最新大数据导论心得(案例15篇)
音乐是一种美妙的艺术表达方式,它能够抚慰人心,激发灵感。培养语文兴趣,是掌握好语文的关键。我们为大家准备了一些优秀的总结范文,希望能给大家带来思考和灵感。
大数据导论心得篇一
10月23日至11月3日,我有幸参加了管理信息部主办的“20xx年大数据分析培训班”,不但重新回顾了大学时学习的统计学知识,还初学了python、sql和sas等大数据分析工具,了解了农业银行大数据平台和数据挖掘平台,学习了逻辑回归、决策树和时间序列等算法,亲身感受了大数据的魅力。两周的时间,既充实、又短暂,即是对大数据知识的一次亲密接触,又是将以往工作放在大数据基点上的再思考,可以说收获良多。由衷地感谢管理信息部提供这样好的学习机会,也非常感谢xx培训学院提供的完善的软硬件教学服务。
近年来,大数据技术如火如荼,各行各业争先恐后投入其中,希望通过大数据技术实现产业变革,银行作为数据密集型行业,自然不甘人后。我行在大数据分析领域,也进行了有益的探索,并且有了可喜的成绩。作为从事内部审计工作的农行人,我们长期致力于数据分析工作。但受内部审计工作性质的限制,我们也苦于缺少有效的数据分析模型,不能给审计实践提供有效的支持。这次培训,我正是带着这样一种期待走进了课堂,期望通过培训,打开审计的大数据之门。
应该说,长期以来,农业银行审计工作一直在大规模数据集中探索。但根据审计工作特点,我们更多的关注对行为数据的分析,对状态数据的分析主要是描述性统计。近年来火热的大数据分析技术,如决策树、神经网络、逻辑回归等算法模型,由于业务背景不易移植,结果数据不易解释,在内部审计工作中还没有得到广泛的应用。
通过这次培训,使我对大数据分析技术有了全新的认识,对审计工作如何结合大数据技术也有了一些思考。
目前,审计平台采用单机关系型数据库。随着全行业务不断发展,系统容量不断扩充。超过45度倾角的数据需求发展趋势,已经令平台不堪重负。这次培训中介绍的数据挖掘平台技术架构,很好地解决了这一难题。挖掘平台利用大数据平台数据,在需要时导入、用后即可删除,这样灵活的数据使用机制,即节省了数据挖掘平台的资源,又保证了数据使用效率。审计平台完全可以借鉴这一思路,也与大数据平台建立对接,缓解审计平台资源紧张矛盾。
目前,审计选样主要通过专家打分法。这次培训中介绍的逻辑回归和决策树算法,也是解决这一方面的问题。通过历史样本和历史底稿的数据,通过训练建立选样模型,将与底稿相关的主要风险特征选入模型,再将模型应用于验证样本。这样就可以应用大数据技术,为审计提供支持。
本次培训中我们也看到,经过一段时间的积累,我行已经具备了一定的大数据分析经验,储备了一批具有相应经验的人才。作为业务部门,我们应加强与管理信息部和软件开发中心的对接,通过相互沟通和配合,确定业务需求,发挥各自优势推动大数据技术的落地。就像行领导所指出的那样,大数据技术哪个部门先投入,哪个部门先获益。目前,我行大数据技术应用正处于井喷前夕,我们应抓住这一有利时机,推动审计工作上一个新台阶。
这次培训对于我来说,只是打开了一扇窗,未来大数据分析的道路还很长、也一定很曲折,但我也坚定信念,要在这条路上继续努力,所谓“独行快、众行远”,有这样一批共同走在大数据分析路上的农行人陪伴,相信农业银行大数据之路必将有无限风光。
大数据导论心得篇二
大数据在当今已经成为了一个非常热门的话题,在各个领域中都有着广泛的应用。而学习大数据导论,可以帮助我们更好地了解大数据是什么、它的基本概念、常用工具以及如何利用它来解决现实问题。在这里,我将分享一下我学习大数据导论的心得体会。
第二段:基础概念的理解。
在学习大数据导论的过程中,最基础的是要理解大数据的相关概念。比如,什么是大数据?大小是如何定义的?数据挖掘和机器学习的区别是什么?如何对数据进行预处理等等。在这个过程中,我通过查看相关资料并反复学习,最终对这些基础概念有了深入的理解。
第三段:工具的使用。
在大数据领域中,有很多常用的工具,如Hadoop、Spark、Storm等等。这些工具能够帮助我们处理大量的数据,并进行更为灵活的操作。在学习大数据导论的过程中,我学习了Hadoop和Spark的基本使用方法,比如如何在Hadoop中上传文件、如何编写Spark程序、如何运行等等。这些工具的学习,让我更加深入地了解了大数据的处理流程和相关技术。
第四段:实际应用案例。
学习大数据导论不仅仅只是学习知识点,更重要的是如何将这些知识应用到实际问题中。在学习过程中,我浏览了很多与大数据相关的案例,如如何分析社交媒体数据、如何提高销售量等等。这些实际应用案例,让我更好地理解了大数据的应用场景,并对如何将大数据应用到实际问题中有了更深层次的认识。
第五段:总结与展望。
通过学习大数据导论,我不仅仅深入地了解了大数据相关的概念和技术,还学到了如何将大数据应用到实际问题中。这不仅仅是对我个人而言,对于很多从事数据分析、机器学习等领域的从业人员,都是非常有益的。当然,我知道这只是大数据领域的一个小小的开始,在未来的学习和工作中,我会进一步深入学习和探索,掌握更多的大数据相关知识和技术,为更好的服务于社会作出一份自己的贡献。
