最优数学建模课心得体会(通用14篇)
写心得体会有助于我们更好地理解和应用所学的知识。在写心得体会时,我们可以回顾个人的成长和发展历程,从中提炼出有价值的经验。希望这些心得体会范文能给大家带来一些灵感和启示。
数学建模课心得体会篇一
计算机学院、软件学院级学生范娜(保送为华东师大研究生)
9月的“高教杯”全国大学生数学建模竞赛已经过去一周多了,但是在我心中,计算机学院、软件学院三楼机房的灯光依然明亮,与队友三天三夜一起奋战的记忆依然清晰。
大二下学期,我院开设了《数学建模》选修课,由于每周只有一大节《数学建模》课程,再加上大二专业主干课程很多,任务重,除了老师课上的讲解,平日我很少有时间去温习和预习,更别说去结合实例进行建模了。那时的数学建模对于我来说就是一项很重要的任务,想要参加但是又不知道如何去完成。但是我认为数学建模是要求把模型用在实例中进行求解,最重要的就是创建模型的思路以及用语言去描述建模的过程和结果。
暑假快要来临时,学院进行参赛队员的选拔。参赛的选手由老师选拔和笔试选拔两部分组成。我是在笔试中被选拔出来的,现在想想,可能差一点就失去了参加数学建模的资格。我认为选拔还是参照笔试的成绩确定人选,从全方位考察学生的综合素质以及写作素质,这样才能更好的遴选出参赛选手,真正的做到给有创新思维的选手机会。
随后遇到的问题就是如何组队。我们组是由两个计算机专业和一个通信工程专业的学生组成,现在看来我们的组合有一定的偶然性,但更多的是一种合理性。首先,我们组中有两位女生,都擅长文字处理工作。应该明确的是,数学建模比赛最后递交给组委会的是一篇论文,也就是三天三夜的成果是以文字的形式出现在专家面前,文章中的文字排版、遣词造句至关重要。女生的特点之一就是细心,我们平时很注意收集专业的描述性词汇,因此论文词汇丰富、生动;第二,我们三个的思维出发点不一样,各有擅长的数学模型和知识能力,这就使我们在分别思考后有更多的内容可以讨论,增加建模的创新点,弥补彼此的不足;第三,我们三个的团队意识很强,彼此相互鼓励相互扶持。
同时,我还发现这样一个现象。由于时间紧张的关系,我们在培训的时候还没有完整的做过一道题目。也就是说在赛前大家主要进行理论上的准备,很少进行实践,这样就不能预见和发现小组在未来要进行的三天三夜中,究竟会遇到什么问题。针对这样的现象,我们小组用了三天的时间来进行比赛的模拟,每天做一道题。我们严格按照比赛的标准来要求自己:早上开始审题,组员分别思考一小时进行个人建模,其次三人一起讨论,然后编写论文,尽量把论文详细的写出来一部分直到一天结束。在模拟的过程中我们遇到很多的问题,比如时常会忘记讨论的初步模型和一些思路,因此我们在真正比赛的时候会对小组的的讨论进行录音,这样可以随时查看建模的思路。像这样的细节问题只能是在模拟中才能发现的,因此我认为在赛前进行比赛的模拟也是十分重要的。
接下来的三天三夜让我很难忘,我也有很多的感想。数学建模不是一般意义的解题,它允许你使用任何已有的东西,包括别人的'研究成果、图书资料、网络资源等等,但抄袭是不允许的。这些东西都需要证明,但要结合实例进行求解。在赛前word文档要熟练掌握,如果熟练程度不够,那么在建模比赛中,在整理文档这一项上就会浪费大量的时间与精力。光有录入速度是不够的,还要注意符号的书写,页码的插入,公式编辑器的熟练运用。还要有热情,要有认真、严谨的科学精神。当我们遇到我们不会的问题,需要用到新的知识时,我们会毫不犹豫的去学习这些知识,热情使我们不惧怕任何困难。
总之,这次建模竞赛不论是在知识面上还是在动手能力上都是对我的一种挑战,尽管一路走来十分辛苦,但是却使我多了一种充实自我的经历,多了一份创造的经验,多了一份坦然面对的自信,从而在前进的道路上走的更顺畅。在这个过程中,指导老师和我们一起度过炎炎夏日,也陪我们熬夜修改论文,非常辛苦,也向给予我们指导的各位老师和建模过程中关心我们的院领导表示衷心的感谢!
