优质人教版五上数学解方程教案(案例13篇)
教案是教学计划的具体实施方案,它包括教学目标、教学内容、教学方法、教学手段、教学评价等要素。教案要结合教材的特点和教学资源进行设计。在制定自己的教案时,可以参考这些范文,做出更加详细和精确的教学设计。
人教版五上数学解方程教案篇一
【过程与方法】。
先运用实际问题引入三元一次方程组的概念,再类比解二元一次方程组的思想方法,学习三元一次方程组的解法,最后学习三元一次方程组应用题.
【情感态度】。
让学生学会“举一反三”的学习方法,体会数学的魅力.
【教学重点】。
一、情境导入,初步认识。
问题1小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元纸币各多少张.
人教版五上数学解方程教案篇二
2.“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
人教版五上数学解方程教案篇三
3、让学生在实际生活问题中,感受到数学的价值。
【学习重点】用列方程的方法解决打折销售问题。
【学习难点】准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系。
人教版五上数学解方程教案篇四
教材内容:
人教版小学数学第十册《解简易方程》及练习二十六1~5题。
教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
教学重点:
理解方程的意义,掌握方程与等式之间的关系。
教具准备:
天平一只,算式卡片若干张,茶叶筒一只。
教学过程:
一、创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
二、突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
三、自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
四、使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
人教版五上数学解方程教案篇五
稍复杂的方程是五年级数学上册65页的例1,从内容安排上看,这一课时是本册单元-----简易方程中的第七课时,在这一节前,学生已经认识了字母表示数的意义作用,并初步了解了方程的意义和等式的基本性质,并能运用它解简易方程,这一课时是对前期知识进一步深化,是本单元的学习重点,也是教学难点。
新课程标准对于方程这部分内容在本学段有以下几个具体目标:1、在具体情境中会用字母表示数。2、结合简单的实际情境,了解等量关系。
3、了解方程的作用,能用方程表示简单情境中的等量关系。4、能解简单的方程。根据新课标的要求,这节课的教学内容确立了这样三个教学目标:
一是通过分析数量关系,自主探究,初步掌握列方程解决实际问题的一般步骤和方法。
二是会列形如ax+b=c或ax-b=c的方程,并会正确地解答。
三是感受数学与现实生活的联系,培养学生的数学应用意识,培养学生初步的代数思想和良好的学习习惯。教学重点是掌握较复杂方程的解法,难点是会正确分析题目中的数量关系。本节在设计上,着重突出以下几点:
一、创设有趣的教学情境,激发学生学习兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重难点。
二、课程内容的选择上贴近学生生活实际,有利于学生体验、思考与探索。
三、突出学生数学学习的主体地位,教师作为学习的组织者,引导着与合作者参与其中,在生活中注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。在教学方法上,重点以启发引导为主,借助互相合作,自主探究等形式,因势利导,适时调控,努力营造师生互动,生生互动的课堂氛围。从而实现预设的教学目标。
为了达到以上设计的教学目标。抓住重点,突破难点。对本节课的教学设计了以下环节:首先选择学生喜闻乐见的足球提出问题,并随着问题的深入把学生自然带入了立体的情境中。大屏幕出示情境图。然后教师紧紧把握列方程解应用题的基本步骤,对学生进行及时的渗透,引导和点拨。并抓住本节课的重点、难点列方程解方程。让学生互相交流、讨论。都说讨论要有价值,我觉得此处是新知识的生成点,是等式过渡到方程的关键地方,也是学生从学会分析数量关系到能利用数量关系列方程的关键所在。所以此处引导学生进行讨论。如果学生讨论时对解方程有困难,教师可以给予引导,把2x看作一个整体,这样就突破了难点。学生解答就不会有困难了。方程解完后,教师提示学生进行检验,并写好答语。例题完成后,教师对列方程解应用题的步骤进行简单的总结,加深学生的整体印象。接着设计了三个练习题。不列式解答,目的是看学生们对列方程解应用题这一重要的步骤掌握情况,如出现问题教师及时指导。二题是解方程,是在学会解法后进行及时巩固。三题是解决问题,让学生讨论后列式解答。在练习的设计上体现了从具体到抽象的过程。最后三五分钟的时间让学生谈谈本节课有什么收获,同时检验学生对本节课知识的掌握情况。
