2023年大学数学的心得体会(通用17篇)
通过总结心得体会,我们可以将经验转化为智慧,指导未来的行动。一篇较为完美的心得体会应该具备内容丰富、观点独特、表达准确、思路清晰等特点。以下是我为大家准备的一些心得体会范文,供大家参考。希望通过阅读这些范文,能够激发大家对写作心得体会的兴趣,提升自己的思考和表达能力。同时,也希望大家在写作心得体会的过程中能够坚持思辨和反思,不断总结和提高自己的认识水平和写作技巧。大家一起来看看吧。
大学数学的心得体会篇一
数学是一门科学理论,是探究数量、结构、变化以及空间等概念的学科。数学不仅是科学技术的重要基础,还是现代社会不可或缺的一部分。大学生作为未来的社会精英,必须具备扎实的数学功底,才能在各个领域中无愧于自己的角色。
第二段:数学知识的重要性
数学知识可谓与各个领域紧密相关。不论是工程、物理、经济、金融,还是医学、生物、心理学等领域,都需要数学知识的支撑。提高数学能力和思维能力,可以帮助我们更好的理解和掌握各种学科中的知识,并且优化自己的思维过程和解决问题的能力。
第三段:数学学习的方法
学习数学需要灵活多变的方法,有些同学习惯用摆公式的方式去“照着做”,往往忽视了数学学习最重要的思维,这会造成他们在后续学习过程中遇到难题时不知所措。在学习数学的过程中,应该注重理解和想象能力的培养,掌握了基础,再通过数量和难度逐步提升的方法,加深对一些原理和方法的理解以及记忆。
第四段:数学学习的技巧
学习数学不仅要有方法还要有技巧。对于初学者来说,刚开始接触到一些概念和公式,往往会感到非常困惑。此时,我们可以通过模拟和演算,借助练习题来强化记忆和理解,从而加深对知识的掌握。如果还不能理解,就可以通过查询资料,参加讲座,或请教同学和老师等多种方式逐渐加深理解。
第五段:数学学习的经验
站在一位合格数学家的角度,数学学习不仅止于练习和掌握,更是一种思维方式和生活态度。跨过瓶颈,在各种难题面前不要轻易放弃,展现出毅力和耐心,让自己与数学这门科学产生深层次的联系,这是一种艺术,更是一种智慧。同时,数学学习中还要注重团队合作能力的培养,在与同学和老师的互动中探讨、交流和思考,共享知识和经验,真正做到“一人得益则众人皆受益”。
总之,数学学习的方法和经验值得我们探索总结。我们应该充分利用自身资源和团队合作,通过不断的实践和探索来提升自己的数学能力,尤其要磨练自己的思维,并学会将其运用到日常生活及未来的职业领域中去。
大学数学的心得体会篇二
第一段:数学的重要性和挑战性
数学作为一门科学,被广泛认为是人类思维的一项重要工具。它的重要性不仅体现在各个学科中的应用,还体现在培养逻辑思维和分析问题的能力方面。然而,大学数学学科的学习又常常被学生们所忧虑。尤其是对于那些没有数学基础或者对数学学科存在偏见的学生来说,数学课程可能显得特别枯燥和困难。然而,通过我的大学数学学习经历,我逐渐体会到了数学的美妙与挑战,并且认识到数学学习是一种锻炼思维的过程。
第二段:数学学习的思维方式
大学数学学习的核心是培养正确的思维方式。在过去的学习过程中,我常常陷入对计算方法的沉迷,而不去理解背后的原理和方法。然而,随着学习的深入,我逐渐理解到数学的本质是解决问题的一种方法,而不仅仅是简单的计算。数学的思维方式强调逻辑推理和问题求解的能力,因此学生需要培养分析问题和归纳总结的能力,而不是一味追求解题的结果。
第三段:数学学科的多样性和广泛应用
数学学科的多样性和广泛应用是我在大学学习数学中所感受到的另一个方面。数学可以分为纯数学和应用数学两个方向,每个方向又有着不同的分支。纯数学注重理论的推导和证明,解决一类问题的方法可以应用到其他领域。而应用数学则将数学方法应用于实际问题的建模和解决中,通过数学手段来分析和预测现实世界的问题。无论是在工程学、经济学还是医学等领域,数学都有着广泛的应用,因此学习数学可以为我们打开更广阔的发展空间。
第四段:数学学习的技巧和方法
在大学数学学习过程中,我也积累了一些有用的学习技巧和方法。首先,跟上课程的进度是非常重要的。数学学科的知识是相互联系的,每个知识点都是前人总结和发展的结果。如果跟不上课程进度,就会产生知识断层,导致后续学习更加困难。其次,理解数学的原理和方法比死记硬背更重要。理解原理可以帮助我们灵活运用,而死记硬背只是机械记忆,没有深入理解。最后,多加练习和思考可以提高数学解题的能力。数学是一门需要不断探索和实践的学科,只有通过练习和思考,才能真正掌握和运用数学的方法。
第五段:数学学习的进一步思考
大学数学学习的过程不仅在于短期的知识积累和考试成绩的取得,更重要的是培养逻辑思维、问题解决和创新能力。数学学科的学习是一个持续不断的过程,需要我们不断汲取知识,增加对问题的认识和理解。通过解决不同类型的数学问题,我们也可以提升我们的批判性思维和创造力。我相信,通过持续的努力和学习,我可以在数学学科中不断成长,为实现自己的梦想打下坚实的基础。
结尾:
通过大学数学学习的过程,我理解到了数学的重要性和挑战性,同时也体会到了数学学科的多样性和广泛应用。我积累了一些有用的数学学习技巧和方法,并对数学学科的进一步思考有了新的认识。虽然数学学习的过程困难重重,但我相信只要持之以恒,不断努力,一定能够取得好的成绩并获得更多的收获。
大学数学的心得体会篇三
大学数学实验对于我们来说是一门陌生的学科,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。下面是本站小编为大家收集整理的大学数学的心得体会,欢迎大家阅读。
数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。
学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。
当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的运算量,给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。
时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统计实验,数值计算方法及实验。通过这学期的学习,我也积累了些自己的学习方法和心得。首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。
通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础!
