最新数学史读后感(案例14篇)
读后感是读完一本书或者一篇文章后,通过自己的理解和触动,用文字表达出来的一种感受和思考。它可以帮助我们更好地理解和消化阅读内容,也可以让我们更深入地思考和交流。我觉得我们应该写一篇读后感了吧。在写读后感时,可以结合自己的个人经历和观点,提供更多的个性化思考和评论。推荐大家阅读以下范文,领悟书籍的真正内涵。
数学史读后感篇一
首先,看到这本书后,第一个感觉是这本书太厚了,肯定无聊。而第二个印象是在每一个概念后的“见数学概念小史某某页”,然后这最重要的事是这书讲了这我不曾了解的事。
从过去到现在,先是古埃及人,他们的方法对于现代太不实用了,但是他们还是聪明,知道用符号,用两个符号来表示1()和10(),这东西就是幂,在生活中肯定很少用,而且我还发现这数学呢我一直认为是想从简单到复杂,但是并不是如此,可以说是相反的。
比巴伦的数学家们特别有趣,造的题目也有趣,不实用,但是很好玩,在本书的.15页,有这原题,这大概就是用一根芦苇去测量田有多大,其实就是二元一次方程,但是看完头都大了,不知到底在讲什么。
继续读着,诶!看见了老熟人——欧几里得,从小学周围的人都在谈论着他,给我讲他的旷世巨作《几何原本》,过去经常说“好,好,好,《几何原本》好。”但是我并不知道这书居然是公元前三千多年左右写的,我一直认为他是希腊人,但是他居然是埃及人,这好奇怪,据书中说有很多的希腊数学家都不是希腊人。
继续读,数学也和天文学有关,从天文学中又出现了三角学,原来三角学是从天文学出来的,在读阿拉伯数学时,看见了“杨辉”三角形,但是这书中的是“帕斯卡三角形”,其实也是“杨辉”三角形,所以后者好记些。
微积分里面看见了伽利略,但是似乎不是他的主场,所以不管他,微积分这里知道了流数和微分基本上都是我们现在所称的导数。他们的发明者分别是牛顿和莱布尼茨。牛顿这特别熟悉了,这莱布尼茨是个律师和数学家,他最可以的是他的公式几乎都是在颠簸的马车上写下。在各个学科每每留下了著作。
还有一个人让我记住了,叫做欧拉,不光名字好记,他自己也是一个喜欢记的人,据书上所说,他可以说是一个论文天才也是数学天才,因为只要他有一个好的方法,自己马上就写一篇论文,来记下自己的观念。
数学史读后感篇二
数学的发展史也就是科学发展的历史。从最初呀呀学语地创造丰富多彩的记数制度,到花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都饱含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。
《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,有中国古代简易的算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度——阿拉伯数字。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科至关重要的基础。可以说,如果没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。
而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!”便连其正文都没看就把论文扔到了书堆里,尽管当时柏林大学已经认识到他的才华并任命他为数学教授,但阿贝尔早已在病魔侵袭的凄凉中与世长辞了。
尽管如今他们的理论得到世人的称赞,但在当初他们却受尽嘲笑与唾骂,他们不像当时就闻名于世的数学家那样,一有新的理论产生便受到全世界的重视,然后在钦佩与荣耀的光芒下继续他们的研究。虽然如此,他们仍旧坚定不移地相信自己,为自己的数学事业独立奋斗,深入探索,进一步发展和完善自己的理论。就如康托尔那番充满信心的话语:“我的理论坚如磐石,任何想要动摇它的人都将搬起石头砸自己的脚。”这种自信与坚定无不让人敬佩。
而许多的数学家都有一个共同点,就是他们的知识层面除了数学以外,还有其他的多个领域。譬如,泰勒斯是古希腊最早的数学家、哲学家,他几乎涉猎了当时人类的全部思想和活动领域;费马有丰富的法律知识,精通多门语言;莱布尼茨学习了拉丁文、希腊文、修辞学、算术、逻辑、音乐,还广泛阅读并研究了大量哲学和科学著作;在欧拉的工作中,数学紧密地和其他科学的应用、各种技术应用以及公众的生活联系在一起,它常常为解决力学、天文学、物理学、航海学、地理学、大地测量学、流体力学、弹道学、保险业和人口统计学等问题提供数学方法。由此可见,想要获得在一个学科的研究的成功,不仅需要精通该学科的知识,还需要学习其他学科、领域的知识,综合运用,才能更好地让这些知识为自己的研究服务。