大数据导论心得篇三
应集团公司的安排,20xx年12月9日至1xx日我很荣幸的来到美丽厦门国家会计学院,参加了国资委举办的山西省省属企业高级财务管理研修班。通过xx天的学习,让我丰富了知识,开阔了视野,了解了一些当前经济热点问题,转变了思想理念,感受颇多。
通过对可持续发展的财务问题学习使我们了解到了会计改革对国家经济、政治方面起到的助推作用。了解我国会计政策在世界经济大环境当中的重要作用,让我们学会站在社会经济发展的全局上,历史的、全面的、客观的、发展的来观察和认识形势,学会在一个更高的层次上来观察分析问题,我们进一步理解财务管理的内涵和财务管理者在新的形势下,要用可持续发展的目光来决策,实现企业利益的化。
面对一带一路的倡议,我国经济形势有了新的发展方向。作为一个财务人员理应适应新的形式,学以致用,现代社会科技进步日新月异,知识更新日益加快,只有适时掌握学习技巧,加快接受新知识、新理念的速度成为为社会高速发展服务的财务人才。从而实现振兴中华民族复兴大业的梦想,实现我国和周边国家和地区经济发展的双赢。
当前形势离不开数字化和大数据的应用,作为一个新时代的财务人员,理应了解和掌握大数据商务智能化的发展方向,掌握运用好数据及互联网运用,以适应新的时代发展的需求。
总之,通过这次进修学习。感谢集团给我们搭建了一个好的平台。营造了一个良好的学习环境,给我们带来了新的思维,新的理念和新的工作思路。我们会把这次学习到的知识运用到工作当中,与时俱进,为企业的发展献计献策。
大数据导论心得篇四
《大数据导论》是一门了解大数据的基本原理、技术和应用的通识性课程,它帮助我们了解了大数据的基本概念、大数据的挖掘模型、大数据处理的技术以及大数据应用的实际场景等方面的知识。作为这门课程的学生,我在上完这门课之后有很多感受和收获,现在我就想借此机会,分享一下我的课后心得体会。
第二段:学习大数据带给我的启示
通过这门课程,我感受到大数据的重要性,发现大量的数据离不开大数据的支持。了解到大数据在各个领域中的重要应用,如医疗、金融、教育等,这正好印证了“数据就是金子”这句经典名言。在今天数字信息爆炸的时代,大数据分析技术的应用是不可或缺的。大数据分析研究为我们提供了新的思维模式和分析工具,可以更好地解决实际问题。所以,我坚信今后学习大数据技术将是至关重要和必不可少的。
第三段:学习大数据所面临的挑战
在学习过程中,老师简要介绍了一下大数据中的“三V”- Volume(数据量)、Velocity(数据处理速度)和Variety(数据多样性)的概念。面对巨大的数据信息,如何更加有效地获取、处理并提高处理速度是我们要思考的问题。我们也发现在使用大数据技术的同时满足数据安全性及隐私保护的问题也是一个重要的话题,这不仅需要相关监管法规的制定,也需要企业进行自我约束和完善内部机制。同时,也为学习者和从业者提供了更多的机会和需求。
第四段:学习大数据理论的提升
通过《大数据导论》这门课程,我学习了Hadoop、MapReduce、数据挖掘算法、机器学习等技术。这些技术及算法的学习不仅直接提高了我们对于大数据的认知水平,也提升了我们自身的学习能力和掌握某些技术的能力。可以肯定的是,这将会是未来个人职业发展和企业竞争的一大优势。
第五段:总结
在本文中,我分享了自己在学习《大数据导论》这门课程中所获得的收获。我们学习了大数据处理和分析的基本理论知识,并了解了大数据技术在各个领域的应用。同时,我们也学会了如何提高自身的学习能力和掌握某些技术的能力。学习完这门课程,我们对于如何分析利用数据以及捕获数据中的价值有了更加深刻的认识。我相信,在未来的职业生涯中,这些知识和技能将会产生很大的帮助。
大数据导论心得篇五
学习数据库对我来说是一直都计划学的,没接触的时候总是觉得它比较深奥或是不可接近的电脑知识,尽管自己对电脑非常感兴趣,其实还是有些心理上的陌生感,数据库学习心得体会。
学习电脑就和我们平时的其它科目学习一样感觉它有永无止境的知识,在这从初接触电脑时连个电脑的键盘都不敢动到现在连硬盘都也修理,其中的过程是多么长啊,数据库是我在高中时候听过,到了大学渐渐了解了些,但就其原理性的内容还不知道,也就是根本就不清楚什么是数据库,只是知道一个所谓的中国字典里的名词。
我认识它是从我接触网页制作开始的,初用frontpage做网页也就是弄几个框图,没什么东西但还觉得不错,后来听朋友说这是最简单最普通的东东。朋友告诉我真真的网页起码也用到数据库这些东西了,有什么前台的后台的。听我的都晕头转向了,感觉自己是一个长不大的菜鸟了,之后我就去查找相关资料发现在数据库有很多种,这才对它有所了解。
大一、大二的时候想学可不知道怎么学,从什么地方学起。当时也没注意选课本上有这类的课程,到了大三正式的课程也轻松些了,仔细观摩了选修课发现有数据库,有数据库原理和oracle数据库。
