免存在很多不足或者错误。恳请老师指出。
图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和vlsl的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。
1、数字图像处理需用到的关键技术
由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。
图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。
图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。
图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。
图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。
图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。
图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。
2、数字图像处理的特点数字图像处理的特点主要表现在以下几个方面:
1)数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。
2)数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。
3)数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。
4)数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。
3、数字图像处理的优点
数字图像处理的优点主要表现在4个方面。
1)再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。
2)处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于图像数字化设备的能力。
3)适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像。只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
4)灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。
4、数字图像处理的应用领域
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面,随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
航天和航空技术:在飞机遥感和卫星遥感技术中用配备有高级计算机的图像处理系统来判读分析,既节省人力又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。
生物医学工程:除了ct技术之外,还有对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。
通信工程:当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、dpcm编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
工业和工程领域:图像处理技术有着广泛的应用,如自动装配线中检测零件的质量并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。
军事方面:图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。
文化艺术:电视画面的数字编辑、动画的制作、电子图像游戏、纺织工艺品设计、服装设计与制作、发型设计、文物资料照片的复制和修复、运动员动作分析和评分等等。
视频和多媒体系统:电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。
电子商务:图像处理技术在电子商务中也大有可为,如身份认证、产品防伪、水印技术等。
在这门课程的最后,代课老师给我们讲授了数字视频处理,让我们了解到数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,p2卡,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过pc,特定的播放器等播放出来。了解了数字视频发展过程和视频压缩的概念和分类等。
我们这门课程主要是上理论课,其中有很复杂的数学原理,专业术语多,基础知识要求高,理解起来有些困难。当初选择这门课是希望能有一些具体软件的教学。就我了解,视频处理的软件有maya、premiere、绘声绘影、windows自带的movemaker;处理数字图像的软件主要有matlab、photoshop、imagej(java图像处理程序)。其中,matlab和ps很具有教学性,这两个软件也运用的很广。
matlab全称是matrixlaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用中matlab中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了matlab在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