自信、坚定、还有多领域的知识固然重要,但老师对他们的帮助也不可多得。牛顿在巴罗教授的课程中得到研究流数的`灵感,欧拉继承微积分权威约翰·伯努利的衣钵成为“分析的化身”,阿贝尔在老师霍尔姆伯的鼓励与指导下,破解了五次或以上代数方程公式求解的未解之谜,伽罗瓦被里查德教授发现为千里马,成为了群论的开山祖师,康托尔师从库默尔、魏尔斯特拉斯和克罗内克等著名数学家,创立了无穷集合论,而华罗庚更是当年被熊庆来发掘,如今他又发掘了陈景润。一位伟大的数学家背后往往有一位劳苦功高的老师,也许他们的老师如今已不为人所知,但他们所做出的努力与教导并不亚于这些数学家,正因有了他们耐心的教导,给予的莫大支持、鼓励,才给了他们展露锋芒的机会,而这些数学家虚心从师的精神也值得我们学习、效仿。
除此之外,从数学家的努力探索之中,我们可以发现数学研究所必需的过程。首先,要从细微的事情中发掘数学的道理、发现问题的存在,又或是对某一问题产生莫大的兴趣与研究精神。这一步许多人都能做到,就像牛顿对一个掉下来的苹果做出思考,从而创造万有引力定律一样,在我们的日常生活中,我们都能对一些平常事物提出问题,在遇到一些难题的时候有种想攻破它的冲动。然后,必须锲而不舍地做出深入的探究。这一步往往只有少数人能够做到,但这偏偏就是最重要的一步,缺乏了它,前面的一切苦劳都只是白费。在遇到困难面前,依然能够怀有当初的冲动与勇气想要征服它的,往往就是伟大的开始、成功的关键。但只有这份冲动与勇气是不够的,一位伟大的数学家,还必须拥有创新的精神,有对人们根深蒂固思想做出怀疑的精神,勇于打破个人崇拜与教条主义,创造出自己的新思想,就像笛卡儿对坐标系的建立,牛顿和莱布尼茨对微积分的创立,高斯对非欧几何的确立,伽罗瓦对群论这一新概念的创造,康托尔对无穷集合论的坚信等等,他们之所以能够成为受万人瞩目的数学家,是与他们的创新思维分不开的。
总的来说,这些数学家成功的经验教会了我们学生在现阶段应如何做好准备,迎接未来的挑战。在思想上,我们应该培养创新思维、自信心、对自我坚定的信念、以及面对困难毫不畏惧的精神。在行动上,要虚心从师,不耻下问,积极学习多方面的知识,做到对知识的融会贯通,运用到日常生活的事情中。
“刘徽的割圆术比古希腊的穷竭法要晚几百年”、“笛卡儿和费马不约而同、殊途同归地建立解析几何”、“牛顿和莱布尼茨两位奠基人不约而同的努力,使得微积分作为一门独立学科建立起来”……在数学史的发展历程中,不少相同的研究成果都重复地被人类发掘,这种数学研究的时间差无疑耽误了数学的发展,重复地为同一个问题而努力,却不知道事实上他人早已解决,如果世界能够更早地融合为一体,便能更好地互相交流数学文化,共同研究、共同进步,那么就不需要花上几百年甚至更长的时间重复地走同一条弯路,而能更快地推动数学的发展,也许世界数学的发展速度就不只现在的步伐了。
数学的发展还很长久,还有许多路要走,我们就像牛顿说的那般,只不过是在海边玩耍的小孩,在我们面前仍有一片未知的真理的海洋,数学的无穷魅力就埋在这里面,等着我们去发掘,等着我们去探索。
数学史读后感篇三
数学,一根串着文明历史发展的闪耀金绳,它与文学物理学艺术经济学或音乐一样,是人类不断发展,努力的结果。
对数学不太敏感的我,拿起这本数学史,一开始是不愿意翻开的,认为它语言生涩,一定有很多的生僻又陌生的专有名词,几乎满篇皆是,所以从收到这本书之后2天内都没有看过。但是为了完成刘老师的作业,我硬着头皮翻开了这本陌生的书。这本书是以时间发展为主线进行编布的。
读开端的时候我就觉得这本书很不一样语言是亲切、严谨的观点是新颖的。作者“从历史开始学数学”的观点让我对这本书产生了兴趣。变得愿意与他一起跟随数学的脚步,一页一页翻下去,读下去。在书本中,有许多我认识的老朋友,他们曾经在小学或是初中课本上出现过。像欧几里得、笛卡尔。他们是数学的奠基人,为数学之路铺上卵石。在这本书中也出现过一些我不熟悉的伟大数学家,他们在认真探究,证明的场景一幕幕浮现在脑海,令人心生敬畏。
我记忆最深刻的就是一位打破了“数学家都是男性”观念的法国优秀女数学家———索菲.热尔曼!