一直以来都觉得数学是门无用之学。给我的感觉就是好晕,好复杂!选修了大学数学这门课,网上也查阅了一些有趣的数学题目,突然间觉得我们的生活中数学无处不在。与我们的学习,生活息息相关。
不得不说,数学是十分有趣的。可以说,这是死中带活的智力游戏。数学有它一定的规律性,就象自然规律一样,你永远也无法改变。但就是这样,它就越困难,越有挑战性。
数学无边无际深奥,更是能让人着迷的遨游在学海的快乐中。数学是很深奥,但它也不是我们可望不可及的。它更拥有自己的独特意义。学习数学的意义为了更好的生活,初中数学吧;为了进入工科领域工作,高中数学吧;为了谋求数学专业领域的发展,大学数学吧数学是什么是什么什么学科,公认的!我觉得是一们艺术,就象有黄金分割才美!几何图形如此精致!规律循环何等奇妙!
在网上看到一个很有趣的题目:有一个刚从大学毕业的年轻人去找工作。为了能够胜任这第一份工作,他也自作聪明地象老板提出了一个特殊的要求。“我刚进入社会,现在只是想好锻炼自己,所以你就不必付我太多钱。我先干7天。第一天,你付我5角钱;第二天就付我前一天的平方倍工钱,之后依次类推。”老板一口答应了。可到了最后一天领工资的时候,这个年轻人却只领到了寥寥几块钱。年轻人很不解,老板却说自己已经很不错了,多付了他好几百天的工钱。你知道为什么吗?起初看到我是一头雾水,后面就明白了:0.5元的平方是0.25元,0.25元的平方是0.625元......也就是说这么一直算下去,年轻人的工钱是一天比一天少的。自然,赚几元钱就得好多天了。但是如果年轻人第一天要的工钱大于1元钱,那么7天的工钱可就多得多了。我们不得不说这个老板是聪明的,员工的马虎的。这么简单的知识也会运用错误,导致自己吃了哑巴亏还没办法挽回。这么一个简单的例子事实上就已经说明数学就在我们的身边。
其实数学就是在我们的身边,之所以没有发现它的存在,我想有时候可能还是因为它的存在及运用实在太多。
数学讲究的是逻辑和准确的判断。在一般人看来,数学又是一门枯燥无味的学科,因而很多人视其为求学路上的拦路虎,可以说这是由于我们的数学教科书讲述的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学方法和原理的理解认识的深化。数学不是迷宫,它更多时候是象人生曲折的路:坎坷越多,困难越多,那么之后的收获就一定越大!
大学数学实验对于我们来说是一门陌生的学科。大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。
刚开始时学大学数学实验的时候我都有一种恐惧感,因为对于它都是陌生的,虽然在学数值分析时接触过matlab,但那只是皮毛。大学数学实验才让我真正了解到了这门学科,真正学到了matlab的使用方法,并且对数学建模有了一定的了解。matlab在各个领域均有应用,作为数学系的学生对于matlab解决数学问题的能力相当震惊,真是太强大了。数学实验这门课让我学到了很多东西,收获丰硕。
第一节课我了解到了数学实验的一些基本发展史和一些基本知识。通过这学期的学习,学完这门课,让我知道了原来数学与实际生活连接的是这么紧密,许多问题都可以借助数学的方法去解决。对于一些实际问题,我们可以建立数学模型,把问题简化,然后运用一些数学工具和方法去解决。
大学数学实验我们学习了matlab的编程方法,虽然仅仅只有一种软件,可是整本书可用分的数学知识一点都不少,比如插值、拟合、微积分、线性代数、概率论与数理统计等等,现在终于知道课本上的知识如何用于实际问题了,真可谓应用十分广泛。
刚开始我对matlab很陌生,感觉这个软件很难,以为它就像c语言一样难学,而且这个软件都是英文原版,对于我这种英语很烂的人来说真是种噩梦。但是经过一段时间的学习后感觉其实并没有想象中的那么可怕,感觉很好玩。
我觉得学好这门课需要做到以下几点:1、多运用matlab编写、调试程序2对于不懂得程序要尽量搞清楚问题出在哪3、与同学课下多多交流,课上多请教老师。
大学数学的心得体会篇四
随着大学学习的深入,我深刻地意识到数学学科在人类科学发展史中的重要地位。在大学学习中,我也有了许多的体会和感悟,今天想分享一下我对于数学大学的心得体会。
第一段:数学学科的重要性
数学是一门基础科学,是自然科学、生命科学、工程技术和社会科学的基础。在现代社会,数学学科已经渗透到了各个领域,成为了科技创新、经济发展的重要驱动力。而在大学阶段,数学更是一个非常重要的学科,它是人类思维的基础和逻辑的支柱。大学的数学教育是让人们通过学习数学来理解事物的本质,探索现象背后的规律,提高逻辑思维和创造性思维的一个重要平台。
第二段:数学学科的特点
数学学科有其自身的特点,它不仅需要学生掌握数学的基本概念,同时还要注重数学的思维方法、推理过程和实际应用。在学习数学的过程中,我们需要通过康托尔集合、拉格朗日乘数法等各种抽象与具体的方式进行学习和思考,这需要我们学习者有较高的抽象能力和逻辑思维能力。因此,我认为数学作为基础学科,需要我们在大学阶段注重其特点和应用,同时也需要掌握好相关的数学工具和思维方法,以方便我们在日后的学习和工作中得到更多的应用。