本节课我力求体现创设情境引导学生自主探究这一主题,体现学生的主体地位,让学生在情境中通过自主探究、感悟、理解、掌握新知识。能否收到预计的效果,还有待于课堂教学实际的检验。
一、从学生喜闻乐见的事物入手,降低问题的难度。
二、放手让学生思考、解答,选择解题最佳方案。
把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生。
学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
人教版五上数学解方程教案篇六
教学目标:
1、比较系统地帮助学生掌握图形变换的常用方法,加深学生对图形的平移、旋转、图形的放大和轴对称图形的理解。
2、渗透审美教育,让学生感受几何图形蕴藏的美,产生创造美的欲望,进而培养学生对数学学科的兴趣的情感。教学重点:
让学生感受图形变换的方法之间的相互联系和区别,加深学生对图形变换知识的理解。
教学过程:
回顾图形变换的有关知识。
学生观察、讨论、汇报。
教师指出:图形的变换可以用轴对称图形、平移、旋转、缩放等到方法。
师:下面我们就来复习这些知识。
(一)复习轴对称图形。
师:生活中有哪些轴对称图形?它们有什么共同的特点?学生讨论、汇报。
教师引导学生得出:轴对称图形沿着对称轴对折,两侧图形能够完全重合。
让学生自己设计出轴对称图形。可以画可以用纸折等。
安徽科大讯飞信息科技股份有限公司。
版权所有。
完成练习104第1、2题。
(二)复习旋转。
师:生活中,你看见哪些旋转现象?学生讨论回答。
完成书上第三题。
你能画出三角形绕a点顺时针旋转90度后的图形。学生画完后互相检查。
(三)复习图形的平移。
师:生活中有哪些平移的现象?让学生看上做一做题,说出从a-b-c-d是如何变化过来的?引导学生说出平移时要注意说清平移的方向,以及平移的距离。
(四)复习图形的放大和缩小。
师:一个图形放大或缩小后现原来图形有什么关系?引导学生说出:大小不同,形状相同。完成105页第六题。
(五)设计图案。
让学生根据自己的想象,设计图案。进行展示。
安徽科大讯飞信息科技股份有限公司。
版权所有。
人教版五上数学解方程教案篇七
2、培养学生的比较能力、分析能力和归纳概括能力
掌握列方程解应用题的一般方法
找出应用题中的等量关系
1.口头解下列方程(小黑板出示)
x-35=40x-5×7=40
15x-35=4020-4x=10
2.出示复习题
(1)读题,理解题意。
(2)引导学生用学过的方法解答
(3)要求用两种方法解答。
(4)集体订正:
解法一:35+40=75(千克)
解法二:设原来有x千克饺子粉。
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
二、探究新知
1.教学例1
(1)读题理解题意。
(2)提问:通过读题你都知道了什么?
(3)引导学生知道:已知条件和所求问题;题中涉及到“原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:
原有的重量-卖出的重量=剩下的重量
(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)
(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的.重量乘以卖出的袋数)把上面的等式改为:
原有的重量-每袋的重量×卖出的袋数=剩下的重量
(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。
(7)引导学生根据等量关系式列出方程。
(8)让学生分组解答,集体订正时板书如下:
解:设原来有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。
小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)
2.教学例2
小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
(1)读题,理解题意。结合生活实际帮助学生理解“付出”、
“找回”等词的含义。
(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)
(3)组织学生分组讨论。
(4)学生自己解答,教师巡视,个别指导。
(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。
(6)教师总结订正。如果发现有列:2x=6-0.4和2x+0.4=6两种
方程的,教师要引导学生比较那种方法简单,并强调用较简单的
方法解答。
3.学生自己学26页上面一段话,回顾上边的解题过程,总结列
方程解应用题的一般步骤,总结后投影出示:
列方程解应用题的一般步骤:
(1)弄清题意,找出未知数,并用x表示;
(2)找出应用题中数量间的相等关系;
(3)解方程;
(4)检验,写出答案。
4.完成26页的“做一做”
小黑板出示:商店原来有15袋饺子粉,卖出35千克以后,还剩
40千克,每袋面粉重多少千克?