她在所谓的“启蒙运动”中成长,怀揣着炽热的想成为数学家的愿望,在困难重重克服了社会对女性知识分子的偏见,在弹性理论上取得重要结果。实在令人佩服!
当今社会,数学在多领域工作,在工地、广场、车站、实验室......
我们需要数学,今天需要数学,未来也一样需要数学,因为“数学不是被发现出来的,而是被发明出来的!”
学好数学就是走好未来的一大步!
数学史读后感篇四
读完一本名著以后,相信大家增长不少见闻吧,现在就让我们写一篇走心的读后感吧。是不是无从下笔、没有头绪?以下是小编帮大家整理的《这才是好读的数学史》读后感-有丰富内涵的学科,仅供参考,希望能够帮助到大家。
最近,我读了《这才是好读的数学史》一书的上半部分。读完后我十分感慨,原来数学是一门如此有趣且有丰富内涵的学科。
这本书记载了数学从有记载的源头再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。全书按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲在十五世纪至十六世纪数学在顺应社会实践需要的基础上出现的深化、突破。
在介绍数学发展的基础上,这本书还以历史的视角对三十种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里得、欧拉等数学大师的风采,还特地的`穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学史。
数学与文学、物理学、艺术、经济学或音乐一样,是人类不断发展和努力的结果。它既有过去的历史,又有未来的发展,更有今天的广泛应用。我们今天学习和使用的数学,在许多方面都与一千年前、五百年前甚至一百年前的数学有很大不同。在21世纪,数学无疑会进一步发展。学习数学就像认识一个人一样,你对他的过去了解的越多,你现在和将来就越能理解他并与其互动。
在任何起点上想学好数学,我们需要先理解相关问题,然后才能赋予题目有意义的答案。理解一个问题往往取决于了解这个概念的理解,所以想理解数学,就来读《这才是好读的数学史》。
数学史读后感篇五
什么是数学?在我的印象中数学无非就是符号数字不停的计算与难记的公式,但这本《这才是好读的数学史》让我有了一次全新的体验。
从小就听大人们讲数学源于生活在生活中无处不在,例如本子的形状为长方形,这就是生活中的数学。这看似非常简单,可他为什么会被设计为长方形?平常装东西使用的篮子也是包含了数学元素,最早新人们为生生活的需求,数学便诞生了。没有人知道数学究竟是多久开始的?在蒙昧的时代,人们便有了数觉,然后慢慢形成了数的概念。
早在早期人们便研究圆周率,但无法研究出圆周率真正准确的数字,从约公元前1650年至今,人们研究圆周率经历了一个漫长的过程。可为什么人类会花这么多经历去研究圆周率,圆周率为无理数,数字也是随机性的,如同一个虫洞,十分令人着迷。而圆在我们生活中也很重要,如同望远镜,碗,车轮,碗为圆形吃饭用时更加方便,并且不像方形碗那样处理四角,圆形清理也更加方便。轮胎为圆形,因为滚动摩擦力比滑动摩擦力阻力更小。圆为我们生活提供了许多方便。
数字计算机也是人类一大发明。第二次世界大战时,艾伦图灵设设计了几台电子机器来帮助进行密码分析,他带领英国成功破解德国潜艇司令部的所谓谜码,数字也可为战争的一部分(密码战)。数字计算机可以很快读取数字与形成数字,2002年金田康正教授的团队也是通过使用数字计算机算出圆周率小数点后12位,比原始探究方法不知快了多少倍,这不禁令人惊叹。