数学建模课心得体会篇二
第一段:引言(120字)
选修数学建模是我大学期间的一门重要课程,通过学习和实践,我收获了许多从未有过的体验和收获。在这个过程中,我不仅学到了如何运用数学知识解决实际问题,同时也培养了逻辑思维和团队合作的能力。今天,我将分享我在选修数学建模课程中的心得体会。
第二段:学习和实践方法(240字)
在选修数学建模课程中,学习和实践是不可或缺的环节。我首先需要理解问题背景,确定问题的具体要求。然后,我会阅读相关文献,查找数据和信息,梳理出问题的关键点。接着,根据问题的特点选择合适的建模方法,分析问题的数学模型,并进行数学推导和计算。在实践过程中,我会编写计算机程序来模拟问题。最后,我会对模型进行验证和优化,确保结果的准确性和可行性。
第三段:逻辑思维的培养(240字)
选修数学建模课程培养了我逻辑思维的能力。在解决实际问题的过程中,我需要将复杂问题分解成更简单的子问题,并分析它们之间的关系。我要学会运用数学方法抽象问题,建立数学模型,通过论证和推理得出最终的结论。这样的训练不仅提高了我的数学能力,还促进了我在其他学科和生活中的思维能力的发展。
第四段:团队合作的经验(240字)
在选修数学建模课程中,团队合作是非常重要的。一个优秀的团队应该具有良好的沟通和协作能力。在团队中,每个人都有自己的专长和责任分工,需要有高效的分工合作和信息共享。每个人都可以提出自己的想法和观点,通过合作找到最优解决方案。团队合作不仅帮助我们更好地理解问题,也使我们在合作过程中学会了倾听和尊重他人的观点。
第五段:结语(240字)
选修数学建模课程是我大学生活中的一段宝贵经历,通过学习和实践,我不仅学会了运用数学方法解决实际问题,还培养了逻辑思维和团队合作的能力。这些能力对于我的学习和未来的职业发展都将起到积极的影响。在以后的学习和工作中,我将继续发扬数学建模的精神,勇于面对挑战,提高自己的专业知识水平,努力成为一名具有创新精神和团队合作能力的数学建模专家。
数学建模课心得体会篇三
数学建模是现代计算机科学中一项重要且具有挑战性的技术,它将数学、计算机和实际问题相结合,在解决实际问题的过程中发挥着重要的作用。在上学期的数学建模课上,我收获了许多宝贵的经验和知识,并深刻体会到了数学建模的魅力所在。
首先,在数学建模课上,我学到了许多解决实际问题的方法和技巧。在课堂上,老师给我们介绍了各种数学模型和算法,如线性规划、整数规划、图论等。通过学习这些方法,我了解到了如何将实际问题抽象成数学模型,并运用数学工具进行求解。例如,在一次课堂讨论中,我们通过建立一个线性规划模型来解决工厂的生产调度问题。这个问题的目标是最大化产出并满足资源的限制条件。通过使用线性规划方法,我们不仅得到了最优生产计划,还大大提高了生产效率。这一经验让我认识到,在解决实际问题时,数学建模能够帮助我们找到最佳的解决方案。
其次,数学建模课上的小组合作项目让我意识到了团队合作的重要性。在数学建模中,一个人的能力和智慧是有限的,而一个团队能够集思广益,共同解决问题。在一个小组合作项目中,我和我的队友们一起合作,共同完成了一个复杂的数学建模任务。在这个过程中,每个人负责一部分工作,然后将各自的成果整合在一起。通过团队合作,我们不仅互相学习和借鉴,还可以共同攻克问题中的难点,取得更好的成果。这种团队合作的精神和方式使我深受启发,并在以后的学习和工作中,也会更加注重与他人的合作。
此外,数学建模课程还增强了我解决问题的能力和分析思维。在数学建模中,我们需要将实际问题进行抽象,找到问题的核心,并设计相应的数学模型。这需要我们具备一定的分析和思维能力。通过课堂上的案例分析和实践项目,我逐渐掌握了分析问题的方法和技巧。例如,在一个实践项目中,我们需要设计一个交通信号灯系统,以解决交通拥堵问题。我们首先需要分析交通流量和拥堵现象的原因,然后将问题抽象成数学模型,并利用数学工具进行求解。通过这个项目,我不仅学会了如何解决实际问题,还培养了我的分析和思维能力。
最后,数学建模课上的实践项目让我领略到数学建模的魅力和实用性。在实践项目中,我们不再局限于纸上谈兵,而是要面对真实的问题和挑战。通过与实际问题的接触,我们能够更好地理解和应用所学的知识,提高解决问题的能力。例如,在一次实践项目中,我们需要设计一个电商平台的推荐算法,以提高用户的购物体验。通过运用数学建模的方法,我们成功地设计出了一个高效而准确的推荐算法,提高了用户的购买率和平台的收益。这个项目的成功让我深刻体会到数学建模的实际应用价值,并激发了我对数学建模的兴趣。