(1)学生独立解答
(2)集体订正,强化解题思路。
三、巩固发展
1.口答:列方程解应用题的关键是什么?
2.完成练习七第1题,在书上填写,集体订正。
3.按列方程解应用题的方法步骤学生独立做练习七4题,集体订正结果。
四、全课总结:引导学生总结本节课学习了什么知识。
五、布置作业
练习七第2题、3题。
六、课后记事:
七、板书设计
列方程解应用题
例1解:设原有的为x千克。
原有的重量-卖出的重量=剩下的重量第一步:弄清题意,找出
x-5×7=40未知数,并用x表示;
x-35=40第二步:找出数量之间的
x=35+40相等关系,列方程;
x=75第三步:解方程;
答:商店原有75千克饺子粉第四步:检验,写出答案。
人教版五上数学解方程教案篇八
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
【教学过程】。
(一)创设情景,引入新课。
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。
3:讲解例子。
5:讲解例子。
6:一般步骤。
(三)小结。
(四)布置作业。
人教版五上数学解方程教案篇九
《解简易方程》是九年义务教育中六年制小学数学教材第九册第四单元第二节内容。
本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。
从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。本节课的内容又为后面学习解方程和列方程解应用题做准备。这为过渡到下节的学习起着铺垫作用。
从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
(1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。
(2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力,掌握解方程的一般步骤,会解简单的方程。
(3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。
根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的所以我认为这节课的重点及难点是:理解方程的解和解方程的含义和掌握解方程的方法。
大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展。基础知识掌握牢固,具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有观察、分析、自学、表达、操作、与人合作等一般能力,在小组合作中,同学之间会交流合作,自主探讨。但有个别学生基础知识差,上课不认真听讲,不能自觉的完成学习任务,需要老师督促并辅导。
在教学中,学生往往更习惯运用算术方法解题,这是因为他们之前长期用算术的思路思考问题,再学列方程时,往往会受到干扰。因此在教学中要注意过渡和对比,克服干扰,多让学生体会列方程解题的优越性。而在整节课的设计上,我想着重突出这么几点。
1、通过创设有效的情境串,激发学生兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重点、难点。根据题目中信息的叙述方式,通过顺向思考列出数量关系。由于是刚接触方程,列出文字性的数量关系对于学生正确地列出方程是很重要的。
2、坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。借助小组合作、自主探究等形式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,实现预设的教学目标。
(1)抛出问题。
师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?
(生:含有未知数的等式叫方程。)。
【设计意图】让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。
(2)判断下面哪些是方程。
师:你能判断下面哪些是方程吗?
(1)a+24=73(2)4x36+17a=""12。
(4)72=x+16(5)x+85(6)25÷y=0.6。
(生:1、4、6是方程。)。
师:说说你的理由?
(生:它含有未知数,而且是等式)。
【设计意图】在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。
1、方程的解和解方程。
(1)看图写方程。
师:说的真好,那么请同学观察这幅图(p57主题图)从图中你知道了什么?
(生:我知道杯子重100克,水重x克,合起来是250克。)。
师:你能根据这幅图列出方程吗?
生:100+x=250.(板书)。
【设计意图】运用知识迁移,结合直观图例,应用方程的性质,让学生自主探索列出方程。
(2)求方程中的未知数。
师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)。
学生可能出现的回答。
生2:根据数的组成100+150=250,所以x=150.
生3:100+x=250=100+150,所以x=150.
生4:假如在方程左右两边同时减去100,那么也可得出x=150.……。
【设计意图】这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。
(3)验证方程中的未知数,引出方程的解和解方程两个概念。
师:同学们用不同的方法算出x=150,那么它对不对呢?