数学说如同一个工具箱,前人们不断把这个工具箱变得更人性化,好让我们使用。数学如同一个高塔,古往今来人们一直在建造它,正是人们不断为这座高楼添砖加瓦,它才能越建越高,越来越扎实。
数学并非是僵硬的,而是生动形象的,只有了解好数学史,才能更好的学习数学。
数学史读后感篇六
期末时得到这本书,我心里便久久不能放下它。因为我对数学有着一股极大的兴趣,而数学发展的历史正是我想了解的。由于时间原因,到家后我才开始读它,每每读完一段,便有颇多感慨。
作为人类智慧的结晶,数学不仅是人类文化的组成部分,而且是推动人类文明进步的力量,数学伴誰着人类到现在。
从早期的算术几何,算是数学的雏形,先驱们创造出这门学问,见证了远古人类的智慧,再者就是数学的快速发展。从古希腊数学、中国古代数学到平面解析几何,再到微积分的创立以及对千古谜题的一一解决,伟大的先驱们付出了常人难以想象的努力,有些则更成为千古美谈。
数学发展到今天,先驱们的努力功不可没。数学像一座处在繁华街道中的大厦,而先驱们则是大厦的地基,根基牢固了,大厦才可以不断加高,成为摩天大楼。
读完这本书,我深刻认识了数学,其历史源远流长,其内涵丰富多彩,探索和研究数学的历程是循序渐进的过程,是在前人研究的基础上,不断创新和修正的过程。微积分的创立、无穷集合论的创立以及高次方程可解性问题的解决正是最完美的体现。
读完这本书,我更加深刻认识到数学家们的严谨态度和锲而不舍的探索精神,研究经费薄弱击不倒他们探索的坚强意志,论文一次又一次得不到认可消耗不了他们的热情。他们干净磊落,为求真理勇于现身。对数学的那份执着,对数学的那份热爱,终将创造出不凡的业绩。
数学史读后感篇七
由于时代局限,20世纪的计算机等新科学的突破性进展在书中并没有得以体现。本书也忽略了中国在科学发展中的作用,没有关注到古代中外文化交流对于科学发展的重要性。
除此之外,根据部分学者的说法,本书在量子物理学等部分存有史料错误的问题,作者在书中还采取了辉格派的史学方法,比如对优生理论的过度宣扬,对柏拉图理论的打压等。
从整体来看,本书依旧是一本不错的科学史著作。当时科学史的研究著作相对较少,因此作者可以参考借鉴的范例不多,在文章的叙述表达等方面不可避免地存在一些问题,但是这些不足的地方也可以作为对当代科学技术史研究者们的警示。
在细节的部分,作者采用的不是科普式的说明语言,而是相对严谨的学术叙述,因此本书的许多内容都比较难以读懂,需要读者具有一定的知识基础。
由于笔者的理论知识有限,在阅读时采取了泛读的阅读方式,无法深入了解其精髓,在此仅表达自己粗浅的认识。
科学的基本模式应该是观察与思考。
观察是对自然界事物的挖掘、模仿与探索,这种方式源于人们探索世界的本能。人们从诞生时就在用双眼探索世界,并且将这些观察的'结果应用到自己的生活中。
在《科学史》书中,医学往往是各个文明古国最早发展起来的学科。这一学科就源自人们对于自然界的观察,所以早期的医学发展也脱离不开巫术。而物理学、生物学等学科最开始的发展也来自于对身边事物的观察。
这种方式还受到人们的欲望驱使,人们希望能够直接改造世界,应用科学成果,所以早期的科学往往都是在人们所能够观察到的范围内进行。这种思维模式也影响了宗教与哲学,并且形成了相应的思维模式或者是行为模式,并且以这种模式“绑架”科学的发展。对于观察到的事物的思考就是另一种模式,这种模式主要通过宗教与哲学进行发展,产生了“逻辑”上的“演绎法”的思想,也就是设定好实验的前提,通过观察等方式,使得结论与自己的预设相符合。
随着科学事业的发展,科学在18世纪开始进入新模式,阿基米德式的实验方式逐渐兴起。而这种实验方式也没有离开观察与思考这两个基础的模式,而是综合考虑、使用不同的指导思想进行。