photoshop是adobe公司旗下最为出名的图像处理软件之一,集图像扫描、编辑修改、图像制作、广告创意,图像输入与输出于一体的图形图像处理软件,深受广大平面设计人员和电脑美术爱好者的喜爱。
如果能理论和实践相结合,相信我们会把数字图像处理理解的跟透彻,同时也锻炼了大家的动手能力。希望老师能考虑我的这点建议,多开设实际动手的课程。
数字图像是我们生活中接触最多的图像各类,它伴随人们的生活、学习、工作,并在军事、医学、和工业方面发挥着极大的作用,可谓随处可见,尤其在生活方面作为学生的我们会在外出旅游、生活、工作中拆下许多数字相片,现在已进入信息化时代,图像作为信息的重要载体在信息传输方面有着声音、文字等信息载体不可替代的作用,并且近年来图像处理领域,数字图像处理技术取得了飞速发展,作为计算机类专业的大学生更加有必要对数字图像处理技术有一定的掌握,而大多人对于数字图像的知识却不全面,甚至一些基础知识也很模糊,比如各类繁多的各种图像格式之间的特点,不同的情况该用何种图像格式,还有关于图像的一些基本术语也不甚了解,尤为重要的是对于一些由于拍摄问题导致的令人不甚满意的照片该如何处理,或者如何对一些照片进行处理实现特殊的表现效果。所以对于数字图像处理这门课大家有着极大兴趣,在选课时几乎所有人都选了这门课。其中有的同学由于简单的学习过photoshop软件,因此对于数字图像处理已经有了一些基础,更加想利用这门课的学习加深自己数字图像处理的理解并提高在数字图像处理方面的能力。
通过一学期的课程学习我们虽说还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像方面的知识有了深入的了解,更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的rgb图像和灰度图像有了明确的理解,这对大家以后应用photoshop等图像处理软件对图像进行处理打下了坚实的基础。更重要的是学习到了数字图像处理的思想。通过学习也是对c++编程应用的很好的实践与复习。
当然通过30学时的课程学习还是远远不够的,也有许多同学收获甚微,我总结了下大家后期的学习态度与前期的学习热情相差很大的原因。刚开始大家是有很高的热情学习这门课的,可是随着课程的逐渐深入学习,大家渐渐发现课程讲授内容与自己起初想学的实用图像处理技术是有很大的差别的,大家更着眼于如何利用一些软件、技术去处理图像而得到满意的效果,或者进行一些图像的创意设计,可是课程的内容更偏重于如何通过编程实现实现如何对图像进行一些类似于锐化、边缘提取、模糊、去除噪声等基础功能的实现,这其中涉及很多算法、函数,需要扎实的数学基础和编程基础,并且需要利用大量时间在课下编写代码,并用visual、c++软件实现并进行调试,然而大部分人的c++实践能力以及编程能力还有待提高,尤其是对于矩阵进行操作的编程尤为是个考验,并且后半学期课程任务较重,加上队里的事务也很多,时间不是很充裕,这对于需要大量实践的数字图像处理课程就是个很大的问题。
在教员授课方面建议可以在课上多进行具体操作,这样可以提起大家学习的兴趣,也可以让大家在课下积极准备,然后在上课由学员进行演示,还可以加入一些数字图像处理的经典范例,加深同学们的学习热情。
数字图像处理实验心得篇十二
图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和vlsl的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。
由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。
图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。
图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。
图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。
图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。
图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。
图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。
1)数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。
2)数字图像处理占用的频带较宽。与语言信息相比,占用的.频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。
3)数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。
4)数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。
数字图像处理的优点主要表现在4个方面。
1)再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。
2)处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于图像数字化设备的能力。
3)适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像。只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
4)灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面,随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