当时感觉oracle数据库既然是单独一门课程一定会讲的比较细,也能学到真正实用的内容。选上了这门课以后发现和我想的基本是一样的,老师对学生也比较和蔼可亲,对我们要求也不是很紧。让每个人都觉得轻轻松松就能把这门课程学完,没有多么紧张的作业,也没有太苛刻的要求。
当老师在最后说这个课程结束了,回顾一下以前老师给我们讲过的东西,真的有很多是我们应该去注意的。学习完oracle数据库后感觉oracle可分两大块,一块是开发,一块是管理。开发主要是写写存储过程、触发器什么的,还有就是用oracle的develop工具做form。
有点类似于程序员,当然我可不是什么程序员,有几个程序员朋友他们是我的偶像。开发还需要有较强的逻辑思维和创造能力,自己没有真正做过,但感觉应该会比较辛苦,是青春饭;管理则需要对oracle数据库的原理有深刻的认识,有全局操纵的能力和紧密的思维,责任较大,因为一个小的失误就会down掉整个数据库,相对前者来说,后者更看重经验。这些东西都是从老师哪里和朋友的讨论中得到的心得,也希望其他朋友能多多向老师和朋友请教,如果是个人单独靠自己来完成一个完美的数据库我觉得比较困难,现在基本上都是团队类型的,而且他们的效率高开发的周期也快。
俱乐部认识几个比较历害的人,他们的团队精神我比较佩服,像我这样一个大学生和他们说起来太菜了。由于数据库管理的责任重大,很少公司愿意请一个刚刚接触oracle的人去管理数据库。
对于我们这些初出茅庐的新手来说,个人认为可以先选择做开发,有一定经验后转型,去做数据库的管理。当然,这个还是要看人个的实际情况来定。其实在烟台大学里学生中有做的好的也是有,只不过通常象这些兄弟们我觉得很少能发现在,因为我只知道一个。在烟雨楼台的bbs版块里有个程序版块,这位版主以前就是学校网络中心的牛人。他曾告诉我学习的方法就是:看书、思考、写笔记、做实验、再思考、再写笔记。我觉得说的很对,对于新手来说就要这样,不断的去努力奋斗,最后一定能得到自己想要的成果。
以前没接触过它,现在认识了它才知道oracle的体系很庞大,要学习它,首先要了解oracle的框架。它有物理结构(由控制文件、数据文件、重做日志文件、参数文件、归档文件、密码文件组成),逻辑结构(表空间、段、区、块),内存分配(sga和pga)算机的实际内存中得以分配,如果实际内存不够再往虚拟内存中写,后台进程(数据写进程、日志写进程、系统监控、进程监控、检查点进程、归档进程、服务进程、用户进程),scn(system change number)。
这些东西感觉都比较专业,我对它们也就是个知道,想要真真去认识我还得努力去做。虽然懂得还不是很多,起码会了基本的软件操作,老师说我们用的都是客户端,服务端看不到,也不知道服务端是什么样的,只知道客户端就挺多东西的,没有真正的去学习利用是很难掌握的。
oracle数据库的学习使我对数据库的有了新的进步,以后再看到也就不至于什么也不懂,其实那么多数据库我觉得学好一门就行,只是他们的语言可能不大一样,学好一门后就可去认识其它的,这样应该有事半功倍的效果。就像我学习c语言,当时不能说是学习的棒,但不算差。所以我对以后的语言感觉都不是很困难,了解了vb、c++还有网页中用的html语言、asp语言都能看懂,起码可以对别人的东西进行了一下修改。
因此,我感谢oracle数据库老师给了我有用的知识,以便我在以后学习或认识更多的内容能有新的方法和思维,也能更加有效和快速的去消化吸收新的东西。
希望在今后中,oracle能给我更多帮助,让我在我熟悉的vb中运用上去,我以前的一个目标是要为学校的选课做一个选课助手来帮助大学,就用我的vb。不过因为种种原因一直没有完成,也包括我对数据库的不了解,因为学了oracle以后知道第一项内容是通过sql查询后得到的,如果去把它们联系起来还不是真正明白,不过我相信我的目标能在学习oracle后得到进展。
大数据导论心得篇六
这学期我们学习了数据库应用教程这门课,以前并不知道这门课是干什么的,也不懂得什么是数据库,通过这一学期的学习,虽然了解的不是非常多,但也有了初步的一点认识。
我大概的明白数据库技术是处理信息,管理数据最有效的一种方法。它具有完善的数据管理功能,还具有操作方便,简单实用等特点。因为我是非计算机专业的学生,所以我学起来就感觉很难,在上第一堂课的时候,因为不了解,于是心里充满了对这门课的神秘感,在第一堂课上我听得很认真,我感觉它与其他的课程没有什么联系,不需要其它太多的知识,我想它可能是一门从头开始学的课,就没有太多的担忧,然而事实并不是我想的这样,随着时间的延长,我发现每一堂课都比前一堂课难,逐渐的我听得就越来越吃力,还好书上除了理论知识外还有很多例题和图片,这对我对知识的理解有很大的帮助。