此时科学家的观察点已经不仅仅局限于眼前所见,而是深入到粒子的角度,开始了新维度的探索。
在作者看来,宗教、哲学与科学之间是一种纠缠、难以分清的关系。
在古代,科学依附于宗教、哲学之间,从事科研工作的很多都是哲学家,科学研究按照不同流派的哲学思想指导进行,比如亚里士多德就通过观察等方式探索天文学、物理学等知识。因此早期的科学史是在哲学与宗教的庇护下开展工作的。在文艺复兴时期,科学与宗教、哲学的关系逐渐疏离,兴起的实验方法与自然规律的探索甚至导致了机械论的产生,并影响了哲学的发展。19世纪以来的科学与宗教、哲学之间又是相互交错的关系。
因此在本书的最后部分,作者认为我们应该以平和的心态看待科学与宗教的关系,具体的问题应该留给时间去解决。所以,作者对于科学与宗教、哲学抱着含糊的态度,以实用为直接目的对这些内容进行描述,可以感受到作者的“新实在论”的思维模式。
科学的含义很广泛,它既可以指文艺复兴以后与蒙昧隔绝的态度,也可以指对自然的观察与思考,此外,科学也专指近代的科学技术发展,读后感与古代相对立。本书作者采用的是对于自然的观察与思考的模式,这种定义下的科学避免不了与宗教、哲学产生纠葛,因此作者也特意用副标题点明它们在本书中的位置。这也表明了本书外史的书写方式,即考虑到科学与社会要素等之间的相互关系,也是本书的精彩之处。了解了科学在本书中的定义,笔者再来讨论一下科学史在本书中的定义。科学史是对科学史料的梳理与总结,从而起到帮助科学研究、摸索科学规律的作用。
科学史从字面上看,就是科学的历史,因此它要符合科学的基本要求,更离不开史学的基本要求。所有的历史都是对史料的重构,科学史也是。科学是难以用只言片语写好的,因此科学史一定会有所删减,不同人的删减结果表现了他们史观的不同,更表明每个人不同的用意。比如本书中被部分人提到的“辉格派”手法,就是因为作者在对科学进行删减时,存在过度个人化的倾向,并没有做到相对客观。
此外,科学史是对于科学的重构,科普也是对于科学的重构。科普的重构是要将科学与人文结合,使得科学的成果能够尽可能被人们所接受;科学史的重构是要从科学的历程中探索规律,总结经验。
数学史读后感篇八
在我阅读数学史之前,数学在我的脑子里,就是一个很难很难的学科。数学漂浮在我的脑海里,像一只枯萎的蝴蝶,死板而又无味。
但是在阅读数学史之后我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
就像书中所写的一样,或许在数学课上讲一些有趣的小故事,可以提高学生的专注力和兴趣,然后引入课堂。
可能是由于我见识短浅(?)我一直认为中国数学是非常高深,深不可测的那种,认为中国数学在世界有最高的影响力和地位。但其实中数是非常具有影响力(九九乘法表,11的两边一拉中间相加)但希腊数学是独一无二的,尽管在现在的数学之中,希腊数学家的逻辑推理和证明都是摆在数学中心的。数学家或许有许多不同,但他们绝对拥有财力·时间和数学天赋。他们的严谨性和专业精神恐怕是我毕生难以追求的吧。
总的来说,数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系,而这些联系就像龙须酥一样香浓醇厚,万般丝滑,密不可分,是不能够轻易斩断的关系!
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
我相信在未来,数学史带给我的影响,会影响到我的一生,我也希望中国数学能够源远流长,从《九章算术》到《周髀算经》呈现出更多的”东方数学“的色彩!