航天和航空技术:在飞机遥感和卫星遥感技术中用配备有高级计算机的图像处理系统来判读分析,既节省人力又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。
生物医学工程:除了ct技术之外,还有对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。
通信工程:当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、dpcm编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
工业和工程领域:图像处理技术有着广泛的应用,如自动装配线中检测零件的质量并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。
军事方面:图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。
文化艺术:电视画面的数字编辑、动画的制作、电子图像游戏、纺织工艺品设计、服装设计与制作、发型设计、文物资料照片的复制和修复、运动员动作分析和评分等等。
视频和多媒体系统:电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。
电子商务:图像处理技术在电子商务中也大有可为,如身份认证、产品防伪、水印技术等。
在这门课程的最后,代课老师给我们讲授了数字视频处理,让我们了解到数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,p2卡,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过pc,特定的播放器等播放出来。了解了数字视频发展过程和视频压缩的概念和分类等。
我们这门课程主要是上理论课,其中有很复杂的数学原理,专业术语多,基础知识要求高,理解起来有些困难。当初选择这门课是希望能有一些具体软件的教学。就我了解,视频处理的软件有maya、premiere、绘声绘影、windows自带的movemaker;处理数字图像的软件主要有matlab、photoshop、imagej(java图像处理程序)。其中,matlab和ps很具有教学性,这两个软件也运用的很广。
matlab全称是matrixlaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用中matlab中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了matlab在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
photoshop是adobe公司旗下最为出名的图像处理软件之一,集图像扫描、编辑修改、图像制作、广告创意,图像输入与输出于一体的图形图像处理软件,深受广大平面设计人员和电脑美术爱好者的喜爱。
如果能理论和实践相结合,相信我们会把数字图像处理理解的跟透彻,同时也锻炼了大家的动手能力。希望老师能考虑我的这点建议,多开设实际动手的课程。
数字图像处理实验心得篇十三
在生化实验课即将结束之时,我对在这半年来的学习进行了总结,总结这一年来的收获与不足。
取之长、补之短,在今后的学习和工作中有所受用。
这半年的生化实验主要有folin-酚法测蛋白稀碱法提取酵母rna醋酸纤维薄膜电泳rna定量测定-uv吸收法纤维素酶活力的测定最适ph选择菲林试剂热滴定定糖法肌糖元的酵解作用n-末端氨基酸残基的测定--dns-cl法柱层析分离色素凯式定氮法等实验。
在这些实验中,凯式定氮法是给我印象最深的一个实验,因为这个实验使我认识了改良式凯式蒸馏仪的基本结构,同样的也让我通过这次实验掌握了凯式定氮法的操作技术。
在这次实验中,我和我的同组者-韩文志犯了一些错误,而且是很不应该犯的错误,我们都忘了在做实验时要加入新的沸石,这是个很低级的错误,差点引起溶液的暴沸。
通过这次错误我认识到,很多知识,即使是老师在怎么说,它也只是理论,当我们不能把它应用到实践中去时,它对我们都是毫无意义的。
现在更深的认识到了理论结合实际的观点。
在这次实验中我们损坏了改良式凯式蒸馏仪,并且赔了钱,钱不是问题,重要的是操作的问题,我觉得我们在做实验时还是对仪器不是很熟悉,做实验时不认真。
还有一个是柱层析分离色素,这个实验主要是掌握吸附层析的原理和操作技术,我记得这次实验我是第二个到的实验室,当时还很有成就感,进来后就称菠菜,还有研磨,这是很累人的活,我觉得,因为想把它研磨的好些,又想快点做实验,于是就一直磨一直磨,直到做下一步时才觉得手腕有点累。
我记得在加棉花时,由于不知道应该加多厚,提取色素时还很是胆战心惊的。
我觉得在这个实验中,装柱这一步是很重要的,于是我们很小心的装,直到柱面很平。
直到最后,分离色素后,看到我们的色带分离的很好,很是高兴。
半年实验做下来,最“苦”的要数“菲林试剂热滴定定糖法”这个实验了。
这个实验要求我们正确掌握滴定管的使用方法和热滴定的终点。
由于全部滴定过程必须在沸腾状态下快速进行,而且终点不容易把握,我们滴了好几十次才确定了终点。
当时我的同组者-韩文志已经被火烤的不行了。
在这半年的十几次的实验的学习中,我受益颇多。
毫无疑问,它培养了我的动手能力。
每个实验我都会亲自去做,不放弃每次锻炼的机会。
经过这半年,我的动手能力有了明显的提高;它让我养成了课前预习的好习惯。
一直以来就没能养成课前预习的好习惯(虽然一直知道课前预习是很重要的),但经过这半年,让我不仅深深的懂得课前预习的重要,更领会了课前预习的好处。