第三段:数学学习过程中的困惑
虽然数学学科的重要性和特点已经显而易见,但我在学习中还是遇到了很多的困惑。比如,现实生活中常常会遇到我们数学基础不够的问题,如如何求导、如何积分、如何做常微分方程等。而在课本中,由于数学语言的抽象性和逻辑推理的繁琐性,学习起来显得异常艰难。但是,只要我们付出足够的努力和耐心,积极地解决一些古怪的数学问题,就会逐渐发现做数学问题并不是很难。
第四段:数学学习的方法
针对在学习数学过程中遇到的困惑,我想说的是,我们可以借鉴一些有益的数学学习方法,来克服这些困难。首先,知道一个结论,要深入了解其中的证明和推理过程,掌握如何证明一个定理或结论的方法,这有助于我们理解数学的基本逻辑和推理方式。其次,关注数学应用的实际场景,充分认识到数学思维方式的实用性和必要性,这是数学学习的重要动力和动力来源。另外,解题是学习数学的一个重要方法,因此,我们可以多做相关的数学题,在经验积累的过程中提高自己的解题能力。所以,我们需要为我们的数学学习定一个清晰的学习目标,并选定合适的学习方式和经验积累的方法。
第五段:数学学科的未来
在未来的发展中,数学学科已经成为各大学术领域的重要组成部分。我们需要认真学习并掌握数学学科的基本知识和方法,以便在日后的学习和实践中能够有所收获。同时,我们也需要充满信心和激情去探索和创新,为数学学科的发展和进步做出自己的贡献。希望未来的数学学科能够越来越具有前瞻性、广泛性和多样性,促进人类社会的进步和发展。
总而言之,大学学习中我对于数学学科的心得体会,主要围绕着数学学科的重要性、特点、学习中遇到的困惑、学习的方法以及数学学科的未来等几个方面。我相信,在不断的学习实践中,我能够更好地理解和掌握数学学科,努力实现自己的期望和愿景。
大学数学的心得体会篇五
教书育人是每个老师应尽的职责,在这段时间里,我真正地体会到教书育人的深层含义。体会到了作为一名老师不易,做一名合格的老师更是难上加难。
来学校实习的原因其实是想要通过教师资格证的面试,而作为一名非师范专业的学生,我觉得自己缺少的是上课的经验,所以我就借着这次机会来到了一小实习。
很幸运遇到了一位非常厉害的老师带着我实习,李水莲老师,这也让我在实习期间学到了很多,通过听老师上课,慢慢地知道怎样才能上好一堂课。当然也少不了老师对我的耐心指导,写好了教案拿给她看,每次她都会认真地帮我批改,然后把整堂课的流程和我讲一遍,应该怎么讲才能让学生听懂。这也使得我从最开始上课“小白”到真正意义上的明白了一堂好的课到底是怎么样的。
听了一周的课之后,老师准备让我讲一堂课。于是我开始备课,借鉴各种教案,然后把写好的教案拿给老师看,让她帮我批改,改好后,我在家里开始模拟上课。怀着特别激动的心情,我走上了讲台,开始了自己人生中的第一堂课——《吨的认识》。老师说今天这节课由我来给大家上,同学们都特别的激动开心。最开始我的心情还是特别的紧张,但由于同学们的配合,慢慢地我也就随之放松了。不知不觉中一节课竟然就过去了。由于经验不足和应变能力不强,上课没有激情,融入不了课堂中,不够关注学生的纪律方面,课堂出现了“讲课内容重复,讲课重点不全面,师生配合不够默契,对学生的评价不多”等等。针对出现的问题,老师给我提了很多意见,帮助修改教案,她没有丝毫的架子,有更多的是朋友般的亲切交谈。为了弥补自己的不足,我在家开始练习怎么上课,听其他老师的优秀讲课视频,怎样才能有激情有感情的融入课堂中去。
终于在第二堂课的时候有所改善。有了第一次上课的经验,第二次老师再安排我上课时,由于认识到了自己的不足,所以就开始改善,认真仔细地备好课,写好教案,把教案给指导老师看。很明显,第二次课比第一次上课就有了很大的进步。但是在上课的过程中,我遇到了许多困难:譬如学生的纪律问题,当时老师就告诉我,教学生还要有方法。适当的惩罚和奖励结合,恩威并施才能在学生中建立威信。老师说我最大的毛病就是不够关注学生,因为三年级的小孩子很好动,而且注意力非常容易分散,这样很容易开小差,影响教学效果。她说上好一堂课最重要的就是要关注到全体学生,没有关注学生的一堂课就等于白上了,上课要有激情,要真正地融入到课堂当中去,你有激情有感情了,学生就会在你的带领下真正的走进课堂学会知识。
由于上课的次数多了,渐渐地我有了很大的进步了,开始关注学生了,上课也开始有激情了,也融入到了课堂当中了。其实上好一堂课真的很难,并没有想象中的那么容易,我们要面对课堂当中很多突发情况,学生是好动的,除了关注学习还要关注到各个方面。
在实习中,我认为做一名好的班主任的确很难。由于学生都还小,自我组织和约束能力都还很差,特别是后进生更差。这就需要老师牵着他们走,告诉他们应该怎样做。所以班主任不但要完成复杂而又繁琐的教学工作,还要管理好整个集体,提高整体教学水平,同时又要顾及班中每一名学生。这就要求教师不能只为了完成教学任务,而且还要多关心留意学生,经常与学生交流,给予学生帮助,让他们感觉老师是在关心他,照顾他。所以要想成为一名优秀的班主任也很不容易。
整个实习期间,使我真正体会到了做一位老师的乐趣。同时,我由衷的感谢老师对我的指导,很幸运能碰到一位这么好的老师,如果没有老师的细心指导和耐心指教,就没有这么大的进步。这段经历也将会是我人生当中很难忘的经历。