同时老师每堂课都用详细的和书上相似的ppt,并且老师讲的非常细致,书上的每一个知识他都会仔细的给我们讲解,有时遇到比较难的问题他还会很耐心的讲解好几遍直到我们都明白了为止,有时候我们好多人都没有听,但只要有人听,他就会很认真的讲。本书的第一章主要介绍数据库系统的基本概念,vfp的开发环境,项目管理器等知识,还记得上第一章时老师就告诉我们这一门课程对我们来说比较难学,也鼓励我们不要放弃,要慢慢的理解,老师总是态度很和蔼的与我们说话,更减少了我们对这一门课的恐惧感。
为了让我们更好的理解所学的知识,老师还为我们准备了与教学知识相关的实验内容,一般在每堂理论课后都会有实验课,所做的实验都是我们刚学的那些基本的,重点的知识。这种理论与实验相结合的方式加深了我们对教材的理解。刚开始做实验时,因为是初学,所以老师会把所有的步骤都写上,让我们照着做,先熟悉它的基本操作,再慢慢的理解,时间久了,老师就会省去一些简单的步骤,让我们自己练习。并且每次实验之间都有一定的联系,比如下一次实验时当中有的东西就要用到上一次或前几次的实验内容。如果第一次没有做或者没有做完,就会影响到下一次的实验,刚开始我因为不熟就做不完,也不知道与以后的实验是有联系的,偶尔做完了也不知道保存,直到做到下一次实验不会做去问老师时,才知道那是上节课的内容,于是我又从第一次重新开始做起。这样不仅浪费时间,而且赶不上老师的进度,每一节我就会忙于做以前的任务,而不能及时做当天的,从而总觉得自己很忙,但又不知忙了些什么,更不能及时掌握当天所学的知识。使不懂的知识越来越多,自然也就觉得学起来很吃力。
书中第二章给我们介绍了vfp的基础知识及数据运算,这一章内容让我对数据库有了进一步的理解,这也为我以后学习数据库打下了基础,因为基础的东西才是一切学习的前提,没有这些知识又怎能继续学习后面的知识。第三章讲了表的基本操作,如对表结构的认识,如何创建表和修改表操作,排序与索引,数据表的统计,工作区与多表操作,表文件等。这一章内容是数据处理与操作的前提基础。每一章的内容由浅入深,层层相扣,关系密切。这对我们学好这门课有很大帮助。
通过这一学期的学习我了解到数据库有很多优点,对我们的学习和生活非常有用,第一,它可以实现数据共享,所有用户可同时存取数据库中的数据,也可以用各种方式通过接口使用数据库,这样大大方便了我们每一个人的学习与生活。第二,它可以减少数据的冗余度,与其他的一些文件系统相比,因为数据库实现了数据共享,从而避免了用户各自建立应用文件,减少了大量重复数据,减少了数据冗余,这一特点使我们的操作更方便更快捷。减少了时间的浪费,提高了工作的效率。第三,数据库可以确保数据的安全性和可靠性,可以防止数据丢失,保证数据的正确性和有效性,同时数据库可以及时发现故障并修复故障,从而防止数据被破坏。数据库的这一系列特点都决定了它有很强大的功能,可以为我们提供很多方便,提高了我们的学习生活效率和质量,是一门很值得我们去学习的一门课程。我们应该重视它,使其更好地帮助我们。现在想起来还有一点点后悔,当时没有好好听。
在这一学期有限的几次实验课后,我虽然没有学会很多,但也学会了一些简单的操作,我学会了一些简单的数据运算;会建立一些简单的表,修改表的结构和在表中输入简单的记录以及对表记录的定位和修改;创建与编辑数据库等比较容易简单的操作。有时候在做实验时,对于实验中的一些东西我不怎么了解,但我还会去做,因为我想只有多练习才能熟练,也才能理解掌握知识。我不知道这一门课对其他同学来说怎么样,但对我来说却有些难,但我会努力。因为我认为它对我以后考计算机二级有很大的帮助。
很快这一学期马上就要结束了,数据库这一门课也很快就要结束了,但这一学期的学习让我知道了很多,尤其是老师的耐心,老师的敬业精神感动了我,每一次还在午休时就有不想去上课的冲动,但我都克服了,因为我想到老师从那么远来给我们上课,他能来,为什么我不能,所以每次我都会说服自己要好好上课。这不仅仅对我的学习有很大的启示,更重要的是,他也告诉了我在以后的人生中如何去做事,如何去做人。再做任何事时都应该认真负责,任何一个人都应该被尊重。因为有人还是想听,所以每次有人说话时,老师就会说你可以不听,可以睡觉,但不能影响其他人听课。上次清明放假时,好多人想回家,所以大部分人都没有来,老师并没有生气,而是很理解我们,有时候当别人理解我们时,我们应该思考自己有没有去理解过他人,这是相互的,就像老师理解我们一样,我们也应该按时上课,尊重老师,理解老师。
大数据导论心得篇七
我校教师20天的网络大数据学习,明白了世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。
1、大数据时代我们如何做教师。
我们要明白的是,大数据时代下,教师在知识层面将无任何优势,当学生面对网络这个巨大的知识海洋,老师的半桶水完全失去了意义。老师是在知识和能力之间构造一座桥梁,这个桥梁叫做训练。所以说,未来教师的有可能的体育教练型的,需要为学生制定一对一的训练计划。
2、今天获取知识的渠道和教学方式发生了怎样的变化?