生:对,因为x=150时方程左边和右边相等。
师:这时我们说“x=150”是方程“100+x=250”的解,刚才我们求x的过程就叫做叫解方程。(板书:方程的解、解方程)请同学在书中找到这两个概念(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)并齐读。
【设计意图】学生齐读的时候,把解方程和方程的解的概念板书在黑板上,并且在学生读的过程中学生可以加深印象。
(4)辨析方程的解和解方程两个概念。
师:你们能说出“方程的解”和“解方程”有什么区别么?讨论一下,然后汇报。
生:方程的解是未知数的值,它是一个数,而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。
【设计意图】通过组内交流,让学生自己总结出“方程的解”和“解方程”的区别,提高学生总结归纳的能力和小组合作精神。
2、例1解析。
师:(出示例1图)图上画的是什么?你能列出方程吗?
生:x+3=9(板书:x+3=9)。
(1)引导学生思考怎样解方程。
师:怎样解这个方程?我们可以借助天平(电脑显示)。
师:我们解方程的目的是求想x,怎样使天平一边只剩x呢?
生:天平两边同时减去3个球。(电脑显示)。
师:天平两边还平衡吗?怎样反映在方程上呢?
生:方程两边同时减3。(结合学生回答板书)。
师:为什么同时减3而不是其它数呢?
生:方程两边同时减3就可以使方程一边只剩x。
(2)检验方程的'解。
师:x=6是不是方程的解呢?
生:是,因为x=6使方程左边是6+3=9,右边是9,左右两边相等,所以x=6是方程x+3=9的解。
师:以后解方程时,我们要养成检验的习惯,力求计算准确。
【设计意图】自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。
(3)强调解方程的格式步骤。
解方程要注意:
(1)先写“解”,等号要对齐。
(2)做完后要注意检验。
【设计意图】再一次强调,可以让学生加深印象,掌握解方程的正确格式和步骤,再今后的解题中不会出现格式错误的问题。
3、巩固练习。
师:你会学老师这样解方程吗?
请同学们解方程x+3.2=4.6,x+19=30。
先独立完成,再招学生板书练习集体订正。
【设计意图】在理解例1的解法后再完成本题,巩固对同种题型解题方法的认知,使学生对知识掌握的更牢固。
4、小组讨论怎样解方程x-2=15,x-1.8=4。
师:刚才的题同学们都做的非常好,那么下面的题你们会解么?(出示题目:x-2=15,x-1.8=4)请同学们小组讨论怎样解方程x-2=15,x-1.8=4并说出你这样做的根据。
学生小组讨论并解出上面两道方程,并板书、汇报自己的解题过程。
师:在这个过程中哪些是解方程,哪些是方程的解。
生:我们计算的过程是解方程,而x=17和x=5.8是方程的解。
【设计意图】通过学生自主学习探究出不同类型方程的解法,让学生享受到自学的乐趣,明白解这类方程就是要在方程的左右两边同时加上或者减去一个相同的数,让方程的左右两边仍然相等。与此同时再复习巩固下方程的解和解方程的概念。
1、填空。
(1)含有()的()叫方程。
(2)使方程左右两边相等的()叫方程的解。
(3)求()叫做解方程。
(4)x-15=20这个方程的解是()。
指名学生口头回答。
2、解下列方程。
x+0.3=1.8x-1.5=4。
x-6=7.6x+5=32。
学生独立完成并集体订正。
3、列方程解决问题。
学生独立列方程解答,集体订正。
【设计意图】巩固本节课所学习的内容,检查学生的掌握情况。
师:这节课你有什么收获?
课后请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。
人教版五上数学解方程教案篇十
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
1课时。
能用等式的性质解简单的方程。
了解等式的性质。
(一)导入新课。
(板书:大象的体重=石头的重量)。
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的.策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课。
探究一:学习等式性质。
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程。
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)。
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=1223+x=45。
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测。
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x–19=2。
(2)x-12.3=3.8。
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计。
x+5=7x-5=7。
解:x+5-5=7-5解:x-5+5=7+5。
x=2x=12。
等式的两边同时加上或者减去同一个数,等式仍然成立。
人教版五上数学解方程教案篇十一
教学目标
基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想
方法:通过将实际问题转化成数学问题,培养学生的建模思想;
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系
教学重点
探索并掌握列一元一次方程解决实际问题的方法,
教学难点
找出已知量与未知量之间的关系及相等关系。
教具资料准备
教师准备:课件
学生准备:书、本
教学过程
一、创设情景引入新课
观察图片引课(见大屏幕)
二、探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是元.
