最优管理大数据心得体会大全(21篇)
它是思考和总结的过程,可以帮助我们更好地认识自己,提高自我认知能力。写心得体会时,我们可以借鉴他人的经验和观点,但同时要结合自己的实际情况,形成独特的见解和思考。小编为大家搜索整理了一些写心得体会的佳作,希望对大家有所帮助。
管理大数据心得体会篇一
数据管理是现代社会中一项重要的任务,它对于企业、政府机构以及个人来说都至关重要。在我参与数据管理工作的过程中,我深深体会到了数据管理的重要性和相关技巧。以下是我对于数据管理的一些心得体会。
首先,数据管理需要有清晰的目标和战略。在这个信息爆炸的时代,数据量庞大且不断增长,因此,没有一个明确的数据管理目标将导致混乱和无效的数据管理工作。我们需要明确我们希望达到的目标是什么,然后制定相应的战略和计划。例如,我们可以设定减少数据冗余和重复的目标,以提高效率和节省存储空间,或者设定提高数据质量和准确性的目标,以确保决策的可靠性。
其次,有效的数据管理需要合适的技术工具和系统支持。现代技术发展日新月异,我们可以利用数据库管理系统、数据仓库以及数据挖掘工具等专业软件来帮助我们管理、分析和利用数据。这些工具能够帮助我们更好地存储、检索和分析海量数据,提高工作效率和决策的准确性。然而,选择合适的技术工具和系统对于数据管理的成功也至关重要。
第三,数据管理需要建立有效的数据安全措施。由于数据涉及到公司的核心业务、个人隐私等重要信息,因此,数据安全必须放在首位。我们需要建立完善的数据安全策略,包括数据备份、防火墙、访问控制等措施,以确保数据不被损坏、丢失或泄露。另外,员工的数据安全意识培训也是数据管理中非常重要的一环。
第四,数据管理需要持续的监控和改进。数据管理并非一次性的任务,而是一个持续的过程。我们需要定期对数据进行监控和评估,以了解数据质量、完整性和准确性的情况,并根据评估结果对数据进行必要的改进和优化。此外,我们还需要及时关注新的技术发展和行业趋势,以不断提升数据管理的水平。
最后,数据管理需要合理分工和团队合作。数据管理是一项复杂的工作,不同的人具有不同的专业技能和经验,因此,合理分工和团队合作对于数据管理的成功至关重要。我们需要根据员工的特长和兴趣来合理分配任务,并注重团队的沟通和配合,以确保数据管理工作的顺利进行。
综上所述,数据管理是一项重要且复杂的任务,需要有明确的目标和战略,使用合适的技术工具和系统,建立有效的数据安全措施,持续监控和改进,以及合理分工和团队合作。只有做到这些,我们才能更好地管理和利用数据,提高工作效率和决策的准确性,从而取得更好的成果。数据管理是一项需要不断学习和提升的技能,希望通过我的学习和实践,能够不断完善自己的数据管理能力。
管理大数据心得体会篇二
随着时代的发展,大数据的概念越来越被广泛地应用于各个领域。财务管理作为企业运营中非常重要的一环,也开始注重大数据的应用。在过去的工作经验中,我深刻地认识到大数据对于财务管理的重要性,探索出一些心得和体会,现在与大家分享。
第二段:认识到大数据的重要性
在日常工作中,我们需要收集、整合、分析大量的数据并及时准确地做出决策。自从应用大数据技术后,我们可以处理更多数据、更深入地分析信息、更准确地预测未来。而且在日常会计工作中,大数据技术也能够方便地核对数据、自动提醒错漏、及时预警风险等。这也让我认识到了大数据在财务管理中的重要性。
第三段:应用大数据分析进行预测
大数据分析的能力给我们带来了实时准确的信息,这对财务管理的决策和风险控制具有重要的作用。通过分析大数据,我们可以准确地预测未来发展趋势,这对于企业的财务决策是非常重要的。尤其在同行竞争激烈的情况下,准确的预测有可能为企业争取到先机。
第四段:大数据的应用让财务工作更高效
随着大数据技术的应用,我们的财务管理工作变得更为高效。以平时的账务报告为例,手工核对日子比较耗时,而现在我们能够使用大数据应用程序直接处理收集的数据,这不仅减少了工作的难度,也加快了整个流程的速度。此外,我们也可以通过财务报表分析找出风险或利润的来源,这对于企业的决策也有很大的支持作用。
第五段:总结和展望
在发掘和应用大数据的过程中,我们对大数据技术进行了了解和熟悉,进一步增强了财务管理的能力。同时,在应用大数据的同时,我们也发现在日常工作中有些问题仍需思考。比如,企业需要保护有价值的数据以及慢慢培养在大数据的分析方面的技能。因此,我们应该不断学习最新的技术和应用方法,提高自己的技能水平,更好地应对企业发展的需要。
管理大数据心得体会篇三
管理数据已成为当今现代化社会的重要组成部分,人们通过对数据的沉淀和分析,不断地提升自身的管理水平和决策智慧。在这样一个快速变化的时代,对管理数据的体会成为了关键,本文将分享个人在管理数据方面的心得和感悟。
第二段:数据收集
数据收集是管理数据的第一步,也是基础性的过程。在此过程中,正确的数据来源和收集手段的选取至关重要。数据唯一性和准确性是衡量数据价值的核心要素,因此我们需要保证数据来源的可靠性和数据准确性的高度。在数据源选定的同时,采用科学的收集手段和技术工具也要被重视,以确保所收集到的数据能够真实反映所需数据。数据收集的便捷性也是另一个方面,例如,利用终端设备和大数据平台可进行智能化管理,懂得选取相应的工具和技术也许能为数据收集提供更多便利。
第三段:数据整理
数据整理是对收集的数据进行分类整理,以便分析和应用。数据整理需要针对数据特性进行分类,例如数值型数据的累加、平均值标准差、离散程度等统计指标。对于非数值型数据,我们要注重分类处理,以透明化、可读性为出发点,增加数据分析的可信度和可操作性。数据整理不仅包括数据格式规范统一和缺失值处理的技术,也需要转化为业务模型。这样以便更好地利用数据;而且业务模型更能满足不同需求下的数据应用。