荒蛮时代人们的知识主要来自生活,来自自然与社会;慢慢的,人们学会了书写,有了书籍,于是书籍成了人们知识的来源;再往下,出现了老师,有了学堂,人们的知识,就从老师和课堂那里来了。随着时代和技术的发展,有了无线电、收音机、电视、电脑、网络之后,人们知识来源的渠道就越来越多了。于是幻灯机、收音机、录音机、电视、电脑、网络、电子白板、微格教学技术一拨一拨地走进了教室,也一拨一拨地离开了教室。
现如今,人们获取知识的渠道早已经发生了变化,学习的方式自然也随着发生了变化。过去那种授受关系的教育——老师教、学生听;老师布置作业,学生做作业;老师出试卷,学生考试卷——再不是不可以撼动的了。
学习方式的变化势必带来教学方式和管理方式的变化。可悲的是,在这个大数据时代,我们的教育管理思想、教育观念、教学技术,还停留在农耕时代,甚至原始时期:一味地拼时间,游题海,上班签到,下班签走,上班期间还有没完没了的巡查、通报。管理者更多地将精力转移到备课笔记检查、推门听课、教学质量分析(其实就是开会表扬和批评)上了。
3、我们如何应对?
大数据背景下的教师要走进网络。
大数据背景下的教育,许多情况下是要借助网络技术的。比如在线教育、翻转课堂,作为一种教学形式,我们在设计制作的时候,重要的恐怕不只是技术,更重要的是要改变我们的教育教学理念,并借此来影响学生的学习理念和生活观念。
另一个方面,我们必须尽可能从台前走到幕后,从屏前面走到屏后去。我们如果真想要学生的聪明才智得到充分的发挥展示,我们就得走进幕后,给他们以实实在在的帮助与支持,或是默默的支持。所谓“从台前走到幕后”,即尽量让学生真正的成为课堂的主人,而你成为他的帮助者,影响者。而“从屏前面走到屏后”强调的则是课程的开发与设计。
我们这些教师去讲授。不要把那些专家的话都奉为神明,譬如一堂课只允许讲15分钟,15分钟能讲个明白吗?但是换过来讲,有些问题需要讲15分钟吗?这都是常识性的问题,其实我们真正要解决的是如何讲的问题。
合作学习这个词语对我们而言,早已经是耳熟能详的了。但合作学习更需要的是对学生有具体的个别化指导,因为不同的人学习的情景和背景是不一样的,他的出生,他的人生经验,尤其是他前一个学段所在学校教学对他的影响是不一样的。比如,实验小学的学生跟乡村小学的学生的知识背景和学习结构肯定会不一样。我师傅曾经常讲,城里的孩子跟乡下的孩子比比,什么都不一样,就连看的广告多少都不一样,你看看城里的孩子,出门就看到广告,乡下的孩子出门看到的是什么,是田野,天空,不一样的。
指导应该是因人而异的,具体化的。我们经常讲头脑风暴,但它还是有一个组织者,教师的功能其实就是一个组织者,不仅是课堂组织者,同时他还是教学资源的组织者。学校教育有一个很重要的任务,恐怕是要设法把学生的“知”与“行”从网络中解放出来,互联网会解决“知”的问题,但是解决不了“行”,基于网络的探究也只是探究而已。如何做?如何实践?我相信这是教师们大展宏图的新领域。
大数据背景下的教师应成为课程资源的开发者和组织者。
如何把学校的课程资源跟教材的内容,跟学校所在的社区以及当下的社会事件组织起来?在这点上我是比较擅长的。我每到一个地方讲课,我都会很自觉地把这个地方的风土人情和最近发生的事件跟主题内容有机地结合起来。一个好教师需要有一种教学敏感,所谓教学敏感,就是遇到某个社会问题,你就思考是否有教育教学价值。实际上,并不是所有的资源都有教学价值的,更不能所有的资源都有教育的价值,尤其是今天这个知识大爆炸的时代,就更需要我们教师的教学敏感。
在大数据背景下,我们早已经不是知识的控制者了,在许多知识面前我们甚至已经落在学生后面一步,几步了。我们的优势或许就只有阅历和经验了,然而,这正是学生身上所缺乏的,也是他们最需要的。
与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。
大数据导论心得篇八
随着信息技术的不断发展,大数据已逐渐成为当前最热门的技术研究方向之一。为了更好地掌握这门技术,我开始学习了《大数据导论》这门课程。在学习的过程中,我有了许多的体会和感悟。下面就让我分享一下我的学习心得吧。
第二段:大数据的概念和应用。
在课程的前几节课中,我们了解到了大数据的概念和应用。大数据是指集成的、海量的、多元化的数据资产,它不同于传统的数据处理模式,需要借助集群、云计算和分布式计算等技术才能进行处理。这一技术在实际应用中也有着广泛的领域,如金融、医疗、智慧城市等各个领域。通过学习这些内容,我深刻地意识到大数据技术在推动社会发展中所具有的重要作用。