总之,数学建模课程为我打开了一扇全新的门窗,让我深入了解了数学建模的方法和技巧,并培养了解决实际问题的能力。通过课程的学习和实践项目的参与,我不仅获得了对数学建模的深入理解,还提高了自己的分析和思维能力。数学建模的魅力和实用性让我深感其重要性,也激发了我对数学建模相关领域的探索和研究的兴趣。我相信,在未来的学习和工作中,数学建模将继续发挥着重要的作用,而我会不断提升自己的数学建模能力,为解决实际问题做出更大的贡献。
数学建模课心得体会篇四
计算机学院、软件学院级学生吴瑞红(保送为我院研究生)
大一时听学长们讲数学建模竞赛,对他们有一种敬佩,对数学建模竞赛有一种渴望。这种渴望不是一定要拿个什么奖项,而是想体验一下这三天三夜的竞赛,提高自身能力。意想不到的是,我们荣获了全国一等奖。我们心里充满惊喜的同时也充满了感激。感谢老师和同学对我们悉心指导和鼓励;感谢学院和学校给我们提供物质和精神的帮助和支持。
一直以来,我们都认为我们是很平凡的一组。第一,我们都没有深入学习过数学建模,短短的个把月的学习时间让我们始终有点怀疑自己能否真正了解它。尽管,我们不是信心十足地开始了,但我们却没有放弃。我们坚持着从最基本的开始,一点点攻破。我们抱着能提高自己,学习知识的想法去对待这场竞赛。或许,正是我们这种平常心让我们把自己发挥得淋漓尽致,才有了最后的结果。有心栽花花不开,无心插柳柳成荫,这让我们明白一个道理:遇事不可太急功近利,那样可能会适得其反。
第二,我想说的是我们的团队。我们其实仅仅是临时组的一个队,甚至我们之间有的几乎没说过几句话,但这并不影响我们的合作。我们在一开始便进行了分工:选组长也是一个很重要的问题:他的作用就相当于计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥。由于身为班长的我具备了一定组织、协调和较强的决策能力以及对matlab较浓厚的兴趣,决定由我担任小组组长并负责编程。我的队友中有对数学比较感兴趣的于是由她负责进行算法的分析,另外一个队友负责论文。组长应该有较强的决策能力,在大家出现分歧时能果断地拿出主意,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),组长应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。注意有人说,团队需要磨合期,这是毋庸置疑的,但是如果你真的把自己当成其中的一员,努力融入其中,你会发现那原来是一件很简单的事情。记得,你们是一个团队,要相互支持,相互鼓励,要有相容的胸襟,要有合作的意识,要时刻记得你们是荣辱与共的,不要只注重个人得失。在比赛时,一个人的思考是不全面的,大家要一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
数学建模课心得体会篇五
读数学建模是一项需要较高能力的学问,需要具备丰富的数学知识和逻辑思维能力。在我学习的过程中,我深刻认识到了数学建模的重要性以及在实际工作和生活中的应用价值。以下是我的读数学建模的心得体会。
第一段:认识数学建模
作为一个计算机科班出身的学生,我很早就开始了接触数学建模。但在一开始的时候,我并没有真正理解什么是数学建模。直到在大学的选修课中系统地学习了一门《数学建模及应用》课程后,我才对数学建模有了更深入的认知和理解。
第二段:理解“建模”
“建模”的核心意思是将复杂的实际问题转化为数学模型,然后用数学语言描述该问题并进行数学分析。在实际的工作和生活中,我们要面对、研究的诸如市场营销、物流运输、气象环境、图像视频等不同领域的问题都可以通过“建模”的方式进行求解。
第三段:掌握数学和编程技能
数学建模需要掌握扎实的数学功底,同时也要在编程技能上有所涉猎。这是因为数学建模过程中需要运用到很多数据分类和筛选、数据可视化、计算机程序的实现等技能。只有将数学和编程技能完美结合,才能为数学建模提供最有利的条件。
第四段:关注实际问题
在理论知识的积累与技术能力的提升之外,数学建模中还需要关注实际问题。我们不能将理论和技术与实际问题划分开来。可行的“建模”问题是源于实际问题,因此,在发现实际问题的基础上,我们才能够有更清晰的目标和向实现目标的循序渐进的步骤。
第五段:学习和交流
数学建模需要广泛学习和交流。我们要阅读相关领域的探讨和论文,获取更多的行业知识。同时,我们还要积极参加学术会议和交流活动,与其他学者和专家协同工作和深度探讨,交换经验和知识,并不断提升自己的建模能力。
在读数学建模的过程中,我也留下了许多经典案例和优秀论文,坚持探索科学问题的本质,发掘应用数学的潜力。数学建模是一个学习与实践并行、动态更新的过程,它将不断影响我们思考问题和解决问题的方式,让我们更好地懂得数学对人类社会发展的重要性。
数学建模课心得体会篇六