大学数学的心得体会篇六
《教育部高职高专规划教材:工程数学(建工类)》包括了线性代数、概率论、数理统计的基本内容,还介绍了matlab和sas,2个软件系统,8个数学建模问题,18个数学实验,66个建工专业的例题与习题。
[基础理论]+[数学建模]+[数学软件]三大模块有机结合的工程专科数学教学内容的设计方案,并以此编成了这本书。它有以下3个特点:
1、充分注意了工程数学基础理论的重要地位。全书以2/3的篇幅介绍了建工类高职高专学生所必需的线性代数、概率与数理统计方面的基础知识,仅删去一些烦琐的证明、神奇的运算技巧和少数几个概念。
2、强调“以培养创新精神和应用能力为重点”的指导思想。介绍了matlab和sas 2个软件系统,讨论了8个数学建模问题,列出了18个数学实验,有66个例题或习题具有鲜明的建工类专业色彩,使学生能感受到工程氛围,注意基础知识用于工程实践,并能在建模训练中培养探索、创新能力。
3、内容处理新颖。本书在强调数学概念与基础理论的基础上,进行了6个方面的渗透:
(1)渗透数学在工程技术中应用的实例;
(2)渗透数学建模思想;
(3)渗透数学实验方法;
(4)渗透数学软件应用;
(5)渗透经济效益意识;
(6)渗透科学思维方法。这样,三大模块有机结合起来,互相渗透,融为一体,成为一个新的课程体系。这种体系以数学知识为基础,实际问题为背景,数学建模为手段,数学软件为工具,既有利于教学手段、教学方法的改革,更有利于学生素质的综合提高。
本书大部分内容在湖南城建高等专科学校试讲多年,编者做过大量的跟踪调查,召开座谈会、调查会,与会人数累计上百人次,问卷调查不下千人,收集“读书报告”(或数学学习心得)600多份。这些调查充分证明,本书的内容设计与讲述方法,有利于提高学生的应用能力,有利于培养学生的数学意识,而且在后续课程学习中,数学知识也基本够用。
这本书是为房屋建筑工程、道路桥梁、给水排水、规划设计、风景园林、工程造价、房地产管理等建工类专业的高职高专学生编写的,也可供其他专业的高职高专学生和教师参考。讲授本书内容约需50~70课时,目录中打“xx”号的可作选学。
本书是湖南城建高等专科学校信息工程系数学教研室集体研究的成果。李天然副教授担任主编,张新宇、田罗生两位副教授担任副主编,参编人员分工如下:李天然编写第三、四、十一、十二章,张新宇编写第六、八章,田罗生编写第一、二章,龚卫明副教授编写第九、十章,龙韬讲师编写第五章,李俊锋讲师编写第七章。此外,何孟义教授、金庆华副教授、彭德权副教授、肖劲松讲师、郭冰阳讲师等也参加了本书大部分内容的教学研究。
大学数学的心得体会篇七
时间过的真快,刚刚熟悉了这个校园,对学生才刚刚有点了解的时候可实习却结束了。
我是来自江西师大的数学系的一名学生,和十几个同学来广州番禺学校参加岗前培训,其实也就是实习,在这短短的不到半个月的实习当中,真正让我们体会到做一位老师的乐趣。尤其是当我们漫步在实习校园时,那出自学生一声声“老师好”更增加了对教师职业的热情。在这短短的十几天我们见识了学生的学习环境,参观了学校,这让我们大开眼见。
我的指导老师宋老师是一位很优秀的指导老师,他有着25年的教学经验。他对我这半个月的指导和点播让我受益匪浅,学到了不少知识。他是初一(6)班的班主任,同时还是初一(4)班的数学老师,这两个班我都上过课,也和学生有过聊天,时间真的是太短了,还来不及一一和这群活泼、可爱的孩子们谈心,我就得和他们告别了,想想心里挺难过的。
除了上数学课外,我还得实习班主任工作,在实习班主任阶段,由于晚上我们都有安排,没有时间去教室,有时开会结束的早时,我来到初一(6)班,我发现这群好动的学生们正安静的看着书,我担心自己进去会打扰到他们,我就会在走廊那里徘徊,之后我就会悄悄地走掉。大多数时候我会在下课时间去教室看看他们,和他们聊聊天。每天我都会想着大课间体育活动和他们一起玩,学生也都喜欢和我一起玩,那种感觉真的很爽。虽然时间很短,但我对学生的感情是很深的。
对于番禺执信学校,这是我所见过的最好的学校,这话一点都不假。记得第一天何校长带我们参观校园的时候,我就喜欢上了这所学校,羡慕在这里读书的孩子们。学校有美丽的风景,那些绿绿葱葱的树木,让我爽心悦目。当听到何校长说这颗那颗树是某某同学在某年某月栽种的,我更是不由感叹,这所学校真是全面发展人才啊!紧接着,校长又带我们参观了海洋馆,这是我前所未见的,我从来没听见过学校还有海洋馆,看着那一条条五颜六色的鱼,我连忙取出我的照相机,我要告诉我身边的朋友我来实习的学校是多么的与众不同。我们一路边走边看边听校长的描述,我一边拿着照相机不停地拍着这所美丽的校园。墙上到处都有很多雕塑和图画,就如李老师和我们介绍时说的一样,学校的每个墙壁都会“说话”,真的,我觉得这话一点都不假。但最令我们大家每个人都很今叹的是:学校竟然在食堂那里的草坪,目前我一时想不起来那到底叫什么,但是我大概知道那里汇集了几乎所有的世界有名的古建,埃及金字塔、埃菲尔铁塔、长城等等,真是令人今叹,这些都很形象地向学生展现了一些古迹。真是想不到啊!
