优秀数学悖论的论文范文(19篇)
感谢信是表达对他人帮助或关怀的一种书面表达方式。总结应该注重逻辑性和系统性,做到有始有终。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。如何提高自己的口语表达能力,使得沟通更加流畅和自信?以下是小编为大家收集的相关资料,供大家参考和学习。
数学悖论的论文篇一
处于小学阶段的学生对事物的接受能力较弱,因此对于小学数学教学就需要制定适合小学生特点的教学方案。就“千克与克”这个问题的教学来看,需要我们能够结合实际生活,给他们以真实感,减小他们理解的难度,从而优化教学效果。
小学数学、千克与克、教学
小学阶段对质量的认识包括千克、克与吨,然而质量的计量不能像长度单位那样直观,需要借助天平等工具的测量才可以得知。而小学生对抽象事物的接受能力较低,这就给小学数学教学带来了很大的难度。因此,如何帮助小学生建立正确的质量观念成为我们小学数学教师要研究的首要课题。
数学在生活中无处不在,在生活中建立数学观念对学生的数学学习有极大的帮助。质量单位在生活中的应用很是广泛。因此在学习质量单位之前去生活中做一些调查,对学生的质量单位的理解是有很大帮助的。在生活中,大家都接触过物体的轻重问题,这样便对质量单位的理解有了一定的基础。但实际上,我们在日常生活中很少使用“千克”和“克”来衡量物体的质量,而是使用“斤”、“公斤”、“两”等单位,这样使得学生对国际通用的质量单位“千克”和“克”的概念不是很清楚。所以,针对这种情况,让学生在正式的学习前,对“千克”和“克”在生活中的应用展开调查,亲身感受“千克”和“克”的.概念,和不同情况下不同单位的使用也不同。
1、创设情境,体验数学学习的乐趣
例如在讲“千克与克”中,设计“小学生到熟悉的超市购物”情节。在课堂上老师是超市的导购阿姨,小学生来选购放在讲台桌上的奶粉、火腿肠、袋装饼干、奶茶等物品。安排三名不同的学生来分别选购,确定后就交给“导购阿姨”称重。讲台桌上有一台天平,导购阿姨首先称量了一根火腿的重量,告诉大家是50克。之后给学生称重前首先要其对自己选择的物品进行质量估计,其次进行实际称重。a同学选择一袋奶粉,估计是400克,称量结果是450克;b同学选择5小包袋装饼干,估计是90克,称量结果是110克;c同学选择3包奶茶,估计50克,称量结果是40克。通过教学情景的设计,学生不仅能够锻炼自己去超市买东西的能力,也通过对物品的称量有了质量的简单认识。通过一根火腿肠50克进行直观的体会,学习简要估计物品质量的技能。在有了质量的认识后,教师可以进行课程内容的讲授。
2、动手实践,体验数学活动的探索过程
例如可以给定10根50克的火腿肠、5袋100克的饼干,让学生亲自动手称量验证这两种所给物品各自的总重是否为500克;将称好的500克的袋装饼干给学生数,看500克的质量下可以有多少袋小饼干;将一根火腿肠放在学生左手,另外一个手上是若干袋饼干,掂量哪个重,最后再判断其质量范围。
3、建立常用质量单位在实际中的正确使用方法
单纯地学习质量的计量单位,不是教学的根本目的,其根本目的是让学生学会如何正确使用“千克”和“克”。好多时候,在实际中对物体重量的估计,都有一定的参照。因此,可以教授学生如下方法:
总的来说,对于质量较轻的物品,我们采用“克”来作为计量单位;而对于较重的物品,可以采用“千克”作为计量单位。另外,我们对于物品质量的估计,还可以采取选择参照物的方法。一般来说,一个鸡蛋的质量大约为50克,而我们可以根据其他和鸡蛋质量相差不多的物品的质量,或者质量为鸡蛋质量多少倍的物品来估计。平常我们所说的质量单位“斤”和“公斤”也应对学生讲解清楚:1公斤等于1千克,而1公斤等于2斤,即1千克等于2斤。
通过学生课前在生活中的调查,相信学生对“千克”和“克”这两个国际质量单位有了初步的认识;之后又通过课上的知识讲解和学生自己动手测量与实验,使学生对“千克”和“克”有了进一步的理解。因此,在课后进行一定的总结和加深,对于学生对“千克”和“克”的认识,具有一定的巩固作用。于是,可以设置作业如下:下课后,大家回去根据自己之前的生活调查和课上的学习,写一篇关于质量单位的小日记,总结一下自己的收获,或者表达一下自己对“千克”和“克”的认识。
总之,对于小学数学的教学要充分考虑到学生对事物的接受和认知能力,加强教学与生活的关联性,降低小学生的理解难度。多结合实际,充分调动学生的学习兴趣,激活学生思维和探索的积极性,使学生能够在轻松的教学环境下学习到应有的数学知识,从而达到提高教学质量的目的。
数学悖论的论文篇二
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的'3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3-1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
数学悖论的论文篇三
大学教育中非常重要的一门基础学科就是数学,学好数学有利于大学生培养逻辑思维能力,提高创新意识。在大学数学教学中渗透数学文化,能够让大学生对于数学知识有更加深刻的理解,激发大学生探究数学知识的兴趣,在学习中发现数学的乐趣,养成用严谨的态度看待周边的事物,为大学生今后步入社会做好准备。
大学数学;教学;渗透;数学文化
数学文化是指数学的思想、精神、观点、语言以及它们的形成和发展,还包含了数学家、数学史、数学教育和数学发展中的数学与社会的联系,数学与各种文化的关系等。我国数学文化最早在孙小礼和邓东皋等人共同编写的《数学与文化》中被提及,这本书浓缩了许多数学名家的相关理论学说,记录了从自然辩证法角度对数学文化的思考。数学不单单是一种符号或者是一种真理,其内涵包含了用数学的观点来观察周边的现实,构造数学模型,学习数学语言、图表和符合的表示,进行数学的沟通。数学文化可以在具体的数学理念和数学思想、数学方法中揭示内涵。数学从本质上与文学的思考方式是共通的,数学文化中的逻辑思维、形象思维、抽象思维等在文学思考方式中也有体现。但是数学文化与其他文化相比较,也有其本身的独特性。数学在历史发展的长河中不断改变和融合,现在已经成为世界上的一种通用语言,不再受到不同国家文化、语言的束缚,受到了各国人民的推崇和发展,数学文化利用科学的方式对人类生活中的其他文化的本质进行了深刻的揭示,是其他文化发展的基础。
大学数学中综合了物理、计算机、电子等知识,教学课程包含了高等数学、线性代数、概率论与数理统计等,大学开展数学课程符合时代的发展潮流。在大学数学教学中渗透数学文化,能够使学生在对数学进行系统化的学习之前,充分理解数学文化的.内涵,发现数学文化与其他各种文化间的紧密联系,使大学生能够在数学教学的学习中提高数学学习能力,发展独立发现问题和解决问题的能力,开发大脑的潜能,树立正确的数学学习观念,通过学生深入了解数学的内容,从不同的角度对数学人文、科学方面等知识进行分析和理解。对于增强学生全方面的能力有着重要的意义。
1.加强数学文化教学
大学数学教师应当加强对学生的数学文化教学,对于学生的数学解题思维进行培养,在数学课程教学中逐渐渗透数学文化的魅力,将数学文化具体融入教师的教学中,增强学生对于数学文化的了解,激发学生学习数学的积极性,提高学生发现问题、解决问题的能力。在大学数学教学实践中,教师也应当加强自身对于数学文化的理解,转变传统的教学方式,在数学教学中不仅要重视对学生数学知识的教学,还要重视起对学生数学思维能力的教学,结合学生的实际数学学习情况,由浅入深对学生灌输数学知识,将数学文化与数学教学系统化的整合,逐步提升学生的数学学习和解题的技能,鼓励学生之间相互学习、相互竞争,在合作和竞争中学习数学知识、锻炼数学技能,发挥学生学习的主观能动性,改变过去教师讲学生听的教学模式,使学生能够主动学、主动问,从而使学生的数学成绩能够不断提升。