数学建模作为一门综合性学科,具有广泛的应用领域和深远的影响,对于提高解决实际问题的能力和培养创新思维具有重要意义。通过参与数学建模比赛和项目,我深刻地认识到数学建模的重要性,也积累了一些心得体会。下面我将结合个人经历,谈谈我在数学建模过程中的心得体会。
一、明确问题与方法
在进行数学建模之前,首先要明确问题的面貌和要解决的目标,然后选择适合的方法进行分析和求解。在这个过程中,我们要善于抓住问题的关键点,理清问题与已有知识的联系,避免偏离主题和走入死胡同。同时,我们也要善于借鉴已有的数学工具和模型,不断开拓创新。
在一次模拟城市交通拥堵的建模比赛中,我意识到对于这个复杂的问题,单纯的数学模型是远远不够的。所以,我结合地理信息系统(GIS)和传感器技术,将城市道路分隔成小区域,通过收集实时的交通数据,建立起更为精确和实用的交通拥堵模型。这一方法不仅使得模型具有了更高的可靠性和准确度,也增加了我们对解决问题的信心。
二、合理假设与模型构建
在进行数学建模时,我们往往需要根据实际情况进行一些合理的假设,以简化复杂的问题和推动建模的进程。但是,这些假设必须是合理和可行的,不能过于片面或离实际太远。同时,在构建模型时,我们也要尽量选用简单而有力的数学工具,以便于计算和分析。
在解决一个涉及医学影像分析的问题时,我们需要对医学影像进行处理和分析,还要设计出一个能够自动识别和分析影像的数学模型。我所参与的团队深入了解医学影像学,分析了不同的影像特征,并基于传统的神经网络模型构建了一个高效的医学影像分析模型。在模型的构建过程中,我们注意了计算和实施的可行性,将模型的复杂度降低到合理的范围内,并采用了一些有效的算法来提高模型的精确性和准确度。
三、数据分析与结果验证
在数学建模中,数据的分析和结果的验证是非常重要的环节。通过对数据的分析,我们可以揭示问题的本质和规律,进而得出解决问题的方法和结论。而结果的验证则是模型可靠性和精确性的检验,也是对我们解决问题的能力和方法的评判。
在一次银行信用评估的建模过程中,我们基于大量的历史交易数据,通过建立一套信用评估模型,对客户的信用情况进行分析和预测。在对模型进行验证时,我们通过对部分客户进行筛选和测试,对比模型预测的结果与实际情况,发现模型的准确度达到了90%以上。这使我们对模型的有效性和可靠性有了更加深刻的认识,并为进一步完善和推广模型提供了依据。
四、团队合作与学习
数学建模不仅仅是一个人的事情,更是一个团队的合作。通过和其他队员的合作,我们可以相互学习和借鉴彼此的经验和思维模式,在解决实际问题的过程中形成协同效应。同时,团队合作也是一个学习的过程,通过和队友的交流和探讨,我们可以不断拓宽思维,并且从对方身上学到更多的知识和技能。
在一次研究森林生态系统的建模项目中,我和团队成员们共同制定了研究方案和实验设计,并分工协作。通过团队的合作,我们不断从实验数据中总结经验,进行模型验证和修正,并最终成功地建立了一个能够模拟和预测森林生态系统变化的多元模型。这个成功的案例不仅使我们对数学建模有了更深入的认识,也让我们领悟到团队合作的重要性和价值。
五、不断学习和总结
在数学建模的过程中,我们要不断学习和总结,积累经验和提高能力。只有不断的学习和实践,我们才能够更好地适应和解决不同领域的实际问题,并在数学建模的道路上不断成长。
总的来说,参与数学建模是一次很有收获和意义的经历。通过这次经历,我不仅提高了数学建模的能力和素养,也深刻领悟到了科学研究的重要性和技术创新的意义。我相信,在未来的学习和工作中,我会更加努力地学习和实践,用数学的力量为解决实际问题做出更大的贡献。
数学建模课心得体会篇七
经济数学建模是经济学领域中非常核心的一部分。它通过数学方法,把人们在经济操作中遇到的实际问题转化为数学函数,以便进行量化分析,从而得出决策建议。经济数学建模是经济科学和数学科学的交叉学科,它的任务是了解经济活动中的现象和规律,并通过模型预测未来的经济走向。在这次经济数学建模的学习中,我积累了很多宝贵的经验,下面我将分享一些心得体会。
二、理论知识的补充
在进行经济数学建模之前,我们必须有足够的理论知识来支持我们的模型构建。在此过程中,我深刻意识到经济数学建模的实践和理论相辅相成的关系。只有通过大量的理论学习,我们才能理解经济现象背后的原理,才能够把现实问题转化为可解的数学模型。
通过学习数学、统计学和经济学等相关学科的理论知识,我不仅对模型构建有了更深入的理解,还掌握了许多常用的数学工具和方法。例如,线性回归、最优化、概率论等方法在经济数学建模中非常常见,掌握它们可以帮助我们更加准确地分析和预测问题。
三、实践应用的重要性