就在今天上午我听了一节初一(3)班的数学老师的公开课,这让我感受到了番执学校的课堂是给学生主动权,老师引导,学生思考并回答,我觉得这节课算是一节成功的课,可是当所有老师坐在一起评课时,我才发现老师教学真的很严谨,曾经我也到私立学校实习过,我也上过公开课,但老师们都会手下留情,不会在大庭广众指出错误,老师们会私下里指出缺点,再教我们应该如何如何改正。而番禺老师和领导会立马指出不足之处,这点还是很好的,让大家可以共享,毕竟每个人都有自己的看法,不同之处可以参考。
在最后的几天晚上,学校还给我们开培训的课程,就昨天晚上李主任讲的教学常规管理培训,让我们深刻的知道“动”、“懂”、“悟”着三个字对学生的重要性。在番执这所风景秀丽、人才济济的学校,很多的话我都无法用语言描述出来。这对我以后踏上教学工作岗位有着很好的借鉴,在此我感谢在番执这所学校的所以领导,师生给予了我这么好的平台。
大学数学的心得体会篇八
我在大学学习数学已经有两年多的时间了,而对于数学,我最深的体会,就是他带给我思考的乐趣。我喜欢用公式,方程式去解决问题,去探索事物的本质。数学世界中的问题总是有一个必然存在的答案,而当我们靠着我们的思维去创造出这个答案的时候,获得的快乐是无法用言语来形容的。在这种情况下,不管是解方程、证明定理,还是找出大数据中的规律,每一步我们都在思考,这种思考才是真正带给我快乐的部分。
第二段:数学让我不断挑战自己
数学,是一门需要不断挑战自己的学科。有时候,我需要面对的难题,会让我感觉无从下手。即便如此,我还是会去从基础的部分开始,去理解问题的本质,再慢慢地试着构思答案。这在初学阶段也很确实是我所遇到的问题,并不是只属于像我这样的学生,对于大多数人,数学的本质都是理解、思考。这就是数学能带给我的最大收获了。每次成功地解决一道难题,能够满足我的好奇心和探究欲,还有那份对自己的鼓励。
第三段:数学让我学会了耐心和冷静
每当遇到困难,许多人都会急躁,感到无从下手,我也曾经有过这种经历。但是,数学让我体验到一种与众不同的学习方式——运用耐心和冷静思考。耐心是打磨解决问题的过程中得以锤炼的特质。这种特质不仅仅在数学领域有用,更是在我们日常生活中处处可见。另外一方面,数学对于冷静的要求更是高于其他学科。因为它的独特性质导致求解数学问题的方法不仅会包含标准的算几道题,往往会涉及到多重思考甚至重新转化问题提出的过程。这样的学习方式让我更加深刻地认识到问题本质,理性思考和分析的能力得到长足的提高。
第四段:数学让我在计算机学科领域有了突破
数学或多或少会与计算机学科相关联,我在这方面做了许多突破。数学思维和计算机思维相同,需要一个理性的解决问题的过程。这种思维状态不仅可以运用到纯数学领域,同样适用于编程领域。在我学习编程的时候,通过运用数学思维和方法,能够很好地解决一些问题。比如,使用数据结构与算法,就有许多算法主要的思想原理都涉及到数学领域,如排序、搜索等问题的解决方案。这让我更加坚信数学思维是所有学科所能应用的共通性思维。
第五段:结语
总之,在我看来,数学不仅仅是一门学科,更是一种思考的方式。无论对于任何人而言,数学所能提供的乐趣是无穷无尽的,极具挑战性,耐心和冷静的思考、基础知识与思维的共同训练,还有它在知识扩展、学科与领域中的交叉性质等方面,都让我深深感受到其独特的价值。数学不仅提高我们的思维能力,而且可以找到学习其他学科的方法。它的魅力不断地激励着我不断去探索、去创新。
大学数学的心得体会篇九
数学是人类文明进步的重要基石之一,也是人类思维模式转变最为显著的范例。大学的数学学习,是让我们深入了解数学本质、培养数学思维和方法,具有无限宝藏,犹如挖掘无尽财宝,让人相信数学这个学科的魅力所在。在这里,我将分享自己数学学习中的五个心得体会。
第一点:数学思维的培养需要以逻辑为基础
在大学数学学习中,一定要注意思维的培养,而这个培养过程是以逻辑推理为基础。不同于日常生活的惯性思维,数学解题需要告别模糊不清、主观臆断、漫无目的和不严谨的思路,而是应该彻底萃取逻辑规则的精髓,遵循公理定理、引理和定律,努力用形式化的语言来描述问题,这样才能找出问题的关键和真正规律。尤其是在告别错误、批判性思维和深度思维方面,都有着显著的提升。例如,通过数学的结构分析,可以发现不同事物的相似或同源性;使用逻辑推理方法,则可以确定两种事物之间的联系。
第二点:数学方法的应用需要实战训练
数学方法学习的难点不在于知道某个定理或命题,而在于如何使用它来解决问题。所以学习数学方法的关键还是要有实战训练,只有经历了大量实践题才会印证自己所学的方法是否正确,也从中体悟到解决问题的方法与步骤,并在实践运用中打磨自己的思考和表达能力。这种训练,需要选用合理的练习题目,不断提高难度,进行综合运用,加强对于所学内容的掌握。
第三点:数学学习需要锲而不舍、不断探索
数学就是一种不断探索的过程,一个问题的发现和解决需要不断地思索、实验和改进。因此学习数学也需要有坚韧不拔的精神,并且要不断地尝试各种可能,快速发现失败之处,从而更快地在下一步行动中避免相同的错误。要以执着的态度去探索数学的可能性,不断讯问、发现和验证新的数学规律,不断的重复和实验,才有可能突破现有的数学界限,发现新的数学美。
第四点:数学学习需注重自主思考和独立思考
大学期间的数学学习,需要引导学生树立独立思考的意识,重视自己的思想独立性,并且培养自主思考的能力。在数学解题、数学理论的学习中,学生需要不仅仅是消极地接受数学知识,而是能够主动思考问题,自主发现规律,不断加深理解,每个问题都要仔细思考,并且通过自己的思考方式和方式来解决问题。
第五点:数学的真正价值在于其实用和实际应用
学术界的许多数学贡献的发现对我们正常生活和实际的应用中又不起典型确实意义。无论是科学技术、经济金融还是人文社科等领域,数学能够派生出许多实际应用的分析和解决方案。将数学与实际应用相结合,增加数学的实际价值,也让数学成为解决实际和全球性问题的强有力工具。
总之,大学数学学习是一项综合考验素质的任务。要理解和掌握数学核心思想和方法,需要有扎实的数学功底,还需要注重思维培养、实践训练和实变应用。在这样的学习过程中,培养对数学的兴趣和锲而不舍的精神,才能更好地挖掘数学的潜力和魅力,为未来的继续学术、职业发展打下坚实的基础。
大学数学的心得体会篇十
数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,cauchy,riemann,weierstrass等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。
复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!