2.丰富教师教学方式
大学数学教师应当不断丰富教学方式,利用多种教学手段,使学生能够更好地接受数学文化,学习数学知识。数学作为理科学科相对于文科学科学习起来更难也更枯燥,许多数学公式和定义比较复杂,不利于学生的记忆和理解,因此大学数学教师可以充分发挥数学文化教学的优势,增加数学教学课堂的趣味性,通过多媒体为学生播放一些和课本内容相关的视频,加深学生的数学学习记忆,在数学知识的教学前可以先用数学文化当作铺垫,吸引学生的注意力,使数学的学习不再枯燥,为学生的数学学习营造出轻松愉快的氛围。例如,某大学数学教学中,教师利用多媒体为学生播放了线性代数的相关图片,为学生解释了矩阵的概念、基本运算、矩阵的初等变换与矩阵的秩、逆矩阵和线性方程组解的判定,结合学生的实际生活进行举例,“a城市是所有大学学生毕业后向往的城市,而b城市则因为经济落后成为大学学生毕业后都想走出去的城市,假设b城市中每年有35%的人来到了a城市,而a城市每年仅有15%的人来到b城市,a城市的人口总共有1000万,b城市的人口有600万,两个城市的人口总数不变的情况下,5年后a城市和b城市的人口分别有多少,在很多年以后,两个城市人口的分布是否会出现稳定的一个状态?”该案例激发了学生对于线性代数学习的积极性,有效地提高了学生在数学课堂上学习的效率。
3.增加数学文化课程
各大学在数学课程设计上可以结合学生的实际情况,适当增加数学文化课程,加强学生对于数学文化内涵的学习,使学生能够形成系统化的数学学习理论体系。例如,某大学在结合学生实际课程情况的基础上,增加了数学历史的课程,使学生了解了古代埃及数学的成就主要来源于纸草书、《九章算术》中的“阳马”指的是棱锥、射影几何产生于文艺复兴时期的绘画艺术、“非欧几何之父”的数学家是罗巴切夫斯基、最早使用“函数”术语的数学家是莱布尼茨、积分学早于微分学出现等等相关的数学历史知识,促使学生能够完善自身的数学学习,详细了解了数学相关历史和发展情况,拓展了学生的知识层面,加深了学生对于数学的理解,使学生在大学数学课堂上能够更好地配合教师的教学。
[1]陈朝坚.大学数学教学中渗透数学文化的途径[j].开封教育学院学报,2014.
[2]陈朝坚.在大学数学教学中渗透数学文化的思考[j].湖北成人教育学院学报,2013.
[3]陈梅.浅谈数学文化在大学数学教学中的渗透[j].长春理工大学学报,2011.
数学悖论的论文篇四
小学中年级的数学教学是小学生从数字向数学概念转变为主的,这一时期的数学学习对小学生数学的兴趣和自主学习能力的培养至关重要。那么,具体应该如何培养小学生的自主学习能力呢?笔者认为,首先就是培养学生的课堂自主提问能力。可以说,学生在课堂上学会自主提问,是学生对知识进行思考和学习的具体表现。这也从侧面体现出小学中年级学生课堂自主提问能力培养的意义。对于小学生来说,兴趣可以促进其学习,所以,提高学生对数学课的兴趣也是保证学生学习效率的重要条件。而且,小学数学课对学生开放性思维的培养也起到极为重要的作用。而学生开放性思维的具体表现就是学生对课堂问题的不同见解与不同思维,那么如何才能做到了解并培养学生的开放性思维呢?首先要鼓励学生的课堂自主提问。小学生的课堂自主提问是教师了解和培养学生开放性思维的重要途径。学生在课堂上自主提问,从某些方面来说打破了我国传统的教育方式,让学生成为了课堂的主人,实现了教师作为引导者引导学生自主探索和研究的角色转换。这种学习方法将会越来越受重视,更加会逐步应用于不同的学校之中。所以,培养小学中年级学生课堂自主提问能力是我国小学教育改革的重要起点。
学生在课堂上的主动提问就是学生主动求知的具体表现,这种表现主要来源于学生对学科的兴趣和求知欲望。也就是说,培养小学中年级学生课堂自主提问能力的方式就是从培养学生的兴趣开始的。笔者认为,对小学中年级学生课堂自主提问的培养应该从以下三个方面进行:
(一)运用情景教学激发学生的兴趣
情景教学是很多学科教育的重要研究方法,因为情景教学能够将学生所学知识通过直观的形式表现出来。具体的实施方案就是以角色扮演或者情景引入等方法让学生们以表演的形式接触所学知识,是寓教于乐的代表做法之一。而传统的教学方式以集体教学为主,更加强调的是知识的正确性与知识的传授,并没有真正做到与小学生的沟通。这样的做法无疑会让小学生失去学习的兴趣,从而对数学产生抵触情绪。这不仅不利于教学目标的实现,反而会影响学生以后的学习。根据许多心理学家对小学生心理的研究发现,只有与同龄心理极为接近的教育方式才能受到小学生的认同与接受。而情景教学能够有效地调动小学生对数学的兴趣,激起学生的求知欲望,进而提高小学生的课堂自主提问能力。
(二)培养学生与教师之间的沟通理念,消除学生对教师的畏惧心理
尊师重教的传统思想导致很多学生对教师的'感情只有敬畏,所以如果不能消除学生与教师之间的隔阂,就无法让学生进行自主的课堂提问。要消除学生与教师之间的隔阂,主要要通过教师与学生的合理沟通以及教师对教学办法的改变,要让学生成为课堂的主人,而教师要作为学生的指导者,引导学生领略数学的精彩。只有这样,学生的求知欲望才能被激起,才能真正提升课堂自主提问能力。
(三)结合实际问题,增强小学生对数学实际应用的好奇心
在小学生理解了数学的一些抽象概念后,教师可以利用实际生活的一些有意思的案例让小学生们知道数学的广泛应用性。其具体目的是培养小学生的发散思维能力。而且,先由教师带领将数学内容应用在实际生活中,再由小学生自己结合实际想出一些案例,这对学生的思维发散会起到推动作用,也为小学生的创新思维的培养提供了有利措施。综上所述,培养小学生自主学习能力的方法之一就是让学生在课堂上能够自主提问,因为小学生的自主提问说明学生对所讲内容有了独立的思考和想法。数学教师要不断探索和实践,并总结教学经验,为培养小学生的自主提问能力而努力,以便更好地提高小学生的数学素养。
数学悖论的论文篇五
摘要:小学数学是我国义务教育中的重要课程,帮助激发学生潜能,提高学生的数学学习、应用等多方面能力。在小学数学教学中将多元化教学进行充分的体现,能够更好的将小学数学的教学方式进行深度优化,是义务教育的未来发展趋势。
关键词:小学数学;多元化教学;教学方式
前言:
随着教育改革的不断深入,多元化教学已经成为了大势所趋,打破了传统教学弊端的同时,还能更好的适应现代化的教育理念。小学数学教学中运用多元化的教学方式,能够让学生在轻松愉快的氛围中得到良好的教育,提升了学习的积极性,增强课堂教学效率和质量。
1小学数学教学现状
1.1教学方式单一:目前小学数学教学的方式较为简单,大多为灌输式的方式进行教学,教师为课堂主体,学生多是被动式的学习,导致课堂教学质量严重下降,学生也会产生厌烦感,对学习的积极性不高,导致学生成绩不理想。1.2较少课堂互动环节:在小学数学课堂中,教师只是单方面讲解教材的内容,缺少课堂互动,导致学生产生学习盲点,缺乏学习的着手点,从而致使学生的学习成绩较差,课堂教学效率低下等问题。1.3缺少实践环节:教师在课堂教学时,对公式以及例题进行讲解后,只是给予学生几道习题进行练习,却并没有针对课堂讲授内容留下相应的课后作业,帮助学生进行有效巩固,随着课程越来越多,学生容易将所学内容全部忘记,最终无法达到数学教学的有效性。