在掌握了大数据的概念和应用后,我们又学习了大数据技术的基本运作模式。通过对Hadoop、NoSQL等技术的学习,我深刻地了解到了这些技术的架构和原理。同时,在学习的过程中,我也意识到了数据分析和处理的importance,并开发了一些基本的数据处理技能。
第四段:大数据技术的发展趋势。
通过学习,我们还了解到了大数据技术的发展趋势。一方面,人工智能技术的不断应用将会进一步推动大数据技术的发展和应用,另一方面,随着云计算和边缘计算等技术的不断发展,大数据技术也将会实现更为广泛的应用。这些发展趋势,不仅对于大数据技术从业者的职业发展具有重要意义,同时也鼓舞着我更加深入地学习和应用这一技术。
第五段:结语。
通过这门课程的学习,我深刻地认识到了大数据技术所具有的重要意义,并掌握了一些基本的技术要点,同时也为我的职业规划和发展提供了有益的参考。在未来的学习和工作中,我一定会更加深入地学习这一技术并加以应用。
大数据导论心得篇九
随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。
第二段: 数据质量问题
在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。
第三段: 数据筛选
在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行 数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。
第四段: 数据清洗
数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。
第五段: 数据集成和变换
数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。
总结:
数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。
大数据导论心得篇十
随着云计算和物联网的日渐普及,大数据逐渐成为各行各业的核心资源。然而,海量的数据需要采取一些有效措施来处理和分析,以便提高数据质量和精度。由此,数据预处理成为数据挖掘中必不可少的环节。在这篇文章中,我将分享一些在大数据预处理方面的心得体会,希望能够帮助读者更好地应对这一挑战。
第二段:数据预处理的重要性
作为数据挖掘的第一步,预处理的作用不能被忽视。一方面,在真实世界中采集的数据往往不够完整和准确,需要通过数据预处理来清理和过滤;另一方面,数据预处理还可以通过特征选取、数据变换和数据采样等方式,将原始数据转化为更符合建模需求的格式,从而提高建模的精度和效率。
第三段:常用的数据预处理方法
数据预处理的方法有很多,要根据不同的数据情况和建模目的来选择适当的方法。在我实际工作中,用到比较多的包括数据清理、数据变换和离散化等方法。其中,数据清理主要包括异常值处理、缺失值填充和重复值删除等;数据变换主要包括归一化、标准化和主成分分析等;而离散化则可以将连续值离散化为有限个数的区间值,方便后续分类和聚类等操作。
第四段:实践中的应用
虽然看起来理论很简单,但在实践中往往遇到各种各样的问题。比如,有时候需要自己编写一些脚本来自动化数据预处理的过程。而这需要我们对数据的文件格式、数据类型和编程技巧都非常熟悉。此外,在实际数据处理中,还需要经常性地检查和验证处理结果,确保数据质量达到预期。
第五段:总结
综上所述,数据预处理是数据挖掘中非常重要的一步,它可以提高数据质量、加快建模速度和提升建模效果。在实际应用中,我们需要结合具体业务情况和数据特征来选择适当的预处理方法,同时也需要不断总结经验,提高处理效率和精度。总之,数据预处理是数据挖掘中的一道不可或缺的工序,只有通过正确的方式和方法,才能获得可靠和准确的数据信息。
大数据导论心得篇十一
段落一:引言(大数据的重要性)
大数据是指海量、高速、多样化的数据集合,它潜力巨大,能够为企业、政府和个人带来许多机遇。随着科技的发展,我们进入了一个数据爆炸的时代,数据量急剧增加,传统的数据处理方法已不再适用。因此,掌握和利用大数据成为企业和个人在这个信息时代中走向成功的关键。
段落二:大数据的发展和应用
大数据的发展展现出惊人的前景和巨大的潜力。大数据技术可以通过收集和分析各种类型的数据,揭示出隐藏在数据中的规律和信息。在商业领域,大数据分析可以用于市场预测、客户行为分析、销售策略等,帮助企业更好地了解市场需求,提高决策的准确性和效率。在医疗领域,大数据技术可以用于疾病预测、个性化治疗等方面,为患者提供更好的医疗服务。在城市管理方面,大数据分析可以帮助政府了解交通拥堵、治安状况等,从而优化城市规划和管理。