只有在课前进行了认真的预习,在做实验时效率才会更高,才能收获的更多、掌握的更多;它还提高了我处理数据的能力;做实验就会有数据,有数据就要处理,数据处理的是否得当将直接影响实验成功与否。
半年实验虽然收获很多,但在这中间,我也发现了我存在的很多不足。
我的动手能力还不够强,当有些实验需要很强的动手能力时我还不能从容应对;我的探索方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成;我的数据处理能力还得提高,当眼前摆着一大堆复杂数据时我处理的方式及能力还不足,不能用最佳的处理手段使实验误差减小到最小程度……总之,生化实验课让我收获颇丰,同时也让我发现了自身的不足。
在实验课上学得的,我将发挥到其它中去,也将在今后的学习和工作中不断提高、完善;在此间发现的不足,我将努力改善,通过学习、实践等方式不断提高,克服那些不应成为学习、获得知识的障碍。
在今后的学习、工作中有更大的收获,在不断地探索中、在无私的学习、奉献中实现自己的人身价值!
数字图像处理实验心得篇十四
随着科学技术的发展,特别是四清在教学设计中的运用,要求教师必须掌握一定的结构图制作方法为自己的教学服务。通过学习,我对知识结构图有了进一步的认识,知道了好多以前根本没有接触过的东西,收获很大,下面我就谈谈自己的体会。
运用知识结构图可以将我们用语言难以表达清楚的问题直观、形象地展现给学生,有助于教学重点和难点的突破;在教学过程中把丰富多彩的图片资料展示给学生,可以引起学生的学习兴趣;通过某些问题的设置,可以培养学生对教学过程的参与意识,加深他们对问题的认识和理解程度;选择合适的媒体进行教学,可以增大我们的课容量,节约时间。
要让四清知识结构图在教学中发挥出应有的作用,它必须具备以下几个特点:
1、教学性
这是结构图最重要的一个特点。课件必须为教学服务,必须符合学科的教学规律,反映学科的教学过程和教学策略。在课件制作中,结构图的选择与组织、问题的设置等方面都必须体现这一特性。同时应深入浅出、注意启发。
2、科学性
“科学性”是知识结构图最基本的特点。结构图所涉及的内容必须科学、准确、健康、符合逻辑、层次清楚、合情合理,同时还要符合学生的年龄特点与知识水平。
3、美观性
结构图还包含各种类型的图标、树形等,让教师在课堂上更有灵活性,根据实际选择不同的学习路径。
1、结构图制作要简洁实用
知识结构图毕竟是一种辅助手段,它是用来辅助我们的教学的。一个好的课件关键在于它的实用性,应该说只要是有助于突破重点难点、有助于引起学生的深刻思考、有助于加深学生对问题的认识的课件就是好的知识结构图。
2、注意色彩的合理应用
色彩的应用可以给结构图增加感染力,但运用要适度,以不分散学生的注意力为原则。
3、注意字、图的混合
对于一些重点的字、词、句,除了采用不同的字号、字体和字形加以强调。
数字图像处理实验心得篇十五
随着信息时代的发展,数字实验已经成为现代科学研究和教育教学的重要组成部分。在进行数字实验的过程中,我收获了很多体会和经验,并深刻认识到数字实验对于学习和研究的重要性。在这篇文章中,我将分享我在数字实验中的心得体会,从而更好地理解和应用这一工具。
首先,数字实验能够提供科学研究和学习的实践环境。在过去,我们可能只能通过理论的学习来了解科学原理,而很难真正理解其运作方式。而现在,有了数字实验,我们可以通过模拟真实的实验场景和过程来观察和分析现象,从而更好地理解科学知识。例如,在进行化学反应实验时,我们可以通过调整实验条件和观察反应产物的变化来进一步理解反应原理,加深对化学反应的理解。
其次,数字实验能够提供安全和经济的学习环境。在传统实验中,我们可能会面临一些风险,特别是在处理危险物质时。而数字实验能够提供一个安全的学习环境,允许我们进行很多传统实验中不能进行的操作。通过数字实验,我们可以模拟化学反应、物理运动、生物过程等各种实验,而不必面对任何危险。此外,数字实验的成本也相对较低,不需要购买昂贵的实验器材,从而在经济上更加可行。
再次,数字实验能够提高学习和研究的效率。相比传统实验,数字实验更加高效。传统实验往往需要大量的准备工作,如准备实验器材、调整实验条件等,而这些工作可能会占用很多时间和精力。而数字实验则可以在短时间内完成,更加方便和快捷。此外,数字实验还可以记录和保存实验数据,并进行系统分析和处理,从而提高学习和研究的效率。
此外,通过数字实验,我们可以进行多种多样的实验。数字实验可以模拟各种实验场景和实验条件,不受时间和空间的限制。我们可以进行任何我们感兴趣的实验,包括天文观测、基因实验、物质分析等等。这使得我们能够更加广泛地探索科学的边界,拓宽知识的领域。这也为我们开启了更多的可能性和发现的机会。
最后,数字实验也有一些局限性。虽然数字实验提供了更好的实践环境和学习效果,但仍然无法完全取代传统实验。在某些实验中,我们还是需要亲自操作实验器材和观察实验现象。数字实验只是提供了一个辅助的手段,不能完全替代现实实验的重要性。
综上所述,数字实验是一种非常有用的工具,能够提供科学研究和学习的实践环境,提供安全和经济的学习环境,提高学习和研究的效率,以及开启更多可能性和发现的机会。在未来,随着数字技术的不断发展和创新,数字实验将会变得更加智能和便捷,为我们的学习和研究提供更好的支持和帮助。
数字图像处理实验心得篇十六
在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。
图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和vlsl的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。
1、数字图像处理需用到的关键技术
由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。