理论知识的补充只是经济数学建模的第一步,真正的挑战在于将所学的理论知识应用到实际问题中。在我学习的过程中,我意识到实践应用是我提高建模能力的关键。
通过实际案例的演练和解决,我不仅更加深入地理解了所学的理论知识,还学会了将抽象的概念转化为具体的数学模型。我记得在一个关于市场供求的案例中,我遇到了数据采集和模型选择的难题。通过实际的调查和采集数据,我成功地构建了一个供需函数,并用最优化方法求解了最佳的市场均衡状态。
实践应用还培养了我解决问题的能力和团队合作的精神。经济数学建模往往需要团队协作,在团队中分工合作、同心协力才能更好地完成任务。在我参与的团队项目中,我遇到了很多技术难题,但在团队的帮助和协作下,我们成功地攻克了一个个难题,最终完成了一个完整的经济数学建模项目。
四、创新思维的培养
经济数学建模要求我们具备创新思维,能够独立思考并能够提出新颖的解决方案。在我实践中的体会是,创新思维的培养是一个不断学习和思考的过程。
首先,要有广博的知识储备和灵活运用的能力。只有通过多学科知识的融合,我们才能够从不同的角度看待问题,从而提出创新的解决方案。
其次,要注重实践锻炼和经验积累。在实际问题的解决过程中,我们常常需要尝试不同的方法和思路,才能找到最佳的解决方案。通过不断的实践和总结,我们的创新能力会日渐增强。
最后,要积极参与学术交流和竞赛等活动。参与学术交流可以让我们了解到其他研究者的思路和方法,进而启发我们的创新思维。参与竞赛可以使我们在激烈的竞争中不断提高自己的建模能力,从而培养出更为创新的思维方式。
五、总结
总体而言,经济数学建模是一门非常有挑战性的学科。通过学习和实践,我深刻认识到它的重要性和实用性。经济数学建模不仅能够提高我们的数学能力,还能够培养我们的创新思维和解决问题的能力。虽然困难重重,但只要我们持之以恒,相信以后在这个领域我能取得更好的成果和收获。
数学建模课心得体会篇八
数学建模是一项极具挑战性和创造性的工作。为了交流和分享各类数学建模的研究成果,近日我参加了一场数学建模会议。在会议中,我不仅学到了很多新知识,也结识了许多有趣的人,并得到了一些宝贵的启示和心得体会。
首先,会议的主题是数学建模在现实生活中的应用。会议的演讲者来自各个领域,他们分享了自己的研究成果和应用案例。这些案例涉及到医学、环境保护、经济等领域,展示了数学建模在解决实际问题中的重要性和有效性。我被这些案例所吸引,也更加深入地理解了数学建模的意义和作用。
其次,会议还包括了一些小组讨论和研讨会。这些活动给与会者提供了一个交流和互动的平台。我参与了一个小组讨论,与其他与会者一起探讨了一个与交通流量优化相关的问题。通过与专家和同行的交流,我得到了很多有关该问题的新观点和启示。这个小组讨论对我的研究工作产生了积极的影响,并激发了我在这一领域的更深入研究。
在会议期间,我也结识了许多志同道合的人。他们来自不同的学校和研究机构,但都对数学建模充满热情。我们一起讨论问题、分享经验,并互相帮助解决困惑。通过这些交流,我不仅扩大了自己的人脉圈,也学到了很多新的想法和方法。这种交流和合作的氛围让我感受到学术界的温暖和友好。
除了共享知识和经验之外,会议还提供了一个机会,让我们了解领域内的前沿研究进展。有各类海报展示和口头报告,展示了最新的数学建模研究成果。我参观了一些海报展示,并听了一些口头报告。这些报告提供了一些非常有趣和创新的研究成果,激发了我进一步探索这些领域的兴趣。
最后,参加这场数学建模会议让我对自己的研究产生了一些新的认识。之前,我对数学建模局限于某个领域的认识,但在会议上我才发现数学建模的广度和深度。数学建模不仅是一门学科,也是一种方法和工具,可以帮助我们更好地理解世界和解决问题。这个认识让我对自己的研究充满了信心,并激励我继续深入学习和探索。
总之,参加这场数学建模会议是一次非常有益的经历。通过会议,我不仅学到了很多新知识,结识了有趣的人,还得到了一些宝贵的启示和心得体会。这次会议让我对数学建模有了更深入的理解,并激发了我在这一领域的更多研究动力。我希望将来能继续参加更多的数学建模会议,不断提升自己的研究能力和水平。
数学建模课心得体会篇九
第一段:引言(大约200字)。
数学建模是一门富有挑战性的学科,是实际问题与数学工具的结合。在我参与数学建模的过程中,我得到了很多宝贵的经验和体会。通过这次数学建模的实践,我对问题的分析思维能力得到了很大的提高,同时也加深了对数学知识的理解。在这篇文章中,我将分享我在数学建模中得到的一些心得体会。
第二段:问题的抽象与建模(大约200字)。
在数学建模中,第一步就是对实际问题进行抽象,将其转化为数学模型。这个过程需要我们深入理解问题的背景和相关条件,并且能够从中提取出关键因素。在此过程中,我更加注重思考问题的本质和实质,并尽量将其简化和转化为数学语言。通过这样的方法,我能够更好地理解问题,并且找到解决方法。
