最热长方体与正方体的体积教案范文(12篇)
教案应充分调动学生的积极性,培养学生的自主学习能力。编写教案时要充分了解学生的背景知识和学习需求。教案是指教师为备课和讲授课程而撰写的一种教学设计文件,它可以帮助教师系统地组织课堂教学内容,确保教学的有针对性和有效性。在编写教案时,要明确教学目标,并根据学生的学习情况来确定教学内容和方法。那么我们该如何写一份较为完美的教案呢?以下是小编为大家收集的教案范文,仅供参考,希望能给大家带来一些启示。
长方体与正方体的体积教案篇一
长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:
一、重视引导学生经历知识的探究过程。
究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。
二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。
三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。
四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。
可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。
长方体与正方体的体积教案篇二
课题三:
教学要求 在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点 理解底面积。
教学用具 投影仪。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由 确定的。
(2)长方体的体积= 。
(3)正方体的体积= 。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v = sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
长方体与正方体的体积教案篇三
使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
一、创设情境。
填空:1、叫做物体的体积。2、常用的体积单位有:、、。3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。
二、实践探索。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的`体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)。
431。
含体积单位数:4×3×1=12(个)。
体积:4×3×1=12(立方厘米)。
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)。
通过上面的实验,你发现了什么?(可让学生分小组讨论)。
用字母表示:v=a×b×h=abh。
应用:出示例1,让学生独立解答。
结论:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a3。
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践。
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂。
五、课后实践。
做练习七的第5、7题。
长方体与正方体的体积教案篇四
3.培养学生归纳推理,抽象概括的能力.。
教学重点。
教学难点。
教学用具。
教具:1立方厘米的立方体24块,1立方分米的立方体1块.。
学具:1立方厘米的立方体20块.。
教学过程()。
一、复习准备.。
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。
教师提问:拼成了一个什么形体?(长方体)。
这个长方体的体积是多少?(4立方厘米)。
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。
将本文的word文档下载到电脑,方便收藏和打印。
长方体与正方体的体积教案篇五
本节课教学的是长方体和正方体的体积计算公式。
课始,我出示了一个用萝卜做成的长方体(长3厘米、宽2厘米、高2厘米),引导学生讨论:怎样知道这个长方体的体积?学生受上节课的影响,很快想到了切分成一个个1立方厘米的小正方体,再数数。就得出了这个长方体的体积。
(一)首先创设无法在视觉上比较体积大小的问题情境,让学生想办法解决,学生求知欲很高,想到了很多方法。采用一生的方法计算,在通过动手操作,摆摆、算算,让学生自己探索,验证方法的`正确性与可行性,把求长方体的体积很自然地引入了求小正方体的个数,把复杂问题简单化,最后借助小组合作交流,经过归纳、推理,揭示出长方体体积计算公式。公式的推导过程,是学生个人独立思考的过程,是小组合作学习的过程。学生对公式的来源、理解特别深刻,真正赋予知识的个人意义。
(二)我又请学生介绍数的方法,先数第一层的个数,再乘层数(相当于高),第一层也就是看看有几行(相当于宽),每行有几个(相当于长),这是全班学生的认可的最佳方法.紧接着让学生摆,记录.再讨论交流发现出了体积公式。虽然这里花费了很多的时间,以至于后面学生巩固公式解决问题的时间很少,但我个人认为还是值得的。学生在操作、交流的过程中不仅收获了“公式”,更多的是思维得到了训练,学习能力得到了培养。
(三)掌握了公式,就要实践运用,让学生感到数学源于生活,又用于生活,更让他们感到成功的喜悦。掌握了长方体体积公式后,出示魔方,让学生尝试解决它的体积,通过动手量、算,自然地迁移和转化到正方体体积计算公式。
(四)从课堂教学实践看,本节课教学效果较好,充分体现了教师为主导、学生为主体的教学观念。教师为学生的自主探索提供了广阔的时间和空间。学生学得自主,学得快乐,并学有所获。不但能做到较好的掌握课本知识,还能做到灵活的运用迁移和转化的数学思想学习新知,既训练了思维又培养了能力。
长方体与正方体的体积教案篇六
课题三:
教学要求在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点理解底面积。
教学用具投影仪。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v=sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
长方体与正方体的体积教案篇七