图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。
图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。
图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。
图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。
图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。
图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。
2、数字图像处理的特点数字图像处理的特点主要表现在以下几个方面:
1)数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。
2)数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。
3)数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。
4)数字图像处理后的图像受人的因素影响较大,因为图像一般是给人观察和评价的。
3、数字图像处理的优点
数字图像处理的优点主要表现在4个方面。
1)再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。
2)处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于图像数字化设备的能力。
3)适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像。只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。
4)灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。
4、数字图像处理的应用领域
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面,随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
航天和航空技术:在飞机遥感和卫星遥感技术中用配备有高级计算机的图像处理系统来判读分析,既节省人力又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。
生物医学工程:除了ct技术之外,还有对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。
通信工程:当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、dpcm编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。
工业和工程领域:图像处理技术有着广泛的应用,如自动装配线中检测零件的质量并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。
军事方面:图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。
文化艺术:电视画面的数字编辑、动画的制作、电子图像游戏、纺织工艺品设计、服装设计与制作、发型设计、文物资料照片的复制和修复、运动员动作分析和评分等等。
视频和多媒体系统:电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。
电子商务:图像处理技术在电子商务中也大有可为,如身份认证、产品防伪、水印技术等。
在这门课程的最后,代课老师给我们讲授了数字视频处理,让我们了解到数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,p2卡,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过pc,特定的播放器等播放出来。了解了数字视频发展过程和视频压缩的概念和分类等。
我们这门课程主要是上理论课,其中有很复杂的数学原理,专业术语多,基础知识要求高,理解起来有些困难。当初选择这门课是希望能有一些具体软件的教学。就我了解,视频处理的软件有maya、premiere、绘声绘影、windows自带的movemaker;处理数字图像的软件主要有matlab、photoshop、imagej(java图像处理程序)。其中,matlab和ps很具有教学性,这两个软件也运用的很广。
matlab全称是matrixlaboratory(矩阵实验室),一开始它是一种专门用于矩阵数值计算的软件,从这一点上也可以看出,它在矩阵运算上有自己独特的特点。实际运用中matlab中的绝大多数的运算都是通过矩阵这一形式进行的,这一特点决定了matlab在处理数字图像上的独特优势。理论上讲,图像是一种二维的连续函数,然而计算机对图像进行数字处理时,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
photoshop是adobe公司旗下最为出名的图像处理软件之一,集图像扫描、编辑修改、图像制作、广告创意,图像输入与输出于一体的图形图像处理软件,深受广大平面设计人员和电脑美术爱好者的喜爱。
如果能理论和实践相结合,相信我们会把数字图像处理理解的跟透彻,同时也锻炼了大家的动手能力。希望老师能考虑我的这点建议,多开设实际动手的课程。
数字图像处理实验心得篇十七