复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。
由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。
在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。
难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足cauchy-riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习cauchy-goursat基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和newton-leibniz公式相对应的结论等等。
这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用“已知”解决“未知”的思想等教学法。
参加培训之前我没有考虑过这些问题,通过这次学习,我对这些难点与重点的认识进一步深入了。以后的教学过程中用到所学的知识,为提高教学质量而努力。
大学数学的心得体会篇十一
第一段: 引言和背景介绍 (200字)
作为一名大学生,我有幸参加了一场关于数学的讲座。这次讲座是由我所在大学的数学学院举办的,目的是为了让学生对数学的重要性和应用有更深入的了解。讲座的主讲人是我校的一位著名教授,他在数学领域有着丰富的研究经验和深厚的知识储备。我对这次讲座充满了期待,希望能够从中获得一些对数学学习的启发和指导。
第二段: 讲座内容概述 (200字)
这次讲座的内容非常丰富,主题涵盖了数学的基础概念、应用领域和研究前沿。教授首先向我们介绍了数学的起源和发展历程,为我们打开了一扇了解数学的大门。之后,他重点讲解了代数、几何和概率三个重要的数学分支,并通过实际例子和问题引导我们思考和解决数学难题。最后,教授向我们展示了一些前沿数学研究的成果,让我们对数学的发展方向有了更深刻的认识。
第三段: 讲座的启发和收获 (300字)
这次讲座给我带来了很多启发和收获。首先,我意识到数学作为一门科学,不仅具有严密的逻辑性,更是一门富有创造力和想象力的学科。讲座中,我看到了数学的美和魅力,深刻体会到数学不仅是一种知识,更是一种思维方式和解决问题的工具。其次,教授通过丰富的实例和问题,让我们深入理解了数学的应用领域和实际意义。他讲解了数学在自然科学、工程技术、社会科学等领域的广泛应用,让我意识到数学在现实生活中的重要性和不可替代性。最后,教授向我们展示了一些前沿数学研究的成果,让我们感受到数学作为一门学科的光辉未来和无限可能性。
第四段: 对数学学习的反思和规划 (300字)
这次讲座让我对数学学习有了更深刻的认识和反思。我认识到数学学习离不开坚实的基础和扎实的训练。只有通过不断的练习和思考,才能真正理解数学的本质和应用。同时,我也明确了数学学习的步骤和思路。在打好数学基础的同时,要注重培养数学建模和解决实际问题的能力,关注数学的应用和前沿研究,追求数学学科的深度和广度。基于对数学学习的反思,我制定了合理的学习规划和目标,希望能够在数学学习的道路上越走越远。
第五段: 结语和总结 (200字)
参加这场数学讲座是我大学生活中非常宝贵的一次经历。通过这次讲座,我对数学学科的认识和理解得到了提升,对数学学习的规划和目标更加明确。数学作为一门科学,不仅具有严密的逻辑性,更是一门富有创造力和想象力的学科。在今后的学习过程中,我将不断努力,培养自己的数学思维和解决问题的能力,为数学学科的发展贡献一份力量。同时,我也希望更多的人能够认识到数学的重要性和应用价值,从而更好地拥抱数学,探索数学的奥秘。
大学数学的心得体会篇十二
在这一段时间的培训中,我比较认真地看了各位专家对于小学数学新课标的解读,尤其对他们讲解的小学数学教学中各个方面的问题、今后改进的措施、办法进行了深刻的理解和领悟。确实收获不小,感觉自己在日常工作中还存在很多不足。我们仅仅在自己的一个狭小范围内着自己的工作。通过这次培训,我有如下感想:
我们要在今后的教学中继续彻底改变自己。这次学习使我的思想有了更深层次的转变。作为一名小学数学教师,必须具有渊博的知识,良好的思维品质,这些还远远不够。我们要在数学学习探究过程中,不再把数学知识的传授作为自己的主要教学任务和目的,也不再把主要精力花费在检查学生对知识掌握的程度上,而是要成为学习集体中的成员,在问题面前教师和学生们一起寻找答案,在探究数学的道路上教师成为学生的伙伴和朋友。
面向全体学生我们应做到:
2、为学生提供自主学习和直接交流的机会,以及充分表现和自我发展的一个空间;
3、鼓励学生通过体验、实践、合作、探索等方式,发展听、说、读、写的综合能力;
4、创造条件让学生能够探究他们自己的一些问题,并自主解决问题。
学生只有对自己、对学科及其文化有积极的情态,才能保持学习的动力并取得成绩,垮的情态,不仅会影响学习的效果,还会影响其它发展,因此我们要努力创造宽松、和谐的教学空间。关注学生我们应做到:
1、尊重每个学生,积极鼓励他们在学习中的尝试,保护他们的自尊心和积极性;
3、关注学习有困难的或性格内向的学习,尽可能地为他们创造语言的机会;
4、建立融洽、的师生交流渠道,经常和学生一起思学习过程和学习效果,互相鼓励和助,做到教学相关。
新课程强调“数学教育要从以获取知识为首要目标转变为首先关注人的发展”、“转变为首先关注每一个学生的情感、态度、价值观和一般能力的发展”。在此,特别需要指出的是:数学教育中学生“情感、态度、价值观”的发展应是与其数学知识与技能方面的学习直接相联系的,也即在两者之间存在内存的、必然的联系,而不是某种外在的、牵强附会的、偶然的成分。因此,我们无疑应当强调通过数学教学助学生树立在数学学习上的自信心,但是这绝不是指数学学习应当成为一种毫不费劲的.“愉快学习”,我们应当努力增强学生对于数学学习过程中艰苦困难的承受能力,从而也就能够通过刻苦学习真切地体会到更高层次上的快乐。这也是中国数学教育优良传统的一个重要组成成分。
“三人行,必有我师焉”,在培训中,各位老师都能积极提出自己遇见的问题,也能毫不保留地讲出自己对某一问题的'看法认识。对班里成员提出的问题能认真讨论,各抒己见,有利于改进我们的教学,提高我们的业务水平。
时代要求我们必须进步,相信在以后的工作中,我会更努力地在先进理论的指引下力改进我的工作。
大学数学的心得体会篇十三
在大学的学习生涯中,数学课程是我们必须要选修的一门课程。数学作为一门基础学科,对我们的学习和思维能力有着极大的影响。在我选修大学数学课程的过程中,我深深地体会到了数学的重要性。通过学习数学,我不仅提高了解决问题的能力,而且也加深了对数学知识的理解和掌握。