第四段:数据分析
数据分析是对整理后的数据进行深入思考和研究,以发现数据的内在规律和意义。数据分析的本质是为了找到问题解决方案和优化策略,针对数据的特征和难点,我们选取相应的数据分析技术,例如,聚类分析、分类算法、关联分析、预测分析以及聚合分析等等。数据分析的重点是发现价值性的数据信息,帮助我们实现数据决策,优化策略和改善绩效。
第五段:数据应用
数据应用是数据运用可能的末尾,助力我们在现实场景中做出正确决策,实现业务的优化和升级。数据应用涉及到以下几个部分:数据的展现、监控、报告和维护等。数据展现既注重精细,也注重数据的可呈现性;数据的监控需要及时对数据进行监控和监管,以确保数据可靠地使用;报告需要真实、简洁地反映数据状况和预测;维护需要定期进行数据的更新和公开,以便保持数据的可靠性和准确性。
结尾段:
在这个由数据主导的时代,管理数据成为当今社会发展的必要选择。在经过一系列的数据获取、整理、分析和应用过程后,我们能够深刻理解数据的意义和价值,并从中找到问题的答案和解决方案,为我们实现更高质量的业务创新打下良好基础。
管理大数据心得体会篇四
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
管理大数据心得体会篇五
数据管理是我们工作生活中必不可少的一部分,无论是研究报告还是公司业务,都需要在处理大量数据的时候进行科学有效而且规范的管理。然而,在实际操作的过程中,很多人都会遇到例如冗余数据、缺失数据、格式不规范等等问题。在这篇文章中,我们将会分享一些关于管理数据的心得体会,希望能够对大家对数据管理有所帮助。
首先,数据管理应该始于数据的收集与整理,即使一个小的项目也应该先打好数据来源和数据类型的基础统计工作。收集的数据要经过简单的处理之后,比如说讲其分类,提示关键数据特征。这样才能保证数据的可靠性和准确性。例如,现在有一项数据采集工作要做,那么我们要先列出数据类型(数值,文本,图片等),再根据数据类型建立对应的数据库,把收集到的数据分类存入各自对应的数据库中。
其次,针对已经采集到并存储到数据库中的数据,我们需要对数据进行完善和规范化的处理。这就要求我们在数据管理的过程中将数据做好规范,比如说格式的统一、合理化使用缩写和数字符号,方便检索、比较和分组,也要保证录入信息的及时性和完整性,使数据的使用更加方便快捷。在管理数据的过程中一定要注重细节,并学会分类存储,以防止冗余数据,更好地优化数据的利用价值。
第三,科学与技术的发展给予了数据管理更多的可能性。软件、算法和模型等等工具对于数据的整理和归纳、信息的提取与发掘都提供了更多的便捷。例如,我们可以通过使用Excel、SPSS或R等软件,手动整理数据,在这些工具中不仅可以进行数据的分类、编辑和管理,设计相应的技巧功能以便更加高效地分析和展示数据,也可以通过各种数据挖掘算法预测未来甚至分析情感等等因素。
第四,要注重合理的数据分析方法,这是管理数据不可或缺的一步。分析是数据管理的重要组成部分,不仅可以为我们提供数据的预测,还可以对其进行美化陈述和简化,使数据转化为图表和图像。这样做使我们可以更直观地理解数据,并从数据中获得更多的思路和观点。新手们会发现,使用分析工具的过程相对容易些,但背后的分析逻辑和数据同步更新的管理难度不小,有些要求先掌握统计学基础和数据规范化等的知识,也必须适用那些适合该项目的分析方法和工具。
最后,一个良好的管理数据的结果通过数据共享,我们可以使数据为更多的人所了解和使用,分享只有使一个知识生态协作社区,可以分享数据之间的优缺点感想,也有利于提高数据集的质量和价值。当我们分享和维护我们的数据,就使这个数据重要又有用。我们可以在一些公共的平台中分享自己的管理数据,也可以使用其他人的管理数据,从中学习更多的数据处理技巧和系统思考的方法。这样最终将收益于更立体的数据图形和分析结论,同时也能不断提升我们对于数据的掌控能力。
总之,在数据管理过程中我们需要注重数据的来源、规范,以及在数据分析方法上的合理使用,同时注重数据的交流和共享,这都是管理数据必备的材料和方法。通过对以上过程的细致分析和总结,不仅能够成功地管理数据,还能帮助大家更好的运用数据辅助自己的工作和生活,这是管理数据的最终目标。
管理大数据心得体会篇六
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
大数据的心得体会篇4
管理大数据心得体会篇七
第一段:
随着科技的不断发展,大数据作为一种新兴技术,已经在各行各业加速落地并且产生了不可替代的重要性。尤其是在财务管理领域,大数据分析正在成为企业高效管理和战略决策的有效手段,大数据技术的应用在财务管理领域已经是越来越普遍。在工作实践中,大数据财务管理已经为企业提供了多方面的帮助和支持,本文将从以下几个方面进行论述:
第二段:
大数据财务管理的一个重要方面就是基于海量的数据来进行分析和挖掘价值信息,以促进业务决策的准确定位。传统财务报告往往只能反映过去的数据分析,而大数据则可以重新定义财务数据的价值。大数据技术的蓬勃发展,使得企业不仅能够深入了解客户的消费情况,还能够了解客户的行为趋势和喜好。将大数据分析应用到企业的财务管理中,企业可以更好地了解市场趋势,发现采购成本方面的变化,了解生产和销售的情况,以便调整其运营策略。
第三段:
大数据应用的第二个重要方面是更有效的财务管理。与传统的手工处理财务数据相比,大数据方案更加高级和自动化,分析的数据更加深入详尽,对数据结果的判断责任更明确。例如,企业发现销售业绩较差时,大数据分析可以将购买和销售的趋势、客户对产品的反馈、产品属性和市场趋势等多方面进行分析,以发现销售不畅的原因,制定可靠的解决方案。此外,当企业需要进行财务决策时,大数据还可以通过分析企业的现金流和现有资产,以提出最佳的方案和执行策略。
第四段:
大数据与财务管理结合的另一个重要方面是增强风险管理。在企业运营中,面对来自市场、消费者和政策等各种风险挑战,利用大数据进行风险分析显得更加具有优势。大数据分析可以帮助企业识别潜在风险,提前制定有效的风险规避措施,保护企业利益,减小损失。譬如,大数据可以为信用卡发行商识别信用卡欺诈行为,以更好保护客户的资金和信用记录,也可以根据消费者的消费行为和偏好,分析出具有重要影响力和潜在风险的客户,以便进行针对性的调整和管理。
第五段:
总体而言,大数据技术已经成为财务管理领域中不可或缺的一部分。除了上述方面的贡献外,大数据还可以帮助企业与客户建立更紧密的联系,甚至可以帮助企业在全球市场上占据领先地位。通过实现大数据的最大利用,企业可以根据实际情况参照客户需求、消费态势等多方面的标准来适当调整策略,同时还可以及时分析这些数据,以制定进一步的决策和预测。
管理大数据心得体会篇八
数据管理在现代社会中扮演着重要的角色。随着信息技术的快速发展,海量的数据正加速积累,这些数据的管理对于个人和组织来说都变得至关重要。在过去的几年里,我在数据管理方面取得了一些经验和体会,我发现数据管理不仅是一个技术性的问题,更关乎我们对于信息的理解和利用。通过学习和实践,我逐渐意识到了数据管理的重要性,也触摸到了数据管理所带来的巨大潜力。
首先,我意识到了数据的价值。数据可以被视为一种资源,一个组织获得竞争优势的重要手段。通过合理地收集、整理和分析数据,组织可以深入了解市场需求、消费者行为和竞争对手的动向,从而做出更有针对性的决策。数据管理不仅关乎数据的存储和传输,更重要的是如何有效地挖掘数据背后的价值。学习数据管理的过程中,我逐渐明白了数据并不是无限重要的,而是需要通过分析和应用才能真正发挥其作用。
其次,我意识到了数据的隐私和安全问题。在信息爆炸的今天,个人和组织积累了大量的敏感数据,这些数据的安全性和隐私保护变得尤为重要。在学习数据管理的过程中,我深入了解了数据隐私保护的法律法规,了解了数据泄露和滥用的后果。保护数据的安全性不仅是一个组织的职责,更是个人的责任。我学会了如何采取有效的措施来保护数据的安全,例如加密、访问权限控制和定期备份等。数据管理不仅是一个技术工作,更是需要我们注重道德和有责任心的行为。
此外,我发现数据管理还需要加强沟通和合作。数据管理涉及到多个领域的知识和多个部门的合作。在实践中,我需要与不同的团队成员和合作伙伴进行沟通和协作,以确保数据的准确性和一致性。通过与他们的交流,我了解到每个人对于数据的需求和关注点是不同的,需要根据实际情况灵活调整数据管理的策略和方法。数据管理不仅关乎技术能力,更需要我们具备良好的沟通和合作能力,能够有效地与他人进行协商和协调。
最后,我认识到数据管理是一个不断学习和适应的过程。随着技术和环境的变化,数据管理也在不断发展和演变。在学习数据管理的过程中,我除了掌握了基本的技术知识,还需要不断关注新的技术和趋势。我通过阅读专业书籍和参加培训课程,不断更新自己的知识和技能。同时,我也要学会适应变化,灵活应对不同的数据管理需求和挑战。只有不断学习和适应,我才能在数据管理的领域中保持竞争力。
综上所述,通过学习和实践,我逐渐意识到了数据管理的重要性和价值。数据管理不仅涉及到数据的收集和分析,更关乎数据的隐私保护、沟通和合作。数据管理是一个不断学习和适应的过程,需要我们保持开放的心态和积极的态度。只有不断探索和实践,我们才能充分利用数据的潜力,为个人和组织带来更多的价值。
管理大数据心得体会篇九
随着大数据时代的到来,数据的管理变得越来越重要。一个公司或组织如果能高效地管理数据,就能够更好地利用数据来优化运营和决策。在我工作学习的过程中,我对数据管理积累了一些心得体会。以下是我总结的五点。
一、数据来源和采集的可靠性
作为一个数据管理员,首先要了解数据来自哪些渠道或部门,来保证数据采集的可靠性和完整性。有些数据来源会因输入错误、故障或网络问题而发生漏损,因此我们需要设置监控机制,及时发现问题,并将其及时解决。此外,还要保证所采集的数据与来源相符,以确保数据的准确性。
二、数据放置的合理性
选择一个正确的数据放置系统也非常重要。对于不同的业务需求和数据质量要求,需要选择不同的系统,以确保数据能够被高效地存储和访问。例如,对于分析大量的结构化数据,需要选择高性能的关系型数据库,而针对非结构化或半结构化的数据,就要考虑使用分布式、可扩展的数据存储系统,如Hadoop和Cassandra。
三、数据管理的标准化
对于大型组织或企业,数据管理的标准化是非常必要的。这包括数据的分层、命名、存储和访问的标准,以及数据规范和数据质量控制等。制定数据管理标准可以使数据管理更加规范化和简化化,也为不同部门之间数据共享和交换提供了基础和保障。
四、数据安全的保障
管理数据时,我们不能忽视数据安全的问题。数据泄露是极其危险的。因此,我们需要采用多种技术手段和方法,包括加密、权限控制、防火墙和防病毒等,以确保数据的安全性和隐私性。此外,还要有灵敏的安全预警和紧急应变措施,以降低风险和耗损。