2多元化教学在小学数学教学中的意义
2.1有利于掌握学生心理特征:运用多元化教学方式能够更好的帮助教师制定不同的教学方案进行教学,从而更好地了解学生的心理特征。教师在课前要制定良好的教学方案以及拥有充足的知识量,通过将不同的教学方案应用在课堂中可以及时的发现学生更喜欢的教学方式,帮助教师了解学生心理特征,尽快的找到适合学生的教学方式进行教学,提升课堂教学效率,保证教学质量。2.2有利于营造良好的课堂氛围:传统的课堂教学方式十分单一,课堂氛围呆板,对学生的小学数学学习的影响并不大。通过运用多元化教学的方式能够帮助教师在教学方式上进行转变,例如在进行图形计算公式的教学中加入相应的动画和文字,能够让学生拥有直观感受的同时,更好的引起他们的学习兴趣,从而活跃课堂氛围,调动学习积极性,而且,还对学生的智力开发有着良好的作用。2.3有利于教学手段的充分利用:随着科技的不断发展,越来越多的科技技术与现代教育相融合,由于教育本身就具有多样性,通过将科技技术加入到课堂教学中,能够更好的达到教学的目的,而且教师在利用多媒体、网络等手段可以找到不同的教学资源,再结合全新的教学设备,能够将教学的多样性得以充分的体现,因此,运用多元化教学的方式,能够更好地帮助教师不断的掌握各种教学手段,并加以有效的利用,提升了自身教学能力的同时,也促进了小学数学的发展。
3多元化教学在小学数学教学中的具体体现
3.1情境教学法的应用:情景教学法能够通过形象生动的方式来对教材的内容进行教学,情景教学的方式有很多,可以根据学生的具体情况来选择,不过在情景教学法运用前要了解学生的心理特征,找到他们感兴趣的东西,才能够充分的调动他们的学习积极性,也便于他们能够很快的进入课堂学习状态。情景教学法可以通过图文并茂的方式进行教材内容的展示,再配合教师的语言讲述,来达到情境教学目的,然而这种教学方式缺少一定的互动性,教学的有效性不能够得到充分体现,所以教师可以通过将教学内容与实际的事件相结合,即将教学内容与实际生活中相结合的方式进行教学,这样不仅可以调动学生的积极性,同时还能够很好的活跃课堂气氛,例如教师可以采取游戏的方式进行教学内容的情景展现,能充分的调动学生的兴趣,积极地参与到教学中去,在轻松的游戏环节中实现教学目的。3.2合作学习法的应用:合作学习法就是学生之间通过相互配合、合作的方式进行数学内容学习的过程。合作学习法的优势在于能够充分的调动学生的积极性,能够很快让学生融入到相互合作的氛围中,从而更好的实现教学的目的。在合作教学中教师只要针对合作学习的过程进行指导即可,帮助学生解决在合作学习的过程当中遇到的`问题即可,剩下的内容全部由学生们进行完成才能达到真正的效果,例如:在求圆形的面积教学时,教师可以根据学生的具体情况进行有效分组,将不同学习能力的学生进行平均分配,并且在学习中可以让学生进行有效的分工,也就是分别对圆形的直径、周长等进行计算,求出各自的对应值后,再进行面积的计算。通过合作学习法不仅能够提升课堂教学质量,还能够促进学生的全面发展。3.3学案导学法的应用:学案导学法在小学数学教学中的应用也能够更好的提升教学质量。即教师可以通过针对教材的内容进行相应的教学学案的设计,然后引导学生利用教学学案来进行自我学习、相互讨论以及知识巩固等方式,进而达到真正的学习目的。学案导学法中教师是教学过程中的载体,学生则为主体,通过适当难易程度的教学学案,可以促进学生将自身的学习能力进一步展现,学生也可以通过积极地讨论与研究,确定最终知识内容。教师在过程中可以对学生进行指导,帮助解决遇到的问题即可。在教师指导完毕后,再配以课堂教学的练习,能够对学生学习到的内容进行有效的巩固,从而便于学生更好的掌握知识重点。结束语:相比传统的教学方式,多元化教学能够更好的提升教学质量,让学生对小学数学教学拥有新的认知,所以在运用多元化教学时,一定要将“多元化”的特点在教学中得到充分体现,有效的挖掘学生的潜质,提升小学数学方面的学习能力,推动小学数学教学顺利进行,促进学生的全面发展。
数学悖论的论文篇六
在数学课堂教学改革不断深入的今天,班级的学困生已更多地得到关注与重视。如何有效激发他们的学习兴趣,让他们也能体验到成功与快乐,教师可从情感、教法、帮扶、作业等方面着手,促使学困生得到有效转化、提升。
小学数学;学困生;有效转化
由于学生的学习习惯、知识接受能力等方面的差异,每个班级都有一些学困生,他们需要教师从情感、教学方法等方面予以关心与帮助。创设平等对话的课堂氛围,实施灵活有效的教学方法,建立平等互助的帮扶小组,设计个性鲜明的分层作业,都能有效地激发学困生的学习兴趣,提升他们的学习能力,让他们体验到成功与快乐,笔者在日常数学教学中进行了一些相关尝试,取得了一定的效果。
1、营造平等对话的氛围,主动拉近师生距离
“和、爱”教育是我校的办学特色,构建和谐、愉悦的数学课堂,是促使学困生不断前行的动力。作为教师,需要营造民主、和谐、愉悦的对话氛围,给予学困生更多展示自我的机会,让他们感受来自老师与同伴的爱与关注。事实上,一个亲切的问候,一个赞赏的目光,都会激发学困生不竭的'学习动力。如在教学四年级(下册)“平移与旋转”单元第二课时,我先让学生回答小船先向xx平移了xx格,再向苦xx平移了xx格。学生高高地举起手,看着小军同学举起的手又悄悄收回去了,似乎想要回答,我微笑地对他说:“没关系,你试试看,相信自己,一定能行!”他轻声地讲述了小船平移的过程,介绍了数平移格数的方法,尽管还不是很有条理,声音也不够响亮,但同学们马上给以热烈的掌声,使他获得了自信与快乐。
2、灵活多变的教学方法,促进学生主动参与
学困生接受知识有些缓慢,思维能力也不够强。因此在教学方法上要做到灵活多变,教师语言要生动形象,能关注到他们的认知经验和接受能力,降低难度,分散难点。如在教学四年级(上册)“用画图的策略解决问题”时,学困生对如何画图表示有很大困难。教学中,教师没有采用多媒体动态演示,而是采用及时提问的方法:“长减少是什么意思?”长减少就是将原来的两条长变短了,面积自然就会比原来的减少。所以我们画图时先要找到长,想想变短了的意思,再动手画。这样教学方法的改变唤醒了学生的无意注意,难题就顺利而解了。又如,为帮助他们提高解决问题的审题能力,可以引导他们先读题,圈出关键字、说出关键字的意思,简要复述题目,再分析数量关系。如求平均每个季度用水多少吨,可自行提问,由平均每个季度想到一年有几个季度。这样坚持训练,学生的审题能力和分析能力可以得到进一步的提升。
3、帮扶互助,提升辅导实效
实践表明,儿童之间的交流有时比师生之间的交流更为融洽,他们以儿童特有的对话方式,互帮互助,共同提高。教师要用更多的时间帮助这些学生,走近他们的心灵,及时辅导,帮助他们克服学习上的困难,疏导思想上的困惑。在班级中,我们让每个学困生自行找一个数学成绩优异的同学做自己的师傅,结成帮扶对子,教师帮助建立帮扶档案,定期对帮扶效果进行评价,予以表扬奖励。课堂上的小组探究,课间、放学后的悉心辅导随处可见,帮扶效果显著。如在教学“认识角”这节课时,在动手创造角的环节,各小组利用教师提供的材料或自己的材料创造角,师徒动手。小组内有这样的一段对话:“我用吸管做出了个角,你来指指角的顶点和两条边。对,指边的时候要从顶点开始,汇报时,不要紧张,声音要响亮,你一定行。”这样的对话,无疑是师傅对徒弟的一种鼓励与肯定。果然,小组汇报时师徒两人,一人展示,一人能说,配合默契,精彩纷呈。