随着信息科技的迅速发展,数字实验逐渐成为教育领域的重要组成部分。作为一名学生,我有幸参与了一系列数字实验,并从中汲取了许多宝贵的经验和教训。在这篇文章中,我将分享我在数字实验中的心得体会,以期能够从中获得更多的启示和提高。
首先,数字实验为我提供了一个实践学习的机会,帮助我将书本知识与实际应用相结合。在过去的教学中,我常常只是被动地接受老师的讲解,并没有机会亲自动手实践。然而,数字实验为我提供了一个模拟实验的环境,让我能够亲自动手去实践所学的知识。例如,在一个化学实验中,我需要将所学的化学公式应用于实际操作中,以验证理论的正确性。通过这样的实践学习,我能更好地理解和掌握知识,并将其应用于实际生活中。
其次,数字实验培养了我解决问题的能力和创新思维。在数字实验中,我遇到了许多意想不到的困难和挑战,需要我自己动脑筋去找出解决办法。例如,在一个物理实验中,我需要设计一个合适的实验方案,以测量光的折射角度。我花了很多时间进行试错实验,并不断调整参数,最终成功测得了准确的结果。通过这样的过程,我学会了从多个角度思考问题,并找到最佳的解决方案。这种解决问题的能力和创新思维,对我未来的学习和工作都有着重要的意义。
此外,数字实验还培养了我的数据分析和科学实证能力。在数字实验中,我需要收集大量的数据,并对其进行分析和解释。例如,在一个生物实验中,我需要观察不同环境条件下昆虫的生长情况,并分析其与环境因素的关系。通过这样的数据分析,我能够发现一些规律和趋势,并从中得出科学的结论。这种数据分析和科学实证的能力,对我未来的研究和实践也将大有裨益。
最后,数字实验还加深了我对学科知识的理解和兴趣。通过亲自动手实践,我能够更深入地理解和掌握学科知识,并对其产生一种浓厚的兴趣。例如,在一个历史实验中,我通过互动式的模拟场景,深入了解了当时的历史背景和重要事件,激发了我对历史的进一步探索和研究的兴趣。数字实验为我提供了一个开放性的学习环境,让我能够根据自己的兴趣和需求进行自主学习,从而更好地激发学习动力和潜能。
总而言之,数字实验为我提供了一个实践学习的机会,培养了我解决问题的能力和创新思维,加深了我对学科知识的理解和兴趣。通过参与数字实验,我不仅获得了理论知识的实际应用,还培养了一系列重要的实践能力。我相信,这些经验和能力将对我未来的学习和工作产生深远的影响。因此,我将继续积极参与数字实验,并努力将所学的知识和经验转化为实际行动,为未来的发展打下坚实的基础。
数字图像处理实验心得篇十八
这两个月的实训短暂而又充实。在这里,我不仅学到了知识、技能,更重要的是,我在指导老师和同事的身上学到了对工作和对事业的追求,以及他们良好的职业素养,他们的潜移默化和谆谆教导使我在以后的职业生涯中终身受益。
在这里,我感受了良好的氛围,有幸得到指导老师秦方主任的悉心教诲以及其他部门领导和同事的帮助。他们对我都很照顾,只要有问题、有麻烦,不管找到谁都会给我指导。在这里始终可以感觉到和谐的人际关系所带来的温暖和关爱。
我将把我所学到的东西好好的珍惜,我不仅学习了检测专业知识,更重要的是学到了一种敬业精神,努力做到高效、自律、求实、创新,把自己融入到一个大团队中去。
最后,对我的指导老师秦方主任、对泰峰实验室的领导和同事们表示我最衷心的感谢!
数字图像处理实验心得篇十九
数字实验是指利用计算机、互联网等技术手段进行实验操作和数据处理的一种新型实验形式。在这次数字实验中,我不仅了解到了新的实验方法和数据处理技术,还深刻感悟到了数字实验的优势和挑战。下面,我将就我的数字实验心得体会进行具体阐述。
首先,数字实验突破了传统实验的地域和时间限制。在课堂上,我们通过网络平台远程连接实验设备,无需亲自到实验室,节省了不少时间和精力。同时,数字实验可以随时进行,并且不受实验室开放时间的限制,大大提高了实验的灵活性和便利性。我可以在任何时间、任何地点进行实验探究,不再受到实验设备的限制,让我能够更有效地学习和掌握实验内容。
其次,数字实验提供了更丰富多样的实验资源和数据处理方法。通过数字实验,我可以接触到不同类型的实验,更加全面地了解科学知识。同时,数字实验还提供了丰富的数据处理工具和模拟实验平台,让我可以直观地观察和分析实验数据,更好地让我掌握实验原理和实验技巧。与传统实验相比,数字实验更加直观、丰富和灵活,让我在实验中获得了更多的乐趣和启发。
然而,数字实验也存在着一些挑战和问题。首先,由于数字实验是通过远程连接实验设备进行操作,网络稳定性成为了一个重要的因素。在实际操作中,我曾遇到过网络不稳定,导致实验数据传输不畅或者无法连接设备的情况,影响了实验的进行。其次,数字实验的操作环境相对闭塞,与传统实验相比,缺少了与实验设备的亲自接触和交流,影响了深入理解实验原理和操作技巧的机会。此外,数字实验对学生的自觉性和自律性要求较高,需要我们自主学习和探究,而不能依赖于老师的指导和督促。这对于一些习惯于有老师引导的同学来说,可能会存在一定的困难和挑战。
针对这些挑战和问题,我形成了相应的应对策略。首先,我在进行数字实验之前,会确保网络连接的稳定性,避免因为网络问题导致实验失败。其次,我通过积极参与课堂讨论和团队合作,与同学们分享实验心得和问题,在互助中提高自己的理解能力。同时,我也会自己主动寻找相关的资料和书籍,加深对实验原理和操作技巧的理解。最后,我在进行数字实验时,会制定好计划和时间表,合理安排学习和实验的时间,提高学习的效果和效率。
通过这次数字实验的学习,我深刻认识到了数字实验的优势和挑战,也体会到了数字实验带来的启发和乐趣。数字实验突破了传统实验的时间和地域限制,提供了丰富多样的实验资源和数据处理工具。然而,数字实验也存在着网络稳定性、操作闭塞性和学生自觉性的挑战。通过积极应对这些挑战,我能更好地利用数字实验的优势,提高实验学习的效果和体验。我相信,在未来的学习中,数字实验将继续发挥重要的作用,为我们提供更广阔的学习平台和实验机会。