五、数据应用的高效性
最后,数据管理的意义在于以数据为基础来进行分析和应用,使组织和企业更加高效地运作。为此,我们需要使用一些前沿的技术,如人工智能、机器学习、深度学习和数据挖掘等,对大量的数据进行分析和应用,并建立高效的分析和决策模型。此外,还要注重数据可视化和多维度分析,使数据更加接近业务需求。
总之,数据管理对于组织和企业来说是非常重要的一个方面,它涉及到数据的采集、存储、分析和应用等多个环节。通过我的实践和学习,总结出来的五点心得,可以帮助我们更好地管理数据。
管理大数据心得体会篇十
大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?下面是本站小编为大家收集整理的大数据时代心得体会,欢迎大家阅读。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
管理大数据心得体会篇十一
随着互联网技术的迅猛发展,大数据已经成为当今社会中不可忽视的力量之一。作为一种可以帮助人们收集、分析和利用海量数据的工具和方法,大数据的应用已经渗透到各行各业。《决战大数据》是一本关于大数据的畅销书,通过讲述一系列与大数据相关的故事和案例,向读者展示了大数据的价值和威力。在阅读这本书后,我深感大数据对于人类社会的影响和变革,同时也从中获得了一些心得体会。
第一段:大数据引领社会变革
《决战大数据》一书中,作者通过详尽的案例和数据分析,清晰地展示了大数据对于人类社会的影响和变革。大数据的出现让数据分析变得更加高效和准确,这对于企业的经营决策和市场预测起到了至关重要的作用。同时,大数据也对个人生活产生了深远的影响,例如在购物、医疗和交通等方面。大数据技术和应用已经逐渐成为社会进步和发展的重要驱动力。
第二段:大数据带来的机遇和挑战
然而,大数据的发展也带来了一系列的机遇和挑战。大数据的广泛应用使得信息变得更加透明和公开,使得市场更加公平和竞争更加激烈。同时,由于大量的数据会产生一定的隐私和安全问题,对于数据的保护和管理也成为了一个重要的议题。面对如此庞大的数据流,我们需要寻找更有效的方法和技术来分析和利用这些数据,并且制定相应的政策和规范来保护个人和企业的隐私权益。
第三段:大数据的潜力和创新
《决战大数据》中的案例向我们展示了大数据的潜力和创新。通过对大数据的分析,企业可以更好地了解消费者的需求和喜好,从而提供更加个性化和优质的产品和服务。同时,大数据也为新兴产业的发展提供了有力的支持,例如人工智能、物联网和区块链等。这些新兴技术和产业的兴起,离不开对大数据的深入挖掘和应用。
第四段:大数据的发展与人的关系
尽管大数据的应用呈现出无限的潜力和前景,但我们不能忽视人的主观能动性在其中的作用。《决战大数据》中的案例也充分说明了一个核心观点:数据只是工具,利用数据需要人的智慧和创造力。在大数据时代,我们需要培养更多具备数据分析和创新意识的人才,并将数据和人才结合起来,形成更强大的创新引擎。
第五段:个人在大数据时代的思考与行动
阅读《决战大数据》让我对大数据的价值和影响有了更深入的认识,同时也使我意识到个人在大数据时代的重要性。作为一个普通的个体,我们可以通过学习数据分析的知识和技巧,提升自己的竞争力和适应能力。在面对大数据带来的挑战时,我们要保护个人隐私的同时,也要主动参与到大数据的应用和发展中来。只有通过个人的思考和行动,我们才能更好地应对大数据时代带来的挑战和机遇。
总结:大数据已经渗透到我们生活的方方面面,对于个人和社会的影响愈发显著。《决战大数据》通过讲述大数据的故事和案例,让我们更好地认识和理解大数据的价值和威力。在阅读这本书后,我们应该思考大数据带给我们的机遇和挑战,并积极参与到大数据的应用和发展中来,为人类社会的进步和发展贡献自己的力量。
管理大数据心得体会篇十二
随着云计算和物联网的日渐普及,大数据逐渐成为各行各业的核心资源。然而,海量的数据需要采取一些有效措施来处理和分析,以便提高数据质量和精度。由此,数据预处理成为数据挖掘中必不可少的环节。在这篇文章中,我将分享一些在大数据预处理方面的心得体会,希望能够帮助读者更好地应对这一挑战。
第二段:数据预处理的重要性
作为数据挖掘的第一步,预处理的作用不能被忽视。一方面,在真实世界中采集的数据往往不够完整和准确,需要通过数据预处理来清理和过滤;另一方面,数据预处理还可以通过特征选取、数据变换和数据采样等方式,将原始数据转化为更符合建模需求的格式,从而提高建模的精度和效率。
第三段:常用的数据预处理方法
数据预处理的方法有很多,要根据不同的数据情况和建模目的来选择适当的方法。在我实际工作中,用到比较多的包括数据清理、数据变换和离散化等方法。其中,数据清理主要包括异常值处理、缺失值填充和重复值删除等;数据变换主要包括归一化、标准化和主成分分析等;而离散化则可以将连续值离散化为有限个数的区间值,方便后续分类和聚类等操作。
第四段:实践中的应用
虽然看起来理论很简单,但在实践中往往遇到各种各样的问题。比如,有时候需要自己编写一些脚本来自动化数据预处理的过程。而这需要我们对数据的文件格式、数据类型和编程技巧都非常熟悉。此外,在实际数据处理中,还需要经常性地检查和验证处理结果,确保数据质量达到预期。
第五段:总结
综上所述,数据预处理是数据挖掘中非常重要的一步,它可以提高数据质量、加快建模速度和提升建模效果。在实际应用中,我们需要结合具体业务情况和数据特征来选择适当的预处理方法,同时也需要不断总结经验,提高处理效率和精度。总之,数据预处理是数据挖掘中的一道不可或缺的工序,只有通过正确的方式和方法,才能获得可靠和准确的数据信息。