4、布置弹性作业,体验快乐学习
数学悖论的论文篇七
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。
再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的.生活离不开轴对称。
数学离我们很近,它体现在生活中的方方面面,我们离不开数学,数学,无处不在,上面只是两个极普通的例子,这样的例子根本举不完。我认为,生活中的数学能给人带来更多地发现。
数学悖论的论文篇八
第一段:引言(200字)
数学,这门看似严谨无比的学科,却也充满了许多令人难以理解的悖论。数学悖论是一种违背常理或直觉的数学结论,它们挑战了人们对数学的实际运用。在学习数学的过程中,我经历了许多数学悖论的探索与思考,这让我意识到数学世界的奇妙之处。本文将结合我的心得体会,探讨数学悖论的意义以及对我的启示。
第二段:数学悖论中的“无穷大”与“无穷小”(200字)
《阿基里斯与乌龟》悖论是一种关于无穷的悖论,它揭示了无穷分割过程中的矛盾之处。数学中的“无穷大”与“无穷小”恰恰是一个有趣的悖论。在无穷大中,存在无数个数比其他数大;而在无穷小中,存在无数个数比其他数小。然而,这些“无穷大”和“无穷小”又没有确切的定义,这就引发了对数学推理的质疑。对我而言,悖论的存在使我重新思考了数学中一些常见概念的定义。
第三段:悖论中的自指性(200字)
另一个有趣的数学悖论是自指性。著名的赛捷悖论是一个典型的例子,其中包含了关于“说谎者”是否说真话的矛盾。这种自指性在数学中也有相应的例子,比如哥德尔的不完备定理。哥德尔证明了一些数学命题不能通过自身来证明,从而揭示了数学系统的局限性。这些悖论告诉我,数学自身的逻辑体系可能无法解决所有问题,我们需要更加谨慎地进行推理和证明。
第四段:数学悖论的教育意义(200字)
数学悖论的存在给了我们一种思考的方式,它要求我们不仅仅接受数学的常规定义和规则,还要深入思考这些定义和规则的内在逻辑。数学悖论给了我更加前沿的数学观念,激发了我的求知欲和探索精神。我开始意识到,数学不仅仅是一系列无关的公式和定义,更是一个充满无限探索的世界。
第五段:对数学悖论的反思(200字)
通过深入探索数学悖论,我发现数学悖论的存在其实是锻炼思维的一种方式。解决悖论问题需要我们辩证地思考,怀疑常规认知,并且保持开放的思维。这种思维方式不仅对数学学科有益,更对我们的日常生活产生了积极的影响。它培养了我的逻辑思维能力和问题解决能力,使我能够在面对复杂问题时更加从容应对。
结尾(100字):
总之,数学悖论的研究给予了我对数学的全新认识,在这个过程中我意识到数学的美妙与深度。悖论的存在让我更加谦逊地接受数学的规则,同时也激发了我对数学的热爱。数学悖论是一扇通向数学深渊的大门,当我们勇敢地敲响它时,会发现数学的边界远远超出了我们的想象。
数学悖论的论文篇九
有一天,森林里面来了一群特殊的“客人”。它们长相很特别,动物们都很奇怪,要求他们一一介绍自己。第一个走出来一个瘦子,它说:“我是1,像支铅笔细又长”。接着又走出一个说:“我是2,像只小鸭水上飘。”第三个说“我是3,像只耳朵听声音。”“我是4,像面小旗随风飘。”“我是5,像支衣钩挂衣帽。”“我是6,像棵豆芽咧嘴笑。”“我是7,像把镰刀割青草。”“我是8,像支麻花拧一道。”“我是9,像把勺子能盛饭。”“我是0,像个鸡蛋做蛋糕。”他们刚介绍完了,小鹿又问道”你们中间谁最大?谁最小呢?”9站出来,很骄傲地说“我是9,我最大。”0耷拉着脑袋说“我最小。”“对,就是这个表示什么都没有的0。”9用冷淡的口气说道。9刚说完,动物们和它的数字兄弟都笑了。0更加不好意思了,动物们看到0这么没有用,都不愿意和它一起玩。它们在一起唱呀!跳呀!非常开心。突然一只大象在里面挣扎了很久,用了很大的力气总想爬上来,它爬呀爬累得满头大汗,腿也挂破了,鲜血直流。可是,怎么也爬不上来,它只好在里面大声“救命呀!救命呀!”动物们听到了,就纷纷跑到洞口边,想把大象救出来。数字1到9也来帮忙了。他们组成最大的数字987654321,显示了最大的力量,费了九牛二虎之力,也没有把大象拉上来。这个时候,只听见后面有一个微弱的声音说道“我也来试试。”它们一看是0,就勉强的同意它也来帮忙。它们重新组成数字9876543210,它们的力量一下子就增大10倍。哈哈……,一下子就把大象拉上来了。
动物们都很感谢数字兄弟,同时也为冷落了0感到愧疚,它们都来到0的身边,愿意和0做朋友。数字兄弟也开始重视0了,愿意和它一起玩耍。从此以后,0再也不自卑了,它觉得自己还是很有用的。
美丽的植树图案
很久很久以前,阿拉伯数字王国的国王过20岁生日,罗马数字王国派人送来了20棵珍贵的树,作为生日礼物。阿拉伯数啊。“20”大臣张榜招贤,凡是能巧妙地栽这20棵树的人将有重赏。可是,谁也设计不出来。“20”大臣日夜思索,翻了大量的资料,又用石子进行了一次次的试验。他画了成千成万个图样。
画着,试着,忽然,他眼睛一亮,看到了一张极其美妙的图案。“20”大臣立即把图案奉献给国王。国王见了非常高兴,“20”大臣指着图案对国王说:“陛下,您看,图中所栽的树不论横数、竖数或斜数,每行都是4棵,这样最多18行。”国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!”。我要重重地赏您!”国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!”“对,这是一位名叫山姆·劳埃德的数学家发明和设计的,我只是把他设计的图案用到植树问题上来。”“20”大臣据实说。“好,好,你能用上这个图案,也是有功的。”说着,国王宣布了对“20”大臣的奖赏,并将这个图案命名为“20图案”,是世界上最美丽的植树图案。
国王立即派人按照“20图案”把20棵树栽在宫廷的花园里。从此,这美丽的植树图案就一直流传至今。
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的'钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
趣味野猪上当
瘸腿狐狸卖西瓜赔了本,没钱买吃的,饿得肚子“咕咕”叫,走路直打晃。
老牛走过来,问:“狐狸,你这是怎么啦?”这是怎么啦?”
狐狸看了老牛一眼说:“饿的,两三天没正经吃东西啦!”
老牛一本正经地说:“要想有饭吃,就要参加劳动!”说完老牛干活去了。
“哼,劳动?劳动多累呀!”狐狸眼珠一转说,“嗯,我有个好主意。”
狐狸一瘸一拐地跑到野猪家。野猪家有个大筐,里面装着许多玉米,筐子上面盖着厚布。狐狸说:“野猪老兄,听说这筐里有许多玉米,能告诉我一共有多少吗?”
“保密!”野猪没好气地答了一声。
“哈哈,在我聪明的狐狸面前,不可能有任何秘密!”狐狸很有把握地说,“我出道题,你算算,我不但能说出你筐里有多少玉米,连你有多大岁数都能知道。”
“真的!”野猪觉得不可思议。
狐狸咳嗽了两声,说:“把你筐子里的玉米数乘以2,加上5,把所得的数再乘上50,加上你的年龄,再减去250,把得数告诉我。”
野猪趴在地上算了半天,最后说:“得1506。”
狐狸立刻说:“你筐里有15个玉米,你今年6岁。”
野猪一摸前脑想,对,筐里的玉米数是15个。野猪一摸后脑勺想,今年自己真是6岁。
“神啦!”野猪从心里佩服狐狸。他问狐狸:“你怎么知道的?”