数学史读后感篇九
20xx年我们浙江新课程全面实行。其中,新课程的培养目标之一就是全面提高每一个学生的科学素养问题。面对这样的要求,教师专业素养的提高,成为首要议程之一。只是在学习科学史的过程中,发现自己对科学史很不了解,对我们中国的科学文明知之甚少,对物理学科的自然科学史和物理学史的发展很迷糊。更不必谈科学史的思想,以及科学史对整个社会文明发展的积极作用了。
世界著名科学史家乔治萨顿所言,科学史是一门具有特殊研究对象的历史科学,是唯一能确切反应出人类进步的历史,是客观真理发现的历史,人的心智逐步征服自然的历史,描述漫长而无止境的为思想自由,为思想免于暴力、专横、错误和迷信而斗争的历史。并且科学史既研究科学发展本身的逻辑规律,也研究科学发展与各种社会现象之间的互动关系。我的体会是:
1、科学史教导我们在科学教学中注重科学史实和包含的深层精神。
物理教学中,要注重科学史的介绍,但不是简单地罗列知识,而是将科学发现置身于当时的文化、政治、社会发展背景,介绍同时期哲学思想等相关学科的发展情况等。讲牛顿发现万有引力,是受到苹果落地的启发诸如此类的故事,而只字不提科学家科学发现的艰辛过程,他们坚持不懈的精神和科学的思维方式,会使学生误解科学的发现是偶然的,是靠运气的。又如,伽利略发现物体下落的快慢与物理本身的重量无关,不是通过比萨斜塔实验得到的,而是提出与亚里士多德理论矛盾的逻辑思维和理想化的斜面实验得到的,要注意历史地真实性。所以教学中要好好地思考马克思的唯物史观,教育学生形成正确的科学史观,注重事实和精神。
2、不必因为科技发展的负面影响来质疑科学史是人类进步史。
有相当一部分人认为,科学史并非真正纯粹的“人类进步史”。看古代天文学发展,被运用于巫术、人间祸福预测、宗教等。现代高科技如核武器、生化武器、病毒等给世界带来巨大的安全隐患。化学药品的制造造成环境的严重污染。一部人类科学史成了其它物种的毁灭史等等。但是,我不认为科学史不是纯粹的进步史。首先,作为一门现代学科,科学史记载人类进步的遗产。其次,作为人类文明史的发展进步历史,科学史是科学的历史。人类发现一种科学现象或理论,最纯粹的目的是解决当时的一些实际问题。如古代巫术,原始目的是治病。诺贝尔发明炸药,是为了开发隧道等,爱因斯坦发现相对论,是逻辑实验发展的顶峰表现,是对物理学大厦和天文学的缔造。至于后来,炸药被用于战争,相对论被用于核武器的研发,那是科学与人类政治的结合,该划入人类社会学,不该质疑科学史的纯粹进步性。核能源成为现代重要的能源,极大促进了人类的文明进程,这才属于科学史。
3、要大力提倡学习中国古代自然科学史。
代科学,对提高作为中国人的民族自豪感,和历史的使命感有积极的作用。作为物理课程与教学论的学生,我提倡学习中国古代的自然科学史。
4、整理出近代物理史的发展脉络,对近代物理的发展有了整体的认识。
教师专业发展对教师的技能要求之一就是拥有广博的物理学史知识。学习了这门课,最直接的意义就是提高了自身的专业素质及领悟到现代物理学的思维方法――理性、批判、实验的方法。拥有了系统的物理学史知识,就可以在教学中游刃有余,能古今中外横向和纵向对历史事件进行分析和考察,对科学家研究方法的改变进步会感到突然,学生也能从多角度了解科学的发展。。
虽然对科学史的意义和学科的脉络,还处于似懂非懂的状态,但是,继续深入学习科学史,已成为我的目标。
数学史读后感篇十
《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。
我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!
第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的`观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。
我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。
数学史读后感篇十一
全人类,献给了她最爱的科学事业,她只留下了五个东西,她留下了自己一种无私的精神,她留给了自己一丝奉献的快乐,她留给了自己一点心灵上的财富,她留给了自己一些隐藏的幸福,她留给了自己一个伟大的人格。
烟如同最柔弱的蛛丝风吹丝断。为了改变科学,工作者那注定的贫穷生活,为了改变科学事。
业的层次,他们作出了放弃。放弃代表着什么,这代表着离成功与幸福只有一步的居里夫妇。
从此再没有机会。放弃代表着居里夫妇让世界人民得到拥有镭的快乐。放弃代表着他们失去。
都是把自己的创造据为已有,哪个不都会三番五次地往专利局申办处跑,哪个不都先狠狠地。
给大众剥削一层皮后移植到自己的身上,有谁会像居里夫妇这样不会去想自己的利益,有谁。
会只为了大众的利益而做具有沉醉于事业的大公无私的梦想者,有谁在发现一种可以让自己。
足道,但它却主宰着整个天平。居里夫人把法码放在了人民的一端,致使她伟大的人格举世。
闻名。正如她所说的一样她真的是一个沉醉于事业的梦想者。她的心中只有公,便激励着她。
把自己的幸福分享给了整个世界。居里夫人你是我们所有人崇敬的榜样,我也要像你一样,把自己的一切贡献给人民。不管在什么时候,不管做什么工作,我的未来都要为世界而付出,做一个真正大公无私的人。