管理大数据心得体会篇十三
一、引子:抖音大数据在当今社会中扮演着越来越重要的角色,逐渐改变了人们的生活方式。然而,我们是否曾思考过抖音大数据带来的种种影响和启示?通过深入研究抖音大数据,我们不仅可以了解用户喜好和趋势,还可以更好地了解社会动态和市场潜力。本文将通过对抖音大数据的研究和分析,探讨其背后的心得与体会。
二、数据驱动推动产品创新的发展:抖音大数据作为一个强大的信息收集和分析工具,可以帮助企业了解用户需求,并根据数据追踪用户的兴趣和喜好,从而提供更贴合用户需求的产品和服务。通过分析用户的行为和反馈,企业可以及时的调整产品,满足用户的个性化需求。抖音大数据不仅成为了产品改进的基础,也促进了创新的发展,推动了行业的变革。
三、抖音大数据推动市场营销的变革:随着抖音的快速发展,越来越多的企业意识到了抖音大数据对于市场营销的重要性。通过运用抖音大数据对用户的兴趣和喜好进行分析,企业可以更好地定位目标用户,制定有效的营销策略。同时,通过抖音大数据分析用户的行为和反馈,企业可以更加精确地了解用户需求,提供更全面的服务,从而提高市场竞争力。
四、社交与娱乐的融合:抖音大数据的成功也揭示出人们对于社交和娱乐的需求。抖音作为一个社交平台,不仅提供了用户间互动的机会,还通过丰富多样的娱乐内容吸引了大量的用户。通过抖音大数据,我们可以看到人们对于娱乐的需求和偏好,也可以看到他们对社交的渴望。同时,抖音大数据也影响了人们的生活方式,改变了人们获取信息和娱乐的方式。
五、数据隐私与安全问题:抖音大数据的收集和应用无疑带来了许多便利,但同时也引发了许多关于数据隐私和安全的担忧。许多用户担心个人信息的泄露和滥用,担心自己的数据被用于不正当的用途。因此,抖音和其他平台需要加强对用户数据的保护,采取更严格的措施防止数据泄露和滥用,以增强用户的信任和满意度。
总结:抖音大数据的快速发展和广泛应用对于社会和市场产生了深远的影响。通过对抖音大数据的研究和分析,我们可以更好地了解用户的需求和行为,并据此提供更合适的产品和服务。然而,我们也不能忽视数据隐私和安全的问题,涉及到用户利益和社会发展的重要议题。只有在合理合法的前提下,抖音大数据才能为社会和企业带来更大的利益和价值。
管理大数据心得体会篇十四
大数据讲座学习心得
大数据时代已经悄然到来,如何应对大数据时代带来的挑战与机遇,是我们当代大学生特别是我们计算机类专业的大学生的一个必须面对的严峻课题。大数据时代是我们的一个黄金时代,对我们的意义可以说就像是另一个“80年代”。在讲座中秦永彬博士由一个电视剧《大太监》中情节来深入浅出的简单介绍了“大数据”的基本概念,并由“塔吉特”与“犯罪预测”两个案例让我们深切的体会到了“大数据”的对现今这样一个信息时代的不可替代的巨大作用。
在前几年本世纪初的时候,世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、pda、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。
现在,当数据的积累量足够大的时候到来时,量变引起了质变。“大数据”通过对海量数据有针对性的分析,赋予了互联网“智商”,这使得互联网的作用,从简单的数据交流和信息传递,上升到基于海量数据的分析,一句话“他开始思考了”。简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。这是继云计算、物联网之后it产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的竞争中摆脱受制于人的弱势境地,才能把握发展的方向。
首先,“大数据”究竟是什么?它有什么用?这是当下每个人初接触“大数据”都会有的疑问,而这些疑问在秦博士的讲座中我们都了解到了。“大数据”的“大”不仅是单单纯纯指数量上的“大”,而是在诸多方面上阐释了“大”的含义,是体现在数据信息是海量信息,且在动态变化和不断增长之上。同时“大数据”在:速度(velocity)、多样性(variety)、价值密度(value)、体量(volume)这四方面(4v)都有体现。其实“大数据”归根结底还是数据,其是一种泛化的数据描述形式,有别于以往对于数据信息的表达,大数据更多地倾向于表达网络用户信息、新闻信息、银行数据信息、社交媒体上的数据信息、购物网站上的用户数据信息、规模超过tb级的数据信息等。
一、学习总结
1. 大数据的定义
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现
对企业未来运营的预测。
二、心得体会
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
一、什么是大数据?
百度百科中是这么解释的:大数据(big data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。我最开始了解大数据是从《大数据时代》了解到的。
大数据在几年特别火爆,不知道是不是以前没关注的原因,从各种渠道了解了大数据以后,就决定开始学习了。
二、开始学习之旅
在科多大数据学习这段时间,觉得时间过的很快,讲课的老师,是国家大数据标准制定专家组成员,也是一家企业的大数据架构师,老师上课忒耐心,上课方式也很好,经常给我们讲一些项目中的感受和经验,果然面对面上课效果好!