2、商品进价是30元,售价是50元,则利润
是元.
2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.
3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是.
(学生总结公式)
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系
三、探究一
分析:售价=进价+利润
售价=(1+利润率)进价
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍
获利10%,则该商品的标价为元.
注:标价n/10=进(1+率)
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的
价格,某种药品在涨价30%后,降价70%至a元,
则这种药品在20涨价前价格为元.
四、小结
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断
小组研究解决提出质疑
优生展示讲解质疑
五、作业布置:
板书设计
一元一次方程的应用-----盈亏问题
相关的关系式:例题
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
人教版五上数学解方程教案篇十二
教学目标。
1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。
2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。
教学重点。
列方程解答数量关系稍复杂的两、三步应用题。
教学难点。
形如:ax+bx=c的数量关系。
教学理念。
培养学生自主探究、合作交流的学习方式。提高学生的检验能力。
教师活动过程。
学生活动过程备注。
一、复习铺垫。
1练习二十一t1。
学生回答。
2根据条件说出数量关系式:
果园里的桃树和梨树一共有168棵。
果园里的桃树比梨数多84棵。
桃树棵数是梨树的3倍。
学生回答数量关系式。
3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!
学生自主编题,口头说题。
4依据学生回答,教师出示题目。
b.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)。
c.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)。
教师巡视,了解情况。
二.探究新知。
1.学生尝试例1。
引导学生画出线段图。
集中反馈:生说师画图。
2.教师组织学生汇报。
学生介绍算术解法时,教师引导学生画线段图理解数量间的'关系。
学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。
3.小组讨论。
解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?
用方程解,设哪个数量为x比较合适?用什么数量关系式来列式呢?
4.学生独立完成想一想。
这一题与例1有什么相同的地方?有什么不同的地方?
明确三点:1、一般设一倍数为x。2、把几倍数用含有x的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。
5完成课本94页练一练。
指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?
三、小结。
本课学习了什么内容?你有哪些收获?
四、作业。
人教版五上数学解方程教案篇十三
教学内容:
教材第88---90页。
教学目标:
1、结合情境,了解方程的意义;
2、会用方程表示简单的等量关系;
3、在列方程的过程中,体会方程与现实世界的密切联系。
教学重难点:
1、了解方程的意义;
2、会用方程表示简单情境中的`等量关系。
教学准备:
情境图、课件、卡片(等式、不等式、方程….)。
教学过程:
一、课前谈话,设疑导入。
1、为什么学习方程?
2、方程是什么?
二、带着问题自主学习,合作交流,建立方程概念。
问题一:为什么学方程?
(一)出示天平,建立等量概念:
左边=右边。
(二)出示情境图分组学习(如书88页称药丸、称月饼、倒水)。
1、小组合作,看图找出等量关系,用式子表示出来。
2、小组汇报,并将式子板书在黑板上。
问题二:什么是方程?
根据小结板书:含有未知数的等式叫方程。
1、读一读:
师:你认为这句话中哪些词语比较重要,试着用声音传达给大家。
2、圈一圈:
师:根据这句话找一找,黑板上的式子哪些是方程呢?把它们圈出来吧。
3、写一写:
师:在数学世界里只有这几个方程了吗?你还能写几个呢?(无数个)(学生独立完成板书在黑板上)。
4、试一试:
含有未知数的式子就是方程吗?举个例子。
等式一定是方程吗?举例。
5、游戏巩固:听口令做动作。
游戏目的:使学生更清楚地认识方程的两个要素:未知数和等式。
游戏规则:请几位学生手拿卡片听口令,如:发令者说:“等式”跳一跳,拿着等式卡片的人就要跳一跳,其他的人不能动。
三、课堂小结:
1、这节课你有什么收获?
2、第89页练一练第1、2题。
四、布置作业。