数学史读后感篇十二
数学是一门枯燥的学科,我从小就这样认为。但是通过这个寒假,这本《这才是好读的数学史》,打开了知识文化的一扇大门,让我对数学有了更深入的了解与思考,并且领悟到了其中的魅力。
数学的历史非常悠久,从很久很久以前就已经有了数学。那时候的人们刚刚接触到了它,而随着时代的变迁,数学的文化越来越博大精深。正是因为那些伟大的数学家们所做出的巨大贡献,才让后代的人类将数学发展得越来越好。例如一位亚历山大的希腊数学家欧几里得,他从一小部分公理中总结了欧几里德几何的原理,还写了另外五部关于球面几何、透视、数论、圆锥截面和严谨性的作品。欧几里得因此被人们称为“几何学之父”。
数学文化奇幻无穷。最让我印象深刻的便是阿拉伯数学文化。阿拉伯数学家不仅让代数成为数学的重要组成部分,而且还在几何学和三角学方面做出了重要的贡献。同时,“帕斯卡三角形”也就是“杨辉”三角也被他们所了解。阿拉伯数学文化的特点则是能够从其他数学的知识中汲取到最有用的精华,并且发展它。
数学的发展并不是我们想象中的那么顺利,而是经历了无数的困难和挫折,才成为了我们现代的数学。它的成就则是数学家们日日夜夜的研究与思考所造就的,让数学真正地显露出了它的价值。中国的数学源远流长,拥有着它自己的特色与意义。重大的数学定义、理论总是在继承与发展原有的理论的基础所建立起来的,它们不但不会改变原本的理论,而且经常将最初的理论思想包含进去。正是因为我们不断地为它注入灵魂力量,它才能越来越强大,越来越辉煌!
数学史的学习让我们更加理解数学的意义,从而在知识的海洋中不断发现、不断进取、不断研究,逐渐形成对数学的热爱!
数学史读后感篇十三
从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。
本书于1958年出版,作者j.f.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。
上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。
古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。
在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。
文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。
7世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。
8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。
纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。
历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。
数学史读后感篇十四
《黄爱华与活的数学课堂》这本书是我在学校图书室偶然间看到的,一看内容写的是活的数学课堂,我就把这本书借了出来,认真的翻阅它,我感觉到它真是一本好书,书页间飘散的墨香中,每每嗅出它那深藏的思想,也触发自己心底的思绪。读了黄爱华老师的书后,他的嗜书如命、执著追求以及精彩智慧的课堂深深打动了我,吸引着我,鼓舞着我。
黄爱华老师“活”的数学课堂艺术特色是“趣”、“实”、“活”。“趣”,让学生们感到新鲜有趣、富有吸引力;、“实”,在知识点教学的关键下真功夫,重点特出;“活”,在教学过程中对教材的灵活处理,应变自如、驾轻就熟、左右逢源。
《黄爱华与活的数学课堂》一书告诉我们:数学课堂教学要在多元智能理论的指导下,树立尊重个性的教育观;为学生创设自主探索的问题情境,提供充分的感性材料,让学生多种感官参与实践活动,致力改变学生的学习方式,使学生在自己动手操作、独立思考、观察讨论、合作交流、自主探究的过程中感受、理解数学知识,在经历掌握数学知识的过程中,培养了学生分析、比较、概括等逻辑思维能力,使他们在知、情、意诸方面和谐发展;数学课堂让儿童在再创造的过程中同化和顺应,以此不断丰富和完善知识结构,这样的课堂才是适合儿童发展的数学课堂,才是高效的课堂。
黄爱华老师是营造现实而富有吸引力学习背景的高手,善于根据实际创设现实的、有趣的、探究性的、开放的和新奇的及喻理的问题情境。这些良好的问题情境深深地吸引学生,唤起学生的求知欲望,燃起学生智慧的火花,有效地发展了学生的数学思维。
揣摩黄爱华老师的课堂案例,几乎每节课都有大量的学生动手操作的内容;黄老师善于引导学生在操作中独立思考,在自主探索中产生交流的需要;他鼓励和引导学生在小组交流中,既要正确表达自己的想法,又要倾听别人的意见,有效地增进合作交流的“涵养”;班级交流中,往往会呈现多样的学生思考方法和多种解决问题的策略,促使每个学生在数学上都有新的发展。
“问渠哪得清如水,为有源头活水来”。营造和谐、灵动的课堂,毫无疑问教师自身的素质是决定性的因素。我相信,只要坚持不懈的学习、实践和思考,这样美妙的数学课堂离我们一线教师不会太远!