如果有问题,老师会一直讲到你懂,这点必须赞。上课时间有限,我在休息时间也利用他们的仿真实操系统不断的练习,刚开始确实有些迷糊,觉得很难学,到后来慢慢就入门了,学习起来就容易多了,坚持练习,最重要的就是坚持。
管理大数据心得体会篇十五
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
管理大数据心得体会篇十六
随着互联网和技术的迅猛发展,大数据营销已经成为了现代营销领域的热门话题。大数据营销利用数以亿计的数据点来分析和预测消费者行为和偏好,从而帮助企业做出更有针对性的营销决策。经过一段时间的学习和实践,我从中获得了一些宝贵的心得体会。
首先,大数据营销的成功离不开数据采集和整理的精确性。数据的准确性是大数据营销的关键,只有准确的数据才能够为企业提供有效的营销决策支持。为了确保数据的准确性,我们可以通过多个渠道收集多样化的数据,包括消费者调查、网络分析、社交媒体监控等等。同时,还需要进行数据清洗和整理,去除重复、错误和不完整的数据,确保数据的完整性和一致性。
其次,大数据营销需要及时更新和分析数据。由于市场和消费者的需求经常变化,所以数据的及时性非常重要。只有不断追踪和更新数据,才能够及时发现和把握市场机会。除了数据的及时性,数据的分析也是至关重要的一步。通过分析数据,我们可以发现隐藏在海量数据中的规律和趋势,帮助企业更好地了解消费者行为和需求,从而制定出更有针对性的营销策略。
再次,大数据营销需要注重消费者隐私保护。在进行数据采集和分析的过程中,我们必须始终尊重和保护消费者的隐私权。企业应该建立合适的隐私政策,并确保数据的安全保存和传输。另外,企业还需要向消费者明确说明数据采集的目的和范围,并征得消费者的同意。通过保护消费者的隐私,企业可以建立起良好的信任关系,从而更好地利用大数据进行营销。
此外,大数据营销需要结合人的主观判断力进行决策。虽然大数据可以提供大量的信息和预测,但它并不能代替人的主观判断和创造力。在做出营销决策时,我们需要综合考虑大数据提供的结果和我们的专业知识和经验。有时候,大数据的分析结果可能并不完全准确或适用于具体情况,所以我们需要以人的智慧来决策和调整营销策略。
最后,大数据营销需要注重持续优化和改进。大数据营销并非一成不变的,而是需要不断优化和改进的过程。我们可以通过不断收集和分析数据,以及与消费者进行互动和反馈,来了解市场变化和消费者需求的变化。通过持续的优化和改进,我们可以提高营销策略的精准度和效果,从而取得更好的营销成果。
综合以上的心得体会,大数据营销虽然有其独特的优势和挑战,但它也为企业带来了巨大的机遇。只有通过准确采集、分析和应用大数据,企业才能够更好地了解消费者和市场,从而使营销决策更加科学和精准。同时,企业也需要注重保护消费者隐私,兼顾人的主观判断力,并持续优化和改进营销策略。相信在不远的将来,大数据营销将会成为企业营销的主流方法。
(总字数:813)
管理大数据心得体会篇十七
随着大数据时代的到来,数据成为企业和个人获取信息和分析趋势的主要手段。然而,数据的数量和质量对数据分析的影响不能忽视。因此,在数据分析之前,数据预处理是必须的。数据预处理的目的是为了清理,转换,集成和规范数据,以便数据分析师可以准确地分析和解释数据并做出有效的决策。
二、数据清理
数据清理是数据预处理的第一个步骤,它主要是为了去除数据中的异常,重复,缺失或错误的数据。一方面,这可以帮助分析师得到更干净和准确的数据,另一方面,也可以提高数据分析的效率和可靠性。在我的工作中,我通常使用数据可视化工具和数据分析软件帮助我清理数据。这些工具非常强大,可以自动检测错误和异常数据,同时还提供了人工干预的选项。
三、数据转换
数据转换是数据预处理的第二个步骤,其主要目的是将不规则或不兼容的数据转换为标准的格式。例如,数据集中的日期格式可能不同,需要将它们转换为统一的日期格式。这里,我使用了Python的pandas库来处理更复杂的数据集。此外,我还经常使用Excel公式和宏来转换数据,这些工具非常灵活,可以快速有效地完成工作。
四、数据集成和规范化
数据集成是将多个不同来源的数据集合并成一个整体,以便进行更全面的数据分析。但要注意,数据的集成需要保证数据的一致性和完整性。因此,数据集成时需要规范化数据,消除数据之间的差异。在工作中,我通常使用SQL来集成和规范化数据,这使得数据处理更加高效和精确。
五、总结
数据预处理是数据分析过程中不可或缺的一步。只有经过数据预处理的数据才能够为我们提供准确和可靠的分析结果。数据预处理需要细心和耐心,同时,数据分析师也需要具备丰富的经验和技能。在我的实践中,我发现,学习数据预处理的过程是很有趣和有价值的,我相信随着数据分析的不断发展和应用,数据预处理的作用将越来越受到重视。
管理大数据心得体会篇十八
随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。
第二段: 数据质量问题
在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。
第三段: 数据筛选
在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行 数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。
第四段: 数据清洗
数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。
第五段: 数据集成和变换
数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。
总结:
数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。
管理大数据心得体会篇十九