第二段:数学课程的挑战与努力。
选修大学数学课程的过程并不容易,特别是对于非数学专业的学生来说。数学的逻辑性和抽象性常常让人感到困惑。然而,我意识到克服这些挑战需要付出更多的努力。我不仅坚持每次课后完成作业,还主动找老师请教不懂的问题。通过这些努力,我逐渐掌握了解决问题的方法和技巧,并且取得了更好的成绩。
第三段:数学的实际应用与启发。
虽然有些人可能认为大学数学课程只是纯理论的学习,与实际应用无关。但是,通过选修数学课程,我意识到数学在现实生活中的应用是广泛而深远的。数学可以帮助我们理解自然界的规律,解决实际问题,例如金融、工程和科学等领域。我开始理解数学不仅仅是为了应付考试,而是为了提升自己的观察、思考和解决问题的能力。
第四段:数学学习对思维方式的影响。
通过选修大学数学课程,我发现数学学习对我的思维方式有着深刻的影响。数学思维注重逻辑推理、分析问题和解决问题的方法。在解决数学题目的过程中,我学会了清晰地阐述自己的观点,善于观察细节,以及思考问题的多种角度。这些思维方式不仅在数学学科中发挥作用,也对其他学科的学习和职业发展有着积极的影响。
第五段:结论及对数学课程的感悟。
通过选修大学数学课程,我不仅获得了数学知识,更重要的是培养了自己的学习能力和思维方式。数学课程的挑战和努力让我更加坚定了学习的决心,认识到学习数学是一项长期而持续的过程。数学的实际应用性及对思维方式的影响使我意识到数学不仅仅是一门课程,更是一种提升自己的能力和思维的工具。因此,选修大学数学课程是我大学生涯中一段珍贵的经历,它为我未来的学习和职业生涯奠定了坚实的基础。
大学数学的心得体会篇十四
第一段:引言:
大学数学作为一门重要的基础学科,对于培养学生的逻辑思维能力、解决问题的能力以及抽象思维能力都起着至关重要的作用。数学学习是一种独特的体验,通过这门学科的学习,我深深地感受到了数学的美妙和思维的乐趣。
第二段:数学的抽象思维。
在大学数学中,我最深切体会到的便是数学的抽象思维。数学不同于其他学科,它提供了一种独特的思维方式,通过将具体问题转化为抽象的符号和概念,使人们能够更好地理解和解决问题。例如,在学习微积分的过程中,我们学习到了极限的概念。这个概念在一开始可能感觉非常抽象和难以理解,但通过不断的练习和思考,我逐渐体会到了极限的思想方法和运用。数学的抽象思维让我对问题有了更深入的认识和理解。
第三段:数学的逻辑思维。
数学另一个重要的方面是逻辑思维。数学问题往往有着严谨的逻辑关系,只有按照一定的规律进行推演和推理,才能得到正确的答案。通过大学数学的学习,我学会了运用逻辑思维解决复杂的问题。在证明题中,我们需要按照一定的推理路径将已知条件转化为要证明的结论。这种逻辑上的推理和分析训练了我的思维能力,培养了我的严谨性和逻辑性。
第四段:数学的思维乐趣。
尽管数学学习对于许多人来说是一项苦差事,但它也能给我们带来乐趣。我发现,解决数学问题的过程中,时常会遇到令人惊喜的奇妙结果。有时我会尝试从不同的角度思考问题,用不同的方法解决问题。这种思维的灵活性和创造性给我带来了巨大的满足感。尤其当我攻克一个原本困扰着我的问题时,那种成就感更是让我欣喜若狂。因此,我相信数学学习不仅仅是为了应付考试,更是为了能够领悟到其中蕴含的乐趣和美妙。
第五段:结语。
大学数学学习是一项既具有挑战性又充满乐趣的过程。通过数学的学习,我不仅提升了自己的思维能力和解决问题的能力,还体验到了数学的美妙和思维的乐趣。尽管数学有时会让人感到沮丧和困惑,但只要坚持下去,勇敢面对问题和挑战,我们一定能够攀登到数学的巅峰,享受到数学给予我们的宝贵财富。通过数学的学习,我相信我不仅能赢得一场属于自己的智力盛宴,更将在未来的道路上势如破竹。
大学数学的心得体会篇十五
《数学课程标准》提出数学教育要以有利于学生全面发展为中心,以提供有价值的教学和倡导有意义的学习方式为。在此理念下,数学教学应是数学活动的过程。教师要重视知识的发生和发展,给学生留有充分的时间与空间,使学生亲自参与获取知识和技能的全过程,激发数学学习兴趣,培养运用数学的意识与能力。
数学课堂的教学模式是开放性的。我校根据数学学科及学生发展特点建构了本学科新授课、练习课、复习课教学模式。优秀的数学教师,不仅要学习和掌握各种类型的教学模式,还要在实践中不断加以创新,才能针对当前课程及教学内容选用恰当模式,并因材制宜地调控和综合运用最优组合模式,从而达到最佳教学效果。下面是我运用模式教学的一点体会:
一、创设情境,激发兴趣合理有效的创设生活教学情境,可以使数学课堂教学更接近现实生活,使学生身临其境,加强感知,突出重点,突破难点,激发思维,轻松地接受新知识。主要是引趣、激疑和诱思。虽然说“兴趣是最好的老师”,但数学学习仅凭兴趣是远远不够的。
情境的创设,必须选择恰当的、适合学生发展的情景方式,使情境创设反映儿童熟悉和可以理解的事物,例如,在教学“退位减法”时,创设了同学们借书的情景,然后让学生根据借书的情景提出一个数学问题。这样设计,学生容易产生亲切感,激发了学习兴趣,从而积极的投入到新知识的探究中。
二、主动参与,探索新知现代著名教育家布鲁纳强调:“教一个人某门学科,不是要把一些结果记下来,而是教他参与把知识建立起来的过程。”所以在教学中,教师应引导学生主动参与教学活动,鼓励学生自主探索,让学生成为知识的探索者和发现者。
在教学过程中,教师应注意给学生“参与”活动提供各种机会,使学生在参与过程中掌握方法。
(1)提供说话的机会。例如,在应用题教学中说一说数量关系和分析解题思路;在计算教学中引导学生说一说计算的`过程和依据;在概念题教学中引导学生说一说概念的形成过程及新旧概念的联系和区别。让学生在说的过程中充分暴露思维过程,养成良好的思维习惯,提高分析问题、解决问题的能力。
(2)提供操作的机会。在教学中应经常让学生拼一拼、剪一剪、画一画、摆一摆、折一折。例如,在教学数的认识时,让学生拿出小棒摆一摆,或者画一画,可以掌握数的组成和分解;在教学分数的认识时,可以让学生通过折一折认识分数的意义。学生通过操作,发现规律,掌握新知。
(3)提供独立思考的机会。教师在教学中应注意精心设计提问,启发学生思维,充分给予学生独立思考的机会。例如,在教学推导圆柱体积计算公式时,先让学生回忆圆的面积计算公式的推导过程,然后设问:你们认为圆柱体体积与什么条件有关?你们会用什么办法来推导圆柱体的体积计算公式?会利用什么知识来解决这个问题呢?然后让学生小组合作交流,动手操作,推导圆柱的体积公式。
(4)提供合作探究的机会。合作探究有利于形成开放、平等、融洽的气氛,有利于充分发挥学生的主动性和积极性。这就要求课堂教学问题的设置要具有启发性,问题的呈现要有利于展开实验、操作、交流等活动。合作探究坚持不搞一言堂,不搞教师奉送答案的做法,代之以小组讨论等方式,主动探索,把静态的知识结论转化为动态的探索过程。