第三段:数学工具的选择与运用(大约200字)。
数学建模需要使用各种数学工具来解决实际问题。在选择合适的数学工具时,我们需要考虑问题的特点和数学方法的适用性。在我参与数学建模的过程中,我学会了灵活运用数学工具,并且在解决问题的过程中发现了不同方法的优缺点。同时,我也深刻认识到数学工具的应用是问题解决的一种手段,我们更应该注重问题的理解和建模能力。
第四段:团队合作与沟通(大约200字)。
在数学建模中,团队合作和良好的沟通是非常重要的。每个人都有自己的专长和想法,只有相互合作和交流,才能更好地解决问题。在我参与数学建模的团队中,我们充分发挥了每个人的优势,相互协作,共同攻克了问题。通过互相讨论和反馈,我们不断完善和改进我们的模型,最终取得了令人满意的成果。
第五段:总结与展望(大约200字)。
通过这次数学建模的实践,我得到了很多宝贵的经验和收获。我深刻认识到数学建模是一门综合运用各种数学知识和方法的学科,需要我们具备扎实的数学基础和良好的问题解决能力。同时,数学建模也需要我们拥有团队合作和沟通的能力,通过共同努力解决问题。在未来的学习和实践中,我将继续深化对数学知识的理解,提升问题解决能力,为更复杂的实际问题提供更好的解决方案。
通过以上五段式的连贯文章,我对数学建模这门学科作了全面而深入的总结。我分享了在数学建模中的心得体会,包括问题的抽象与建模、数学工具的选择与运用,团队合作与沟通等方面。在总结与展望部分,我明确了对未来的学习和实践的规划,希望能够继续提升自己的数学建模能力,为解决更复杂的实际问题做出更大的贡献。通过这篇文章,我希望能够鼓励更多的人参与数学建模,并且能够体会到其中的乐趣和挑战。
数学建模课心得体会篇十
数学建模是一门与日俱增的科学领域,在许多实际应用问题上都可以发挥重要的作用。它以现实问题为出发点,运用学科知识和科学方法,在不断的实践中研究出解决问题的方法,既可以用于工程技术领域,也可以对社会问题、经济问题等有所帮助。在本次参加的“走进数学建模”实践活动中,不仅获得了有关数学建模的相关知识,也学会了如何提升建模的技巧和方法,深刻体会到了数学建模在实际生活中的重要作用。
第二段:体验过程
在活动中,我深刻感受到了“建模是一种转化知识才力的过程”这一理念。在接下来的实践中,我们尝试了一项建模活动——“华山论剑”,这是一种基于游戏理论的经典数学建模问题。我们首先学习到了相关的游戏规则和模型解释,接着进行实际游戏,自行制作策略,并注意反思优化,从而得到最优解。通过这项建模活动,我学会了如何利用已有的知识和技巧,较为准确地处理问题,顺利地获得正确的答案。
第三段:技术分析
在建模过程中,我们首先需要了解问题背景,明确问题目标,然后通过分析数据和相关实例,对问题进行分类、建模和协调分析。在具体建模过程中,我们需要运用数学和计算机知识,通过正确的数据处理方式和解决方案,输出符合要求的最优解。同时,在建模过程中,我们还需要结合实际情况,灵活调整模型,适当引入或去除参数,使模型结果更具创造性和实用性,满足问题实际需要。
第四段:启示和收获
通过参加“走进数学建模”实践活动,我不仅学习到了基本的建模理论和技巧方法,还受益于活动中实际的建模案例,得到了更为深刻的体会和认识。我发现,在实际操作中,建模不仅要有强烈的目的性,而且还要具备创造性和探索性。随着不断的实践,我逐渐学会了如何在模型分析中发挥创造性,如何利用多种方法和技巧来解决实际问题。同时,我也明确了建模不是一门静态的科学,而是需要不断的更新和迭代,才能不断适应和推动时代发展。
第五段:结语
通过“走进数学建模”实践活动的学习体验,我深刻体会到了数学建模在实际生活中的应用价值和重要性。在今后的学习和工作中,我将更加注重培养自身数学建模的能力,不断提升创造性和探索性,多角度、多方面地进行实践,以期在实际问题上更好地发挥建模的作用。同时,我也希望更多的人能够认识到数学建模的优势和价值,积极进入这个领域,为推动社会进步和共同发展做出更多的贡献。
数学建模课心得体会篇十一
写在前面:
数学建模是一种现代化的学科方法,是一种将数学与实际应用相结合的方法,是一种通过建立数学模型来描述、分析实际问题并给出相应的解决方案的方法。数学建模已渐渐成为各种学科中一种不可缺少的手段和一种宝贵的思维方式。笔者在进行数学建模的过程中有一些心得体会,愿意分享给大家。
一、建模前
在进行数学建模之前,一定要先了解所要解决的问题。这里指的了解是指,对问题有一个大致的认识和理解,知道问题的具体症结在哪里,知道问题的所在领域,有一定的背景知识。只有充分了解问题,才能更好的规划建模的方向和重点。