近年来,随着信息技术的迅猛发展,大数据已逐渐成为人们生活中的一个热门话题。而《大数据》这本书,作为一部关于大数据的权威著作,让我对大数据有了更深入的认识与理解。通过阅读这本书,我不仅对大数据的概念有了一定的了解,更发现了大数据在各个领域中的应用与挑战,并对个人隐私保护等问题产生了思考。
首先,本书对大数据的概念进行了详尽的阐述。大数据并不只是指数量庞大的数据,更重要的是指利用这些数据进行分析、挖掘和应用的过程。这本书通过实际案例和统计数据,将数据的价值和潜力展示给读者。它告诉我们,大数据的处理能力和分析能力将会显著地提升人类社会的效率和智能化水平。
其次,本书探讨了大数据在各个领域中的应用与挑战。在商业领域,大数据的应用已经为企业带来了更多的商机和竞争优势。通过分析消费者的购买记录、兴趣爱好以及社交媒体的内容,企业能够更准确地把握用户的需求,为用户提供个性化的服务。然而,由于大数据的处理涉及到海量的数据、复杂的算法以及庞大的计算能力,公司需要具备相关技能和资源才能有效地利用大数据。在政府领域,大数据也能够帮助政府提供更高效的公共服务,更好地理解民众的需求。然而,大数据的应用也引发了隐私保护和数据安全等问题,需要政府制定相关法律法规来保护个人隐私和数据安全。
再次,本书对大数据对个人隐私保护的问题进行了探讨。随着大数据的发展,人们的个人信息被不断收集、分析和应用,我们的隐私已经受到了严重的侵犯。而大数据的应用具有隐私泄露的潜在风险,人们需要保护自己的个人隐私。为了解决这一问题,政府和企业需要共同努力,加强信息安全和隐私保护的技术手段。同时,人们也应该提高自己的信息安全意识,合理使用网络和社交媒体,避免个人信息的泄露。
最后,本书还介绍了大数据对社会的影响。大数据的广泛应用,改变了人们的生活方式和工作方式。我们的社会变得更加数字化、智能化。例如,在医疗领域,大数据的应用使得医生可以更准确地进行病情诊断和治疗方案选择。在城市规划方面,大数据的应用使城市更加智能化,提高了公共交通的运营效率和人们的生活质量。然而,大数据的应用也带来了一些问题,如信息不对称和社会不平等等。对于这些问题,我们需要进一步研究和探索,以找到解决之道。
综上所述,《大数据》这本书给我留下了深刻的印象。通过阅读这本书,我对大数据有了更深入的认识与理解,了解到了大数据的概念、应用与挑战,并开始思考大数据对于个人隐私保护和社会的影响。我相信,随着大数据技术的不断发展,大数据将进一步改变我们的生活和工作方式,为我们带来更多的便利和创新。我们需要不断学习和探索,以适应这个数字化时代的要求。
管理大数据心得体会篇二十
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏。
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。
问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。
解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)。
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2图一:
图二:
解决办法:解决办法:图2步骤1:从图1到图2后,将目标下的“服务器”成自己的sqlserver服务器名称行sqlservermanagementstudio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了。
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
理大数据的规模。大数据进修学习内容模板:
linux安装,文件系统,系统性能分析hadoop学习原理。
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。
总结。
大数据时代是信息化社会发展必然趋势在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中随着新兴技术的发展与互联网底层技术的革新数据正在呈指数级增长所有数据的产生形式都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。
三、
结语。
管理大数据心得体会篇二十一
“大数据”概念早在1980年就有国外的学者提出,可是最近几年才广泛受到大家的关注。当“大数据”这个概念传到中国的时候,瞬间引起了轰动。随即,各种有关“大数据”的资料和书籍充斥的我们的视野。随意打开某个电子商务平台图书类页面,在搜索框中搜索“大数据”三个字,就会出现好多本有关“大数据”的书籍。可是,有一个很有趣的现象就是:几乎所有的平台上,出现的第一本关于“大数据”的书籍一定是《大数据时代》。一点进去,这本书推荐栏里的第一句话就是:迄今为止全世界最好的一本大数据专著。同时,为这本书做推荐的都是各行业的精英领袖。所有“大数据”方面的书籍也是这本书销量最高,评价最好。
我从来不会因为哪本书畅销和很多人推荐就盲目跟风的去看一本书。因为我知道通常在这种情况下选择一本书,整个阅读的体会和感受是无法遵从自己的内心的,整个过程都很容易夹杂着别人对这本书的感受。所以通常我读书的节奏大多都是跟不上“潮流”的,但往往经过风雨洗礼之后沉淀下来的都是精华。坦白讲,阅读这本书的初衷并不是因为我想从书中获取到多少大数据方面的精华,只是很想知道对于这么一个很直白的名词,作者是怎么写出这么厚的一本书的。这种初衷或许很无知和幼稚,可就是这种“愚蠢”的好奇心,让我更透彻的看到书中的精华。
在看《大数据时代》这本书之前,我的所有读后感都是集中在书籍给了我什么思考。对于这本书的读后感,除了观点碰撞之外,我还会加上大部分个人看这本书的体会。因为这本书,已经完全让我模糊了大多数人口中的“全世界最好的书”是一种什么标准。也许《大数据时代》真的无法承载那么高的赞美!