“算的呀!你算得结果是1506。最左边的两位数15,就是玉米数;最右边的一位数6,就是你的年龄。”
“你太伟大啦!”野猪抱着狐狸亲了一下。
“伟大不伟大并不重要,重要的是给我弄顿饭吃,要有酒有肉啊!”狐狸显得十分得意。
不一会儿,野猪给狐狸端上来红烧兔子肉、清蒸鸡、煮老玉米,外加两瓶好酒。狐狸猛吃猛喝,临走还拿走4个玉米棒。
野猪到处宣传,说瘸腿狐狸神机妙算。小猴灵灵告诉野猪说,你上了狐狸的当啦!野猪不信。
小猴说:“你看算式(2×15+5)×50+6-250=15×100+250+6-250=1500+6=1506。玉米数15是你自己写上去的,乘以100后变成了千位和百位上的数,而年龄6也是你自己写上去的,它变成了个位数。这样一做,把两个数分离开了,一眼就可清楚。”
“好个瘸腿狐狸!”野猪快速冲了出去,追上瘸腿狐狸,夺过玉米,用每根玉米棒在狐狸头上都狠敲了一下。这下可好,瘸腿狐狸头上添了4个大包!
小松鼠要过冬了
冬天到了,小松鼠要准备过冬的粮食了。
有一天小松鼠背着一个大袋子,来到森林里,对松树爷爷说:请吧你的松果送给我,好吗?松树爷爷很大方,说:你想要多少摘多少。小松鼠很高兴,它一边摘一边唱歌,不一会袋子装满了。松树爷爷问:你摘了多少个?小松鼠说:哎呀,我忘了!松树爷爷笑着说“我长了16个松果,现在还有9个,你能算出摘了多少个,就让你背走。”小松树急了,不会算,怎么办呢?要是松树爷爷不让它背走,那冬天吃什么呢?我来帮它好了。
数学课上,老师讲过:知道总数,求部分数,就是从总数里去掉知道的一个部分数,就得另一部分数,用减法计算。我很快就算出来了,小松鼠摘了16-9=7(个)。
二年级小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。
小熊在回家的路上,边走边想:我5斤鱼按4元1斤应卖20元,可怎么现在只卖了8元……小熊怎么也理不出头绪来。
你知道这是怎么一回事吗?
狐狸卖蛋
西瓜卖不成了。瘸腿狐狸改行卖鸡蛋了。瘸腿狐狸守着好多箱鸡蛋,大声吆喝:“买鸡蛋呀!新鲜鸡蛋!多买便宜啦!”突然,传来低低的哭泣声。瘸腿狐狸循声望去,见到一只大公鸡扶着一只哭泣的母鸡朝这边走来。
狐狸赶紧打招呼:“二位买点新鲜鸡蛋吧!”
母鸡听说“新鲜鸡蛋”几个字,突然放声大哭。母鸡这么一哭,把瘸腿狐狸弄糊涂了。
狐狸满脸不高兴。他说:“今天我第一天卖鸡蛋,你就在我摊前又哭又闹,真晦气!”
大公鸡赶紧解释说:“我妻子前几天产了一窝蛋,不留神,被小偷偷走了,她非常伤心。”
听说“偷”字,狐狸一怔。他急忙解释说:“人家常说狐狸偷鸡,可没人说狐狸偷蛋的,这蛋是我买来的,可不是偷你们的!”
你买几个回去孵,保证你子孙满堂。”
听了狐狸这么一说,母鸡立即破涕为笑,当即买了10个鸡蛋欢天喜地的回窝孵蛋。
母鸡刚走,狐狸“噗哧”一声笑了。他奸笑着说:“我这些鸡蛋都是从母鸡场买来的,这母鸡场一只公鸡都没有,这鸡蛋根本就孵不出小鸡!”
母鸡回去孵蛋,一连孵了许多天,鸡蛋连一点动静也没有。又过几天,鸡蛋开始出臭味了,母鸡才知道上了狐狸的当。公鸡和母鸡一起找狐狸算帐!
狐狸死不承认,可是公鸡和母鸡就是不答应。狐狸眉头一皱,计上心来。狐狸说:“这样吧!我愿意把这1000个鸡蛋都给你,作为赔偿。只是有个条件。”
公鸡问:“什么条件?”
狐狸说:“这1000个鸡蛋,你们要分5次拿走。每次拿走的鸡蛋数都是一个由8组成的数。8多吉利,8就是发嘛!发财呀!”
公鸡和母鸡,你看看我,我看看你,谁也不会算。突然,“叭嗒”一响,从树上扔下一个小纸团,一只猴子在树上一闪就没了。公鸡拾起纸团一看,立即高叫一声,对狐狸说:“你先给我8个鸡蛋。”狐狸照办;“你再给我88个鸡蛋。”狐狸照办;“你再给我888个鸡蛋,几次啦?”
狐狸说:“3次啦!”
母鸡过来说:“剩下两次,该我啦!你给我8个鸡蛋,再给我8个鸡蛋。”
狐狸眼睛都红了,他作了个加法:8+88+888+8+8=1000。狐狸大叫一声,昏倒在地上。
数学悖论的论文篇十
小学数学是数学系统教学的起始阶段,重点在巩固学生的数学基础知识以及数学思维方式,帮助学生建立起一个完整的数学知识脉络,增强学生在接触数学问题时的数学分析能力与逻辑思维能力,而数学问题教学法就是实现上述教学目标的重要教学手段,通过做好对教学问题的选择与设计,引导学生进行问题地分析与知识点地对应,实现学生对数学问题的解决以及数学思维方式的训练,是扩展学生数学思维范式与提高学生数学思维能力的重要教学方法。
小学数学;问题教学法;教学问题设计;小组合作
学习模式问题教学法是以问题为出发点,通过对问题的分析、建模、知识点运用、解决等过程实现对知识点的理解与掌握,一方面增强对知识点的适用范围加以说明,另一方面提高知识点与实际案例之间的对应与整合,进而实现对知识点逻辑的扩展与运用。因此在进行小学数学问题教学法运用时,一定要做好对问题本身的设计与控制,增强问题难度与学生学习能力之间的对应,让学生能够分析、思维、解决问题,才能真正实现问题教学法的教学目的。
小学数学问题教学法的实施应该建立在对学生基本学习情况以及小学数学教学内容的分析与整理的基础上,让数学问题教学法与学生的接受能力、学习能力、思维能力之间对应起来,让学生能够对数学问题进行理解与分析,才能保障实施数学问题教学法的过程中与学生之间的联动,保障数学教学活动可以顺利进行。
2)控制好数学问题教学法中数学问题的难度与数量,做好数学问题的设计与延伸
老师应该主动控制好数学问题教学过程中的问题难度与问题数量,要避免所有学生都难以解决数学问题的情况出现,也要避免因为数学问题的数量多而造成的教学重点不明确、教学意图不突出的情况,因此老师在进行问题教学法时一定要做好对数学教学问题设计工作,让学生可以充分融入到数学问题教学情境中来,提升学生对数学知识点的理解与认知能力。
1)采用多媒体进行数学问题的说明,增强学生是分析数学问题过程中的形象化
老师应该多采用多媒体教学手段来进行数学问题的说明,增强学生对数学问题逻辑关键点与思维要求的侧重点的认知,进而增强学生在解决问题的思维过程中的导向性与目标性。比如在进行相遇问题的讲解时,老师可以通过动态图片或者是视频的方式进行相关数学参数的展示,同时通过多媒体软件中的标记作用加强对路程与速度的标记,进而帮助学生寻找解决问题的逻辑关键点。
2)利用小组合作讨论学习模式开展数学问题教学,扩展学生的数学思维能力与思维广度
老师应该积极采用小组合作讨论学习模式开展数学问题教学,让学生以小组为单位开展对某一个数学问题的讨论,让学生自己进行数学思维过程,梳理解题思路并在相同思维能力的学生群体之间进行相互之间的交流与分析,进而提高学生的数学思维能力与思维效益。比如老师可以将“鸡兔同笼”的问题交给学生来进行分析讨论,让学生自己寻找解题方法与解题思路,发现与整理两个重要的数学关系式,提高学生在学习过程中的分析能力与扩展能力。
3)使用生活化的问题情境,帮助学生加深对数学问题逻辑的理解与分析
老师需要充分利用生活场景进行数学问题的情景创设,提升学生对数学知识以及数学问题的理解与认知,进而帮助学生迅速找到解决数学问题的逻辑关键与思维突破口,提高数学问题教学法的教学效率与教学质量。比如老师可以将梯形的面积计算与堤坝表面积的计算结合成一个数学问题,通过设计需要多少平米的草坪进行装饰作为数学问题的终点,加强学生对长方形面积、梯形面积、堤坝装饰面积以及四则运算的理解与掌握,进而提高学生运用数学知识解决数学问题的能力。
为了更好的提高学生的思维能力与计算能力,老师应该主动将数学问题的分析讲解过程安排给学生来进行,让学生自己来分析数学问题并通过数学公式、运算来解决数学问题,增强学生对数学解题思路的巩固,提升学生在问题教学过程中的综合数学能力,全面扩展学生的数学思维能力与思维操作能力。
小学数学教学的重点不在于让学生解决多少的数学问题,而是需要培养学生的数学思维能力,扩展学生分析问题、思考问题、解决问题的思维范式,让学生掌握数学学习的思维逻辑与思维重点,进而以思维为出发点增强对数学知识的掌握与运用能力,实现学生综合数学技能的全面提升。
[2]徐兵玲《浅析问题教学法在小学数学教学中的运用》[j]课程教育研究新教师教学2015(11).