1. 教材简析:“长方体和正方体体积计算”是六年制五年级小学教学第十册第二单元的内容。这节课是学生全面系统地学习体积计算问题的开始,是学生的空间观念从二维向三维的一次飞跃,是学生形成体积的概念和掌握体积的计量单位的基础,也为今后学习圆柱体体积计算作了铺垫。
2. 教学目标:根据教材以及小学数学教学大纲的要求:我拟定本节课的教学目标是:(1)知识与技能目标:理解和掌握长方体和正方体体积的计算方法,并能用所学知识解决一些简单实际问题。(2)过程与方法目标:学会通过实践、观察、比析、综合、概括去获得知识的方法。(3)情感态度与价值观:培养学生积极探究的科学态度和与人合作的能力,养成良好的学习习惯。
3 . 教学重难点:体积对学生来说,是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对怎样计量物体的体积不易理解,为此,我认为本节课的教学重点是:理解和掌握长方体和正方体体积的计算方法。那么,怎么找到计算长方体喝正方体体积的.计算方法,学生有一定的难度。因此,我把“体积公式的推导过程”定为本节课的难点。
这节课我首先运用设疑导入法引入新课;其次,运用实验探究法、尝试教学法,让学生在操作中感知----探究中学知----在练习中用知,从直观教学入手,培养学生由形象思维到抽象思维的过渡,让学生自始至终在知识形成的过程之中,真正发挥学生的主体作用。
(一)设疑导入,揭示课题,明确任务
理想的新课导入,能唤起学生的记忆思维,激发他们求知欲望,能诱导他们全身心地投入学习。上课一开始,我就拿出一个长方体和一个正方体的木块,问大家:“你们能算出这两个物体的体积吗?想不想找到一个计算体积的方法?这节课请大家自己动手、动脑推导出长方体和正方体体积计算公式。”并由此揭示课题,让学生明确学习任务,兴趣盎然地进入最佳学习状态。
(二)操作感知,探究规律,巩固深化
小学生的思维特点是以形象思维为点逐步向抽象思维过渡。根据这一特点,先利用直观教具和学具,师生一起进行操作活动,引导学生观察、思考、比较,把学生的具体操作思维与语言表达紧密结合起来,发展学生的空间观念。新知识分三步进行:
第一步,做-----操作感知
先让学生用学具(体积是1立方厘米的方木块)摆一摆,坐下面3个实验并作实验记录:
实验1:每排摆4个方木块,摆3排,方木块的总数是( )个。
实验2:摆这样的2层,公用方木块( )个。
实验3:要摆成一个长5厘米,宽4厘米,高3厘米的长方格,应怎样摆?共要方块( )个。
小组汇报实验结果,并填入表中:
长方体与正方体的体积教案篇八
课题二:
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学过程。
一、创设情境。
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。
二、实践探索。
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)。
4 3 1。
含体积单位数:4×3×1=12(个)。
体积:4×3×1=12(立方厘米)。
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)。
通过上面的实验,你发现了什么?(可让学生分小组讨论)。
用字母表示:v=a×b×h=abh。
应用:出示例1,让学生独立解答。
用字母表示为:v=a3。
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践。
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结。
五、课后实践。
做练习七的第5、7题。
长方体与正方体的体积教案篇九
1、说课内容。
本节所讲的内容是义务教育课程标准实验教科书教材五年级下册第三单元41页到43页有关长方体和正方体的体积和体积单位,教学内容属于新授课,授课时数为1课时。
2、教学内容的地位和作用。
长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。在第二册的认识图形中,虽然已经接触到长方体和正方体,但那只是直观现象的认识,要上升到理性认识还是有一定难度的。
本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念常用的体积单位,这节课要学习长方体和正方体的体积和有关的体积单位。
学习长方体和正方体的体积具有一定的实用价值,通过学生联系实际的操作活动,学习一些测量计算知识,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题。
3、教学目标的确定。
根据前面所述,长方体和正方体的体积计算是今后继续学习几何知识的基础。因此,本节课应当让学生了解长方体和正方体的体积公式的来源,理解它的意义,熟练地运用公式解决一些实际问题。学习一些研究问题的方法,通过学习知识,发展学生的思维能力,逐渐形成他们的空间观念。
4、教学重点、难点。
本节的两部分内容应当以第一部分为重点,长方体的体积计算中、重点理解体积公式的意义,并运用公式解决实际问题,难点理解公式的意义。
为了突出重点、突破难点,圆满地完成教学任务取得良好的教学效果,我采用了直观教学法,让学生观察图形填表,归纳出长方体体积的计算公式充分运用知识的迁移规律,引导学生掌握新知识、学习正方体的体积计算时,可以把长方体的体积计算方法直接迁移过来,让学生独立地得出正方体的体积公式。
三、教学过程设计。
教学我只安排了复旧引新、创设情境、激情引趣、揭示课题、操作想象、推导、公式。依据规律、归纳公式、利用关系、类推公式、巩固练习、运用公式、全课总结六环节。
(一)复旧引新、创设情境。
任何新知识都是在有知识系为依托,因此在复习中我设计的习题为本课做好铺垫。
什么是体积?常用的体积单位有那些?出示1立方分米、1立方厘米(教师出示体积单位的模型)完成此题,使学生进一步树立空间观念为这节课做好铺垫。
(二)激情引趣、揭示课题。
一节课教学效果如何?与学生学习的心理状态有关根据学生的心理特点。我联系实际生活中经常遇到计算长方体和正方体的体积问题,如果计量池水的体积,还能切开数吗?(切开数)这种方法在实际生活中是行不通的,那么怎么办?这就是今天这节课我们要学习的(长方体和正方体的体积计算)揭示课题,激励学生上进好学,充分发挥学生的主观能动性,让他们积极主动,生动活泼地探究新知。
(三)、探索活动、推导公式。
学生口答结果老师依次板书在表格中,通过观察表交流,讨论学生不难发现其中的规律。学生回答后,教师板书整理。
如长×宽×高=体积。
2×3×2=12。
4×1×3=12。