例如,我们现在要解决一个公交站台上的人流量问题,我们要了解的就是这个公交站台的地理位置、周边环境、公交车排班情况等等,才能更好的制定出解决方案。
二、建模过程
建模过程可以分为四个步骤:问题定义、模型假设、模型建立、模型求解。
首先是问题定义,我们需要通过前面的了解,来定义我们所要解决的问题,明确问题的目的和所要得到的结果。
其次是模型假设,我们要根据问题定义,做出一些假设,制定出我们的求解方案,并对模型进行精细化设计。
然后是模型建立,我们需要根据前面所做的假设、规划,建立出有效的数学模型。
最后是模型求解,我们需要利用我们建立的数学模型,进行计算、分析,得出一个最优的解决方案,并进行验证和优化。
三、建模方法
建立数学模型的方法有很多,常见的有数学统计方法、分析方法、优化方法、仿真方法等等。在进行数学建模时,我们需要根据问题的特性和求解的目的,选择合适的方法,并进行综合应用,才能得到更为准确和有用的解决方案。
例如,某公司想要进行生产计划的决策,我们可以运用优化方法,通过分析历史数据和生产环境,建立生产优化数学模型,并进行求最优解,得出最优化的生产计划决策。
四、建模调试
建立数学模型并不是一次就可以得到最完美的结果,其中会涉及到数据不准确,建模偏差等问题。在建模的过程中,我们需要进行调整和重新优化,直至得到一个满意的答案。就像编写程序一样,需要进行不断的测试和排错。
五、总结与反思
建模的过程不仅可以得到解决问题的答案,更重要的是锻炼了我们的思维能力和解决问题的能力。我们可以在整个建模过程中对自己的表现和方法进行总结与反思,从不足中找到提升的方向,不断完善自己的建模技巧与知识体系。只有通过不断地总结和反思,才能更好地在数学建模中发挥自己的才智和能力。
总之,数学建模是一种能够使我们有效解决实际问题、提高我们的综合能力和创新能力的方法,同时也是一种使我们不断提高自己的方法。希望大家能够在这个领域里发挥自己的能力,开创新天地!
数学建模课心得体会篇十二
数学建模比赛是一种很有意义的学科竞赛活动,通过这次比赛,不仅是对我们刚刚学习过的知识进行了一次巩固和运用,也锻炼了我们解决实际问题的能力和团队合作精神。以下是我在数学建模比赛中的一些心得和体会。
首先,成功的数学建模团队需要合理的分工和密切的合作。在比赛中,我们团队成员根据自己的兴趣和长处,合理地分工合作,每人负责一个方面的内容。比如,我擅长数据的处理和模型的建立,所以我承担了这方面的工作;而我的搭档则负责论文的写作和图表的制作。通过这种合理的分工和互补的合作,我们的团队才能高效地解决问题,使得整个团队的水平得到提升。
其次,数学建模比赛需要灵活运用所学的理论知识。在竞赛中,我们要遇到各种各样的实际问题,这些问题并不像课本上的题目那样单一和规定好了的。因此,我们不能局限于课本上的一些定式方法,而应该充分利用所学的理论知识,灵活运用在实际问题的解决中。比如,在我们的一次比赛中,我们遇到了一个需同时考虑时间和资源分配的问题,我们运用了线性规划的方法,通过建立数学模型,求解得到了最优解。这一经验告诉我们,只有将理论知识与实际问题相结合,才能高效地解决问题。
第三,数学建模比赛需要灵活运用不同的思维方法。在我们的比赛中,我们遇到了一道关于线性回归的问题。在分析问题时,我尝试了线性回归分析的方法,但结果并不理想。后来,我的队友提出了使用指数回归的方法,经过计算和比较,我们发现指数回归结果更符合实际情况。通过这次经历,我意识到在数学建模比赛中,没有一种固定的思维方法是适用于所有问题的,我们需要根据具体问题的特点灵活运用各种思维方法,从而得到更好的解决方法。
第四,数学建模比赛需要注重实践和验证。在比赛中,我们提出了一种模型,但我们不能仅仅凭借理论推导和计算结果就认为模型是正确的。我们还需要通过实践和验证来检验我们的模型是否可行和准确。比如,在我们的一次模拟实验中,我们对模型的结果进行了验证,并发现结果与实际情况相吻合,这使我们对我们的模型有了更大的信心。因此,在数学建模比赛中,实践和验证是非常重要的环节。
最后,数学建模比赛让我充分意识到团队合作的重要性。在比赛中,我们需要相互协作、相互配合,从而形成一个默契的团队。在我和队友的分工和合作中,我切身感受到了团队的力量。每当遇到困难和挑战时,我们共同努力,相互支持,最终取得了成功。通过这次比赛,我认识到团队合作可以弥补个人的不足,使解决问题的效果更好。
总之,数学建模比赛是一次非常有意义的经历。通过这次比赛,我不仅学到了更多的理论知识,也锻炼了自己的解决问题的能力和团队合作精神。我相信,这些经验和体会将对我今后的学习和工作产生深远的影响。我会继续努力,不断提升自己,在未来的数学建模比赛中取得更好的成绩。