数学悖论的论文篇十一
中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,这是我们国家社会主义建设的需要,也是我们党和国家非常重视科学技术的结果。中国科学院于1950年开始筹建数学研究所,1952年正式成立。全国各高等院校普遍设置了数学系,《数学学报》和《数学通报》复刊。1958年~1960年的大跃进时期,在极左影响下,数学基础理论研究受到很大冲击,积极的一面是明确了向世界先进水平看齐的奋斗目标,也重视理论联系实际,线性规划得到大力推广并创造了切实可行的图上作业法,运筹学由此在我国发展起来。在发展我国高科技过程中,例如1965年9月17日,我国科学工作者在世界上首次用人工方法合成结晶牛胰岛素。
我们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的`课题。
4总结
综上所述三次数学危机对数学的发展影响是巨大的。第一次数学危机中产生的欧几里德几何对树立天文学的发展起了很大的推动作用,第一次数学危机使古希腊数学基础发生了根本性的变化,使古希腊的数学基础转向几何。第二次数学危机中波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西指出无穷小量和无穷大量都是变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义;美国数理逻辑学家罗宾逊又利用无穷小量引进超实数的概念,建立了非标准分析,同样也能精确的描述微积分,解决无穷小悖论。第三次数学危机建立了实数理论,且在此基础上建立了极限的基本定理,使数学分析建立在实数理论的严格基础之上,康托尔创立了集合论。而且还产生了公理化方法论和数理逻辑等一批新颖学科。我国以至世界各国的数学发展也都依赖于三次数学危机中产生的数学的新内容。整个数学的发展是一个层层深入、层层递进的过程。
参考文献:
[1]人民教育出版社中学数学室着.现代数学概论[m].北京:人民教育出版社,.
[2]张光远.现代化知识文库:二十世纪数学史话[m].知识出版社,1984.2
[3]袁小明.数学史话[m].山东教育出版社,1985.
[4]于寅.近代数学基础[m].华中理工大学出版社,.3.
[5]王浩.数理逻辑通俗讲话[m].北京:科学出版社,1991.
数学悖论的论文篇十二
数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
2三次数学危机
第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。但这一信条后来遇到了困难。因为有些数是不可公度的。这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。这在当时产生的震动太大了,因此历史上称之为第一次数学危机。
17、18世纪关于微积分发生的激烈的争论,被称为第二次数学危机[2].在17世纪晚期,形成了微积分学。牛顿和莱布尼茨被公认为微积分的奠基者。他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了无穷小悖论[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成第二次数学危机.
19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。庞加莱甚至在1900年巴黎国际数学大会上宣称:现在我们可以说,完全的严格性已经达到了![5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论悖论打破了人们的上述希望,引起了关于数学基础的新争论。他把关于集合论的一个著名悖论用故事通俗地表述出来。
它和其它一些集合论悖论一样,对数学发展的影响是十分深刻、巨大的,甚至可以说是动摇了整个数学的基础,并导致了第三次数学危机。
数学悖论的论文篇十三
摘要:阐述教学实践与信息化的教育环境的关系,在这样的前提下,信息化已在教师教学的过程中,以及学生们学习的过程中,有了直观的体现。教学策略应该转变,使学生适应信息化环境的学习要求。
关键词:信息化环境,数学教学,函数教学,教学策略
引言
在初中阶段的学科中,数学是其中的基础学科之一,而函数教学的内容,在初中数学的教学中,又是极为重要的学习内容。并且,在初中阶段的数学教学学中,函数是每一名学生都一定要熟练掌握,学生对函数有较熟练的掌握,才能够为学生日后其他学科的学习,打下比较坚实的基础。尤其是在当今时代,信息技术已经普及开来,初中数学教师,一定要对函数的教学,予以充分的重视,并将函数教学,与当前信息化的大环境,进行更加充分的融合,只有这样,才能够让初中函数教学的整体效果,得到大幅度的提升。
1信息环境下的初中函数教学中的问题
(1)信息资源。对于学生的学习与成长而言,一个好的环境,足够造成直接的影响。而在现阶段,绝大多数初中的数学教师,在向学生讲解函数教学的内容的时候,在一定程度上,缺乏信息化的环境,以及可以进行信息化教学的资源,对教师教学的整体效果,以及教学任务的进一步开展,造成了较为直接的影响。现如今,大部分的初中学校,学习数学的地点,基本都是在教室中,学生很少在多媒体教室进行课堂学习[1]。并且,即使是在多媒体教室,可以供教师们使用的教学资源也是少之又少。在教育教学的过程中,学生可以学习到的函数知识,基本上都是通过教师讲授之后才得知的,在课后,也只是单纯的通过教材与作业巩固学生的知识。
(2)传统教学理念的影响。现阶段,大部分初中数学教育工作者,在讲解数学函数知识的时候,始终沿用以往的传统教学法。在这个过程当中,教师除了能够进行枯燥的讲解,就是通过黑板来让学生理解,类似于此的教育手法,很无法将学生们的主观能动性调动起来的,不仅如此,还会让学生对于数学函数的学习,产生严重的倦怠,以及抵触的心理。由于函数知识其自身的内容,相对来说是比较复杂的,在这个过程当中,教师如果依旧坚持传统教学法的话,势必会降低函数知识教学的效果,教师事先准备好的教案,也不能达到教师自己预期的效果[2]。
(3)教师素质参差不齐。在初中阶段的教育教学,属于我国九年义务教学的阶段中,数学教师对于信息技术的了解,更是少之又少的。其中一些学校也由于自身条件的限制,无法为学生们配置一些与之相应的教学设备,这对于教师信息化教学的开展,会产生更大的不良影响。除此之外,即使学生所处的学校经济条件相对较好,其中大部分的老教师,也会因为自己对信息化教学的掌握较低,在教学的过程中,依旧更愿意采用传统教学的方式,影响信息化教学的开展。
2信息化环境下的函数教学设计