段落三:大数据的挑战与应对
然而,面对海量的数据,我们也需要面临一些挑战。首先是数据的质量问题,大量的数据中可能存在噪声、不准确和不规范的数据,这会影响到数据分析的结果。另外,数据的隐私和安全问题也是一个重要的挑战。在数据处理过程中,我们需要确保数据的隐私和安全,避免数据被滥用和泄露。此外,数据的处理和分析也需要强大的计算能力和技术支持。面对这些挑战,我们需要通过加强数据质量管理、制定严格的数据安全策略和加强技术研究,才能更好地应对。
段落四:利用大数据的经验与心得
在实际应用过程中,我对利用大数据有了一些心得和经验。首先,我们需要明确自己的目标,明确要解决的问题和需要的数据类型,然后有针对性地进行数据收集和分析。此外,我们需要注重数据质量的管理,剔除噪声数据,确保数据的准确性和可信度。同时,我们也应该不断学习和更新知识,紧跟大数据技术的发展,以便更好地应对和利用大数据。另外,团队合作也是很重要的,在大数据分析过程中,团队成员之间需要互相配合,共同解决问题,取得更好的结果。
段落五:总结
大数据是当今信息时代的核心竞争力,它的发展和应用给我们带来了许多机遇和挑战。我们需要不断加强对大数据技术的研究和应用,提升数据处理和分析能力,才能更好地应对和利用大数据。同时,我们也应该加强数据质量管理和数据安全保护,确保数据的准确性和隐私安全。只有通过不断学习和实践,不断提升自己的能力,我们才能更好地抓住大数据带来的机遇,取得成功。
大数据导论心得篇十二
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
大数据导论心得篇十三
10月23日至11月3日,我有幸参加了管理信息部主办的“大数据分析培训班”,不但重新回顾了大学时学习的统计学知识,还初学了python、sql和sas等大数据分析工具,了解了农业银行大数据平台和数据挖掘平台,学习了逻辑回归、决策树和时间序列等算法,亲身感受了大数据的魅力。两周的时间,既充实、又短暂,即是对大数据知识的一次亲密接触,又是将以往工作放在大数据基点上的再思考,可以说收获良多。由衷地感谢管理信息部提供这样好的学习机会,也非常感谢__培训学院提供的完善的软硬件教学服务。
近年来,大数据技术如火如荼,各行各业争先恐后投入其中,希望通过大数据技术实现产业变革,银行作为数据密集型行业,自然不甘人后。我行在大数据分析领域,也进行了有益的'探索,并且有了可喜的成绩。作为从事内部审计工作的农行人,我们长期致力于数据分析工作。但受内部审计工作性质的限制,我们也苦于缺少有效的数据分析模型,不能给审计实践提供有效的支持。这次培训,我正是带着这样一种期待走进了课堂,期望通过培训,打开审计的大数据之门。
应该说,长期以来,农业银行审计工作一直在大规模数据集中探索。但根据审计工作特点,我们更多的关注对行为数据的分析,对状态数据的分析主要是描述性统计。近年来火热的大数据分析技术,如决策树、神经网络、逻辑回归等算法模型,由于业务背景不易移植,结果数据不易解释,在内部审计工作中还没有得到广泛的应用。
通过这次培训,使我对大数据分析技术有了全新的认识,对审计工作如何结合大数据技术也有了一些思考。
一是审计平台技术架构可以借鉴数据挖掘平台。目前,审计平台采用单机关系型数据库。随着全行业务不断发展,系统容量不断扩充。超过45度倾角的数据需求发展趋势,已经令平台不堪重负。这次培训中介绍的数据挖掘平台技术架构,很好地解决了这一难题。挖掘平台利用大数据平台数据,在需要时导入、用后即可删除,这样灵活的数据使用机制,即节省了数据挖掘平台的资源,又保证了数据使用效率。审计平台完全可以借鉴这一思路,也与大数据平台建立对接,缓解审计平台资源紧张矛盾。
二是可尝试在部分场景应用大数据分析技术。目前,审计选样主要通过专家打分法。这次培训中介绍的逻辑回归和决策树算法,也是解决这一方面的问题。通过历史样本和历史底稿的数据,通过训练建立选样模型,将与底稿相关的主要风险特征选入模型,再将模型应用于验证样本。这样就可以应用大数据技术,为审计提供支持。
三是加强与管理信息部和软件开发中心的合作。本次培训中我们也看到,经过一段时间的积累,我行已经具备了一定的大数据分析经验,储备了一批具有相应经验的人才。作为业务部门,我们应加强与管理信息部和软件开发中心的对接,通过相互沟通和配合,确定业务需求,发挥各自优势推动大数据技术的落地。就像行领导所指出的那样,大数据技术哪个部门先投入,哪个部门先获益。目前,我行大数据技术应用正处于井喷前夕,我们应抓住这一有利时机,推动审计工作上一个新台阶。