数学建模课心得体会篇十三
我在选修数学建模课程中学到了很多知识和技巧,也积累了一些心得和体会。这门课程让我深刻认识到数学建模的重要性,并且让我明白了一个好的数学建模需要具备哪些特点和要素。在这篇文章中,我将结合自己的学习经验,分享我对选修数学建模的心得体会。
首先,数学建模是一门综合性的课程,它需要我们将数学知识与实际问题相结合。在课堂上,老师通过一些具体的案例,引导我们探究实际问题中存在的数学规律和模型。同时,我们需要运用数学知识和工具,通过建立数学模型来解决实际问题。这门课程让我明白了数学并不仅仅停留在纸上,它实际上是可以应用于解决现实生活中的复杂问题的。
其次,选修数学建模要求我们具备良好的数学思维和分析能力。在课程中,我们经常会遇到一些开放性问题,需要我们自己设计解决方案并给出合理的解释。这就要求我们具备归纳、推理、分析和抽象的能力,能够从实际问题中提炼出数学模型,并通过数学方法解决问题。这一过程培养了我们的逻辑思维能力和创新意识,提高了解决问题的能力和水平。
再次,选修数学建模是一门实践性的课程,需要我们进行大量的实践操作和实验。在课程中,我们使用了各种数学建模软件和工具,比如Matlab、Python等,通过实际操作来验证我们的数学模型,并对实际问题进行仿真分析。通过这些实践操作,我们深入了解数学模型的建立和求解过程,提高了对数学建模的实际操作能力和应用水平。
此外,选修数学建模要求我们具备团队合作和沟通交流的能力。在课程中,我们通常会组成小组,在一个团队中共同解决一个问题。这就需要我们充分发挥团队协作的优势,充分利用每个人的特长和潜力,共同完成一个任务。在团队协作中,我们需要进行有效的沟通和交流,协调分工,解决问题。这一过程培养了我们的团队合作精神和领导能力,提高了我们的沟通交流技巧。
最后,选修数学建模要求我们具备持之以恒的学习精神和自主学习能力。数学建模是一个庞大的知识体系,我们只有不断地学习和探索,才能逐渐掌握其中的技巧和方法。在课程中,老师为我们提供了一些基本的知识和方法,但更多的还是要我们自己去学习和探索。这就要求我们具备独立思考和自主学习的能力,通过不断学习和实践,不断提高自己的数学建模能力。
综上所述,选修数学建模是一门综合性、实践性和团队合作的课程。通过学习这门课程,我不仅掌握了一些数学建模的基本知识和方法,而且培养了良好的数学思维、实践操作和团队合作能力。我相信,在今后的学习和工作中,我能够运用数学建模的知识和技巧,解决更多的实际问题,并取得更好的成果。
数学建模课心得体会篇十四
本文目录。
通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。
知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。
实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。
探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。
返回目录。
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。
返回目录。
一年一度的全国数学建模大赛在今年的9月21日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1.团队精神:
团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2.有影响力的leader:
在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3.合理的时间安排:
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4.正确的论文格式:
论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5.论文的写作:
我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6.算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),这里提供十种数学建模常用算法,仅供参考:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)。
以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,也希望广大同学能够积极参与到这项活动当中来。