6×1×2=12。
2×2×3=12。
从而,归纳出长方体体积计算公式:
v=abh。
进一步让学生默记公式,指名说一说求长方体的体积,必须要知道什么条件?
(四)、利用关系、类推公式。
提问:4号长方体的长、宽、高有何特点?这种长方体又叫什么?它的体积怎么计算?学生进行讨论交流。
(五)、巩固练习、运用公式。
练习是数学中教学巩固新知、形成技能、发展思维、提高学生分析问题、解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式、我设计了多层次的练习。
2、我对安排了四个判断题,以加深学生对a的立方的理解和运用。
3,解决实际问题,我安排了两道题目的是让学生所学新知识解决生活中的一些实际问题。
(六)、全课总结、
1、让学生说说这节课学习了什么。
2、教师总结。
这样设计的目的对新知识进行一次全面的回顾梳理,内化的过程、同时培养学生总结概括能力。
长方体与正方体的体积教案篇十
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
重点
理解底面积。
仪器
教具
投影仪
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)
(1)长、正方体的体积大小是由确定的。
(2)长方体的`体积=。
(3)正方体的体积=。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh
1.做第20页的“练一练”。学生独立做后,学生讲评。
首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
学生今天学习的内容
做练习三的第11、12、13题。
长方体和正方体统一的体积公式
长方体的体积=底面积×高
正方体的体积=底面积×棱长
长(正)方体的体积=底面积×高,
用字母表示:v=sh
长方体与正方体的体积教案篇十一
课题二:
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学过程 。
一、创设情境。
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。
二、实践探索。
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)。
4 3 1。
含体积单位数:4×3×1=12(个)。
体积:4×3×1=12(立方厘米)。
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)。
通过上面的实验,你发现了什么?(可让学生分小组讨论)。
用字母表示:v=a×b×h=abh。
应用:出示例1,让学生独立解答。
用字母表示为:v=a3。
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践。
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结。
五、课后实践。
做练习七的第5、7题。
长方体与正方体的体积教案篇十二
教材分析:
长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。
教学目标:
1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。
2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。
3、培养学生数学的应用意识。
重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。
难点:理解体积公式的意义。
学情分析。
学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
教学手段:学生动手操作,同时配合多媒体课件演示.
这部分内容分3课时进行教学。第1课时教学体积的概念和常用的体积单位;第2课时教学长方体、正方体体积的计算方法。第3课时进行综合应用,提高学生运用所学知识解决实际问题的能力。
(一)激情引趣,揭示课题。
任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。
1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。
2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。
这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。
(二)操作想象,探索公式。
小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。
具体的过程是:。
(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。
(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?
这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。
(4)用字母表示公式,要注意书写形式的指导。
(5)完成例1,学以致用,加深理解。
(6)利用关系,类推公式。
通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。
(三)巩固练习,扩展应用。
练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:
1通过让学生完成教科书第33页的“做一做”的第一题,先让学生动作操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。
2.做第33页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。
3.完成练习七第1题,让学生运用公式计算。
4.完成练习七的第7题,要注意这道题算式的运算顺序。
5、拿出课前准备得长方体物体,同桌合作计算出它们的体积。
学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。
(四)总结全课,质疑解惑。
(1)让学生说说这节课学习了什么?还有什么疑问。
这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。