大数据时代的入门书
看完这本书,我随意调查了一些阅读过这本书并且给这本书绝对好评的朋友。询问他们这本书好在哪里?大多数的回答是说《大数据时代》这本书让对大数据一无所知的他们了解了大数据这个概念,同时通过很多案例说明原来大数据能有这么大的用处,影响会有这么大!仅此而已。我看完这本书最大的感受是这本书分为上、下两部分。前120多页为上部分,后120多页为下部分。之所以说《大数据时代》是一本关于大数据的入门书,是因为这本书用了前面120多页的篇幅反复的强调大数据的出现对社会发展影响很大,并且要人们转变小数据时代惯有的思想。所以整本书的前半部分就强调大数据时代的三个转变:1、大数据利用所有的数据,而不再仅仅依靠一小部分数据,不再依赖于随机采样。2、大数据数据多,不再热衷于追求精确性,也不再期待精确性。3、大数据时代不再热衷于寻找因果关系,而是追求相关关系。所以整个上半部分没什么可详说的。我们重点聊聊本书的后半部分。
既然一直都在强调大数据对我们的意义,总要有具体体现。整本书中,我感触最大的一个案例就是某公司通过分析大数据发现:新品发布的时候,旧一代的产品可能会出现短暂的价格上涨。因为人们在心理上就认为新产品的推出,旧产品就会便宜,从而就会提高购买量。这个发现和我们平常的心理是完全违背的,而且如果不用数据来证明,直接讲道理给大家可能还是无法相信。这就是大数据对我们很多传统思维的颠覆。一旦涉及到思维的改变,往往就会引起整个社会的大变动。
大数据这个概念的出现,让大数据逐渐发展形成一条价值链。在这条价值链上,数据本身、技能和思维是最重要的环节。随着互联网技术的发展,越来越多的公司都能收集到大量的数据,这些数据也会越来越公开。可是在这些公司中,不是所有的公司都有从数据中提取价值或者用数据催生创新思想的技能。于是就会出现以下两种公司,一种是掌握了专业技能但不一定拥有数据或者提出数据创新性用途才能的公司,另一种就是拥有超前思维,懂得怎样挖掘数据的新价值的创新公司。短时间内,我们可能会感觉拥有创新思维,懂得挖掘出数据新价值的大数据思维是最重要的。可是等到产业成熟之后,所有人都知晓了大数据的意义,所有人便开始挖掘自己的大数据思维。同时,随着科技的进步,掌握大数据技术的也将成为常态。所以到后来,整个价值链的核心环节还是回到了数据本身。而到那时候,大数据的公开性也就越来越小。
在大谈完大数据对人类发展的积极意义之后,作者也考虑到大数据时代的风险。这一部分是作者脑洞大开的精彩之处,同时也是最荒谬的一部分。书中说大数据时代将要惩罚未来犯罪,这样可以在嫌疑人在可能犯罪之前就把犯罪行为给防止。这样的社会,大数据俨然已经延伸到了我们每个人生活的点滴。几乎我们在生活中所做的一切都在大数据的“监控”之下,我想到那时候,别说我们每个人的隐私已经没有的了,严重一点可以说是我们可能连人都不算了。在我们人的社会属性中,自由权利是一项很重要的指标。通过大数据惩罚人的未来犯罪已经否定了人的自由选择能力和人的行为责任自负。同时,由于数据是永久保存,大数据预测也是通过每个人之前的数据来判断,所以大数据同样也否定了人的求善心理。还有,从现在各种大数据预测的结果来看,很多发言人都说大数据不是百分百的准确。所以利用大数据来判断人的行为发展已经违背了大数据不追求精确性的特征,这也是书中自相矛盾的地方。
对于一个新事物,如果能让大家了解这个事物并且对此产生兴趣,这已经算是一本不错的入门书了。
大数据时代的心灵鸡汤
从小到大,鸡汤对于我们来说一直都挺珍贵的。身体虚弱了,喝点鸡汤能够补充营养。心灵受伤了,看点心灵鸡汤可以鼓舞人心。可是近几年,人们生活水平提高了,营养富余,鸡汤已经不是人们补营养的期待了。同样,心灵鸡汤也是如此。
心灵鸡汤其实是一个很虚伪的东西。很多人都被心灵鸡汤诱人的外表给迷惑。在我看来,心灵鸡汤很大的一个特征就是:立人的志,但是就不告诉你实现志的方法。很多人每次在失意的时候就喜欢看心灵鸡汤,希望能得到慰藉。看完后也觉得醍醐灌顶,感觉整个世界都亮了。但又有几个人想过喝完这些鸡汤之后你除了看似重拾梦想,你还获得了什么?你知道怎么去做吗?《大数据时代》就是这样一本书。整本书从头到尾都在向读者讲述大数据的意义,当然期间也会用相应的案例来证明大数据确实有这样的能力。但是,整本书从没有涉及到技术层面的问题。或许对于大数据这种依靠互联网技术的新事物,即使向读者讲技术,也没有几个人看得懂,可是整本书没有一点关于大数据思维的技能引导。给出的案例中只有少数案例向读者讲述了这个公司为什么要利用大数据来解决这种问题,大多数都只是告诉读者国外某家公司运用大数据得出了某种结论。同时,在本书中文译作者写的序里,强调自己翻译这本著作的一大优点是可以结合国内的案例来分析书中的理论,结果,看到最后一页都没有看到一个国内企业关于大数据运用的案例。
之所以我称之为“心灵鸡汤”,还有一个原因就是作者在书中大讲特讲的大数据的作用,事实上按照现在的经济发展水平和社会文明发展程度是很难实现的。书中很多时候的理论都是要建立在社会各项文明都发展健全的基础上才能实现。
大数据的“传销手册”
看到这个标题,大家可能会觉得我夸大其词,受到如此多人好评的书怎么是“传销手册”呢?对于这个表达,我只想说两点:1、此说法仅代表我个人观点,是否认同是个人问题。2、此说法主要针对本书的上部分。
我们都知道传销组织在发展下线的前期是要花大力气去培训的,也就是洗脑。而对于一个陌生又很难以理解的事物,最好的“洗脑”方式就是重复。《大数据时代》这本书就是运用这种方式,前半部分为了让读者能够接受“大数据”这个概念,作者反反复复提醒读者大数据不是随机采样、不追求精确和不寻找因果关系。同时用很多看似很通俗易懂其实看完后还是不知道说了什么的案例来让人信服大数据的作用。书中的后半部分虽然也是用这种方式来感染读者,可后半部分中作者的畅想和对大数据的威胁分析还是对读者有一些实质意义的,所以后半部分的“传销”影响就不是很重要。
大数据时代是未来的趋势,这谁都不会否认。大数据改造了我们的生活,改变着我们的世界。不管它是以一种什么样的姿态面向世界,它都没有错,因为大数据只是一种工具。但当人类开始质疑甚至恐惧大数据的时候,人类就该思考自己是否利用好这个好工具了。
大数据心得体会篇4