(5)提供质疑问难的机会。爱因斯坦曾经说过:“提出一个问题,往往比解决一个问题更重要。”因此,可引导学生在课堂上针对教学内容提出问题,由教师或让学生解答,或自己解答。实践证明,这种方法较能活跃课堂气氛,让学生主动参与,调动其积极性,真正体现学生的主体地位。
三、运用新知,解决问题学生在自主探索的基础上,掌握了新知,为了巩固新知,需要通过不同形式、不同层次、不同类型的练习,有效地提高学生分析数学问题和应用数学知识解决实际问题的能力。
总之,“教学有法,但无定法”,就数学课堂教学而言,不可能存在一种放之四海而皆准的教学模式,教师要善于充分挖掘每个模式的教学功能,避免陷入教学模式单一僵化的误区,另外,从教学改革角度看,教学模式的综合、灵活运用,本身就是创新和发展。作为一名研究型的教师,要在继承和发扬每种教学模式传统优势基础上,不断整合与创建新的教学模式,注重计算机辅助教学与其他教学模式的有机结合,衍生和发展更新更有效的教学模式,形成个人独特的教学风格。
大学数学的心得体会篇十六
我不知道人们为什么长久以来称数学为“科学的女皇”,也许是女皇有着一种让人无法亲近的神秘感,但是她的面容又是如此的让人们向往和陶醉。女皇陛下,揭开你神秘的面纱,让我目睹你绝世的风姿,体会你无尽的风韵,感动你带给我所有的感动吧!
仰望者,唯巨星也!数学的漫漫长河中,涌出过无数的璀璨巨星,从毕达哥拉斯、欧几里德得、祖冲之到牛顿、欧拉、高斯、庞加莱、希尔伯特……当他们一个个从我的心底流过时,有一种兴奋,更有一种感动,他们才是时代真正的弄潮儿。
牛顿和莱布尼兹联手创造了微积分(尽管他们之间有这样那样的矛盾),开创了数学的分析时代,微积分也被誉为“人类精神的最高胜利”(恩格斯语);历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。
一个多世纪前的1900年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。正是这23个数学问题,引领了整个二十世纪数学发展的主流。
1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达300年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。
就这样一次次的被感动,不仅为成功者喜悦感动,也为不被承认的成功者默默感动。
天才往往是孤独的,先知者注定得不到世人的理解。
许多天才的数学家,英年早逝,终生难以得志。
椭圆函数论的创始人阿贝尔一生贫病交加,大学毕业长期找不到工作,在他仅仅27年的短暂生命中,却留下许多创造性的贡献。但当人们认识到他的才华,柏林大学终身教授的聘书下达时,他已经离开人世两年了。
同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。
集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。
……
在那漫漫长河中,璀璨巨星令我欣然神往,惊涛骇浪更令我心潮澎湃。三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势,海洋般伟岸的身姿。
每一次危机巨浪之后,纳百川,聚众流,数学以更加广阔的胸怀滚滚向前,尽管这其中有很多悲壮的成分。
第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。
第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。
第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。
大学数学的心得体会篇十七
从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏。
全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到。这就是全面复习的含义。
在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。"猜题"的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,"猜题"便行不通了。我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式。由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广。比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精。
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到下确答案。这就是我们在前言中提到的,在20分钟内完成10道客观题。其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的`题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错。
高等数学是高等工科院校的重要基础课程。但对于如何学好这门课程。有些同学却是百展莫愁,头痛不已。而高数的学习、掌握和运用是后序课程的基础和保障,学不好高数,对于三大力学,还有结构设计原理来说,是不可能学好的。
数学是一门深奥而又有兴趣的课程。如果增加对这门课程的自信心,不要畏惧它。你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。
多想多做是学好数学的关键。多想是根本,多做是基础,多做是为了熟能生巧,是为了真正应用,是学好数学的前提条件。而多想充分发挥联想是学好数学的根本条件。学数学要知道举一反三,当老师讲到某一点或某一类型的问题时,你的思路就应拓展开来,不应仅仅局限于这一点或这一类型的问题,而应该把前面所学的知识点结合起来,想想如果你碰到这种题目你会怎么办?假如以后碰到这种类型的题目你又会怎么样?其实数学是个活学问也是个死学问。正所谓万变不离其宗。所有的题目都是所学过的公式和方法稍微转变一下过来的。对于像我这样自学的人来说,更需要多做、多想。这样才能加深理解,运用自如。
现在懂了,以后又不会做了。数学必须要做题,对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。
学好数学,学懂数学,主要的是“通”,而如何能“通”,这就是日积月累的多想多做,只要您通过勤学苦练,坚持不懈的努力,您一定会体会到高等数学没什么可怕的。