(1)设置教学情境。如今,随着我国各个领域的高速发展,信息技术也在各行各业中逐渐崛起,教育领域也不例外。所以,面对这种现状,教师一定要对自己原有的传统教学方式进行适当的转变,采用一些与现阶段学生们学习需求较为相符,还可以提升学生学习兴趣的方法与策略。以学生们的兴趣爱好为根本依据,设置教育教学的情境,是一个行之有效的教学策略,它能够对学生进行更好的帮助,使其可以对函数知识进行灵活的应用,提高学生们学习的积极性。例如,教师在对二次函数图像相关的知识进行讲解时,可以在课前先将学生们分成几个学习小组,然后,再给每组一个二次函数的解析式,在这之后,让学生通过对计算机几何画板的利用,画出与之相应的函数图像。并让学生们对自己所画图像的性质,进行一定的观察与总结,在这之后,相邻的小组在进行交换讨论,通过这种教育教学的方式,不仅可以对学生们自我动手的能力进行锻炼,还可以帮助学生们,使其能够更快速、更准确,对函数知识进行理解,在提升函数学习的兴趣的同时,也可以为教师们减轻大量画图的负担。除此之外,教师也可以让学生自己进行选择,选择应该怎样沿x轴与y轴移动函数,促使学生对于二次函数基本的性质有一个更好地了解。在如今信息化的大环境之下,初中数学教师必须对自己的角色进行转变,充分尊重学生在课堂教学中的主体地位,让学生们自主进行学习与思考,初中数学教师,在更多的时间里,是作为一名引导者,或是合作者的角色,为学生们讲解学习过程中的重难点知识,这样一来,学生们不仅可以对函数知识进行更好地掌握,还可以有效激发学生们对于信息技术的浓厚兴趣,与此同时,还能够拉近教师与学生之间的距离。
(2)合理应用多媒体课件。在以往的教育教学过程中,教师们更多使用的都是传统的教学方式,以至于初中阶段的数学教师,在教授函数知识的过程中,不能很好地将内容传授给学生,只能依靠嘴说的授课形式,极易导致学生,在学习的过程中不知所云[3]。此外,函数知识教学的内容,本身就存在着一定的抽象性,而传统的教育教学的方式,只会在不知不觉中消磨学生们的学习兴趣。因此,在信息化大环境的影响之下,对现有的多媒体教学设备,进行较为有效的利用,以上的大部分问题都能够迎刃而解。例如,初中数学教师,在进行二次函数相关内容的讲解的时候,可以将一些需要进行教学内容,通过多媒体教学设备,制作成课件,并在课堂教学的过程中,通过幻灯片等形式,进行教学。在此过程中,首先就要是在幻灯片上,向学生们展示二次函数的定义,并为学生们进行讲解。接着对多媒体课件进行再次利用,进行二次函数图像特征的进一步演示。由于二次函数图像的表现为“升起”,在这个时候,通过对多媒体设备的合理运用,就可以让学生们看到,并感受到更加直观的现象。其次,在教师事先准备的多媒体课件上,向学生们展示二次函数的性质。在这其中,数字、字母以及其他的特殊内容,都可以通过不同颜色的字体,来进行展示。这样能够有效突出教育教学的重点,以及教学的难点,这样的教学方式是过去的传统教学方式,无法提供给学生[4-7]。
(3)实现信息化函数教学与传统函数教学的互补。在初中数学函数教学中,必须加以强调的是,信息化的教学方式,是将来数学学科教学的整体发展方向,但是,这也并不意味着,教师们应该完全抛弃掉传统的教学模式,因为,无论是哪一种教学模式,都有其的优势与弊端,因此,初中数学教师,在实际的教学过程当中,应“去其糟粕,取其精华”。可以采用将信息化的函数教学,与传统的教学方式进行有机结合的教学方式。但在实际上,这无疑是增加了对教师教育教学的硬性要求,因为,教师们不仅要对信息化下的辅助教学工具进行了解,还要一直保持一种引导者的角色,为学生们制定出更加合适的学习方法,以此来最大限度减少学生在学习时的盲目性,给予学生更加充足的进行自我思考,以及自我探索的时间与空间,积极的鼓励学生,并对学生们提出的一些疑问,在第一时间进行详细的解答,从而帮助学生们,使他们可以对函数的知识进行更好地了解。
3结语
随着现代科技的不断发展,信息技术逐渐普及,并且,已经在教育领域中得到了较为广泛的应用。虽然,在前进的道路当中,依旧有非常多的制约因素,但是,在教育教学的过程中,合理的融入信息技术,已经是一件大势所趋的事情了。初中数学教师,在进行数学函数的教学过程当中,一定要以当前的信息环境为基本的平台,将教育教学的内容和信息技术,进行有机结合,以此来让数学函数教学的整体效果,得到一定程度上的提升。
参考文献
[1]商兆杰.信息化环境下初中数学教学的策略分析[j].课程教育研究,2013(32):166.
[3]姬映斗.信息化环境下初中数学函数教学的策略研究[j].课程教育研究,2019(42):53.
[4]金英.信息化环境下数学函数教学的策略研究[j].成才之路,2017(06):38.
[5]郭信.浅谈信息化环境下初中数学教学的策略[j].华夏教师,2015(02):43.
[6]张丽华.信息化环境下初中数学教学的策略研究[j].数学学习与研究,2016(04):40.
[7]钟飞跃.信息化环境下的数学函数教学[j].语数外学习(高中数学教学),2014(01):37.
数学悖论的论文篇十四
摘要:本文主要研究了互联网教育教学资源与传统教学模式的有效融合,优化大学数学课堂教学效果,利用优质教学资源,结合网络平台做好大学数学课堂教学设计,改变传统教育教学模式,提高教学效率。
关键词:大学数学;互联网环境;教学研究;教学资源
随着科技的发展,大学数学教学已逐渐打破传统的教育模式。我国各重点大学于2013年起已开始通过慕课平台进行网络在线教学,到目前为止,这种与互联网结合的教学模式也正在成为一种“新常态”。许多院校把部分教室改成了卫星和因特网连接的多媒体演播室,将网络延伸到了校园的各个角落。对于大学数学课程,如何有效地结合当前的网络资源及大学数学课程自身的特点进行合理的教学设计,从而改变以教师讲授为主到辅导为主的角色转变,提高学生自主学习能力和创新能力的是大学数学教育教学研究的一个重要课题。
一、当前大学数学教学的现状
在互联网迅速发展的今天,大学数学课程教学并没有将教师的主体地位转变过来。由于数学本身的逻辑性和抽象性,致使教授者认为只要教师教学生才能学得懂得思想植入脑中。传统的教学模式并没有多少改变,在整个的教学过程中,缺少课堂设计,缺少与其他专业领域的贯通、缺少新度。在教学中,对概念理论讲得深,致使学生听不懂,缺少了场景的代入,先理论后应用的方式,忽略了学生思考和问题式能力的培养,缺少了搭梯子的过程,也缺少了学生再学习能力的培养。目前,大多数学校的教师利用互联网教学的技术能力还没有达到教学要求。由于高校年龄偏大的教师已经形成了自己固有的教学经验和方法,对新型的互联网技术接受慢,不善于使用和搜索迭代更新的网络教学资源。现有的考核方式仍然延续传统的考核方式,并未真正细化考核方式,主动性和积极性缺乏,缺少教学能力的创新。
二、互联网环境下大学数学教育教学研究的必要性
(一)在互联网环境的背景下,对大学数学教学提出了更高的要求。传统教育模式已滞后于现代教育的发展。陈旧的教学手段和保守的教学方法已严重影响了学生的个性化成长和发展,学生学习的积极性性和主动性难以激发,致使整个课堂教学效率和教学质量都很难提高,浪费了时间也浪费了教学资源。因此,要求教师必须更新教育观念,将网络资源融入到教学中,促进传统教学模式和网络教学模式的有效融合。教师要立足于教育的本质,结合当前教育教学资源,不断学习,培养学生自主学习能力和创新精神,激发学生的内在学习动力。当前,互联网教学模式已改变了很多教师对网络教学的认知。不受时间和空间限制的在线学习方式也是对传统大学数学教学方式的挑战,所以,如何有效地利用当前资源,把传统教学模式与网络资源结合起来教学,有针对性、有效性地开展网络资源模式下的不同形式的教学活动也是我们需要研究的一个重要课题。