这次培训对于我来说,只是打开了一扇窗,未来大数据分析的道路还很长、也一定很曲折,但我也坚定信念,要在这条路上继续努力,所谓“独行快、众行远”,有这样一批共同走在大数据分析路上的农行人陪伴,相信农业银行大数据之路必将有无限风光。
大数据导论心得篇十四
随着大数据时代的到来,数据成为企业和个人获取信息和分析趋势的主要手段。然而,数据的数量和质量对数据分析的影响不能忽视。因此,在数据分析之前,数据预处理是必须的。数据预处理的目的是为了清理,转换,集成和规范数据,以便数据分析师可以准确地分析和解释数据并做出有效的决策。
二、数据清理
数据清理是数据预处理的第一个步骤,它主要是为了去除数据中的异常,重复,缺失或错误的数据。一方面,这可以帮助分析师得到更干净和准确的数据,另一方面,也可以提高数据分析的效率和可靠性。在我的工作中,我通常使用数据可视化工具和数据分析软件帮助我清理数据。这些工具非常强大,可以自动检测错误和异常数据,同时还提供了人工干预的选项。
三、数据转换
数据转换是数据预处理的第二个步骤,其主要目的是将不规则或不兼容的数据转换为标准的格式。例如,数据集中的日期格式可能不同,需要将它们转换为统一的日期格式。这里,我使用了Python的pandas库来处理更复杂的数据集。此外,我还经常使用Excel公式和宏来转换数据,这些工具非常灵活,可以快速有效地完成工作。
四、数据集成和规范化
数据集成是将多个不同来源的数据集合并成一个整体,以便进行更全面的数据分析。但要注意,数据的集成需要保证数据的一致性和完整性。因此,数据集成时需要规范化数据,消除数据之间的差异。在工作中,我通常使用SQL来集成和规范化数据,这使得数据处理更加高效和精确。
五、总结
数据预处理是数据分析过程中不可或缺的一步。只有经过数据预处理的数据才能够为我们提供准确和可靠的分析结果。数据预处理需要细心和耐心,同时,数据分析师也需要具备丰富的经验和技能。在我的实践中,我发现,学习数据预处理的过程是很有趣和有价值的,我相信随着数据分析的不断发展和应用,数据预处理的作用将越来越受到重视。
大数据导论心得篇十五
近年来,随着信息技术的迅猛发展,大数据已逐渐成为人们生活中的一个热门话题。而《大数据》这本书,作为一部关于大数据的权威著作,让我对大数据有了更深入的认识与理解。通过阅读这本书,我不仅对大数据的概念有了一定的了解,更发现了大数据在各个领域中的应用与挑战,并对个人隐私保护等问题产生了思考。
首先,本书对大数据的概念进行了详尽的阐述。大数据并不只是指数量庞大的数据,更重要的是指利用这些数据进行分析、挖掘和应用的过程。这本书通过实际案例和统计数据,将数据的价值和潜力展示给读者。它告诉我们,大数据的处理能力和分析能力将会显著地提升人类社会的效率和智能化水平。
其次,本书探讨了大数据在各个领域中的应用与挑战。在商业领域,大数据的应用已经为企业带来了更多的商机和竞争优势。通过分析消费者的购买记录、兴趣爱好以及社交媒体的内容,企业能够更准确地把握用户的需求,为用户提供个性化的服务。然而,由于大数据的处理涉及到海量的数据、复杂的算法以及庞大的计算能力,公司需要具备相关技能和资源才能有效地利用大数据。在政府领域,大数据也能够帮助政府提供更高效的公共服务,更好地理解民众的需求。然而,大数据的应用也引发了隐私保护和数据安全等问题,需要政府制定相关法律法规来保护个人隐私和数据安全。
再次,本书对大数据对个人隐私保护的问题进行了探讨。随着大数据的发展,人们的个人信息被不断收集、分析和应用,我们的隐私已经受到了严重的侵犯。而大数据的应用具有隐私泄露的潜在风险,人们需要保护自己的个人隐私。为了解决这一问题,政府和企业需要共同努力,加强信息安全和隐私保护的技术手段。同时,人们也应该提高自己的信息安全意识,合理使用网络和社交媒体,避免个人信息的泄露。
最后,本书还介绍了大数据对社会的影响。大数据的广泛应用,改变了人们的生活方式和工作方式。我们的社会变得更加数字化、智能化。例如,在医疗领域,大数据的应用使得医生可以更准确地进行病情诊断和治疗方案选择。在城市规划方面,大数据的应用使城市更加智能化,提高了公共交通的运营效率和人们的生活质量。然而,大数据的应用也带来了一些问题,如信息不对称和社会不平等等。对于这些问题,我们需要进一步研究和探索,以找到解决之道。
综上所述,《大数据》这本书给我留下了深刻的印象。通过阅读这本书,我对大数据有了更深入的认识与理解,了解到了大数据的概念、应用与挑战,并开始思考大数据对于个人隐私保护和社会的影响。我相信,随着大数据技术的不断发展,大数据将进一步改变我们的生活和工作方式,为我们带来更多的便利和创新。我们需要不断学习和探索,以适应这个数字化时代的要求。