(二)互联网环境有效促进了大学数学的金课建设工作2018年11月,十一届中国大学教学论坛,吴岩司长作“建设中国金课”主题报告,阐述了什么是“水课”,什么是“金课”。如何“去水增金”,要求教育工作者要根据课程特点认真研究和思索。在互联网信息化如此飞速发展的时代,对金课建设工作提供了更多的思路和方向。大学数学可以利用互联网教学资源进行课程资源建设,充分利用好国家精品在线开放课程、国家精品视频公开课、国家精品资源共享课,实现教与学方法的创新。混合式课程资源建设,是信息化时代学校进行各项教育建设的突破点。大学数学课程作为基础学科,为后续课程起着至关重要的学科,探索其有效的教学模式是必要也是重要的。
(三)互联网环境下有效促进了教学方法的创新将互联网引入到大学数学教学中,是因材施教的一种方式。信息化时代,网络资源如此发达,教师要为学生打开一扇窗,让学生从不同的角度和方式去学习。由于在校学生数学基础和学习习惯各不相同,采用相同的方式方法教学,会导致尖子学生学习欲望没有激发起来,基础薄弱的同学又感到很吃力,不利于人才的培养,所以可以利用网络上丰富的教学资源,利用对外免费开放的重点院校的优质教学资源,丰富教学内容,丰富网络课程,根据学生个性化方式教学,激发学生学习的内在动力。
三、互联网环境下大学数学教育教学研究的措施
(一)构建适合本校学生教育教学的网络平台时代的发展,教师的教学也要与时俱进。由传统的一根粉笔就能完成整堂课教学的时代已经落伍了,所以教师必须更新观念,将现在教育教学手段应用到教学中。以长春光华学院为例,目前我们学校大部分课程都有自己的网络教学平台。数学课程是以学习通作为辅助教学平台的,在这个平台上可以将教学大纲、教案、课件、微课视频、作业、试题等资料上传到这个平台,学生们学习起来都很方便。教师可以通过这个平台进行作业、试卷的批改,同学们的学习情况通过这个平台都有所体现。去除了保守和机械的教学策略和教学方法,将信息化教学融入到课堂教学中,实现了传统教学模式与网络化教学模式之间的紧密结合。
(二)合理地利用优质教学资源教师应该不断地学习,转变传统教学观念,根据学生的特点合理利用互联网教学资源,将重点院校精品课程的教学资源引入到教学中,可以将名校网络视频教学、名师微课、教学案例、数学实验等优质教学资源根据需求进行材料整合,引入到教学中,为学生的学习开阔视野,培养学生查资料独立学习的能力。教师也可以将网络课程中独立的知识点提炼出来做成相应的微视频或设置一些问题,为教学做补充。充分体现学生本位的教学本质,实现教师“教”是为了学生更好的“学”的目标转变。
(三)结合网络教学平台做好课堂教学设计大学数学是逻辑性、抽象性比较强的学科,怎样上好这门课程,是需要教师认真思考的问题。要想上好这门课程即要有课程的整体设计,又要根据每堂课的教学内容做精确的教学设计。教师要依据教学大纲要求明确教学目标,同时对教学内容和学情进行分析,给出数学课堂教学的宏观设计。整个教学设计过程可以分为三个教学阶段:课前、课中、课后。课前为预习阶段,教师提前将教学课件、教学视频、在线测试上传到构建的网络平台,供学生们提前学习;课中为新课讲解阶段,教师将重点、难点等教学任务传授给学生,并进行问题讨论、评价;课后:回顾学习内容,进行学习反思、讨论交流。同时,教师每次课一定要进行教学反思,将教学中的问题记录下来,并对教学中的不足之处及时调整。教师还要上好每一堂课,每一堂课都要有微观的教学设计,根据本次课的教学内容,要给学生提供学生更容易接受的教学资源及视频,以三本学校学生为例,学生入学时数学基础比较薄弱,教师在选择视频资源时一定要让学生能容易接受,理论强的课程对于学习能力强并感兴趣的学生可以推荐学习。在课堂教学中,教师要根据本次课的教学内容提出相应的问题,最好与生活实际相关的例子,让同学们觉得数学就在身边,也可引入一些视频,让同学们觉得数学课堂不是枯燥的,从实际生活上升到理论的学习更能让学生们理解和接受,同时也达到创新能力培养的过程。在教学中还可以将好的数学实验演示视频给学生们观赏,让学生们感受到数学的魅力。课后也要留好学生讨论的问题,让学生能在课下也有再学习的过程。
(四)结合网络学习,做好评价体系做好与网络资源结合的教学模式,合理科学的评价体系也是至关重要的。要将学生的在线网络学习数据做为平时成绩的一部分,调动学生主动学习、自主学习的积极性,同时培养学生的良好学习习惯。
四、互联网环境下大学数学教育教学研究的意义
互联网模式下的大学数学教育教学改变了传统教育模式,教师可以有效地利用网络优质教育资源,丰富课堂教学内容,活跃课堂氛围,改进教学内容和教学设计模式,以设计者的身份与学生平等对话,共同发展。同时拓宽了学生的视野,激发了学生学习的积极性和主动性,体现了以学生为中心的教育理念和教育本质。互联网模式下的大学数学教育教学研究优化了大学数学课堂教学效果,提高了大学数学教学效率。互联网模式下的教学推动了课程改革及素质教育的车轮,创造性地开辟了教学手段和教学策略之路,宏观角度辅助教师的教学及学校的发展,为学生营造了自由开放的教学氛围和学习氛围,鼓励了学生多边学习,实现自身的价值。
参考文献:
[1]袭杨,于辉,张丽,宋千红,田宏.基于mooc构建大学数学混合式教学模式的研究[j].黑龙江科技信息,2016(33):140.
[3]杜秋霞.浅谈混合式教学在高等数学教学改革中的应用[j].发明与创新(职业教育),2020(07):68.
数学
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
数学悖论的论文篇十五
数学悖论是人们在探索数学领域中常常遇到的一种现象。它们是指在逻辑上似乎推导正确,但结果却出人意料的错误。数学悖论对于我们理解数学的逻辑和思维方式有着重要的影响。在我个人的学习过程中,我对数学悖论进行了深入的思考和研究,下面将分享我的心得体会。
首先,数学悖论告诉我们相信直觉不总是正确的。数学是一门严谨的学科,它要求我们通过推导和证明来建立和验证定理。然而,有时我们的直觉会误导我们,使我们对数学问题做出错误的判断。例如,著名的博弈论悖论中的囚徒困境问题,以及康托尔的对角线证明,都展示了直觉与数学逻辑之间的矛盾。通过研究和理解数学悖论,我们明白了数学需要严格的思维和逻辑推理,不能仅仅依赖于直觉去判断。
其次,数学悖论提醒我们要警惕隐藏的矛盾。在数学领域中,我们常常面对复杂的问题,需要通过多个步骤来推导出结果。然而,有时候这些步骤中可能存在矛盾或错误,导致最终结论与我们的期望不符。数学悖论就是这样一种隐藏的矛盾。它们通过逻辑推理的方式呈现出来,使我们意识到我们在推导过程中容易忽略或轻视的矛盾点。只有当我们能够找出这些隐藏的矛盾,并加以纠正,才能够得到正确的结果。
第三,数学悖论强调了数学的非完备性。在哥德尔的不完全性定理中,他证明了一个重要的结论,即任何一个包含自然数运算的公理系统都无法同时具备完备性和一致性。这意味着在数学系统中,我们无法通过有限的公理和规则来解释和证明所有的数学命题。这一事实揭示了数学的无穷性和复杂性,提醒我们在数学理论中要保持谦逊和开放的心态。数学悖论引发了我们对数学本质的思考,使我们对数学的认识更加深刻和全面。
第四,数学悖论鼓励我们从错误中学习和创新。数学悖论的存在是因为我们在数学推导中所依赖的逻辑系统有其自身的局限性。这种局限性可以促使我们去寻找新的方法和思维途径来解决问题,从而推动数学的发展和进步。康托尔的集合论悖论就是一个很好的例子。通过对集合论悖论的研究,数学家们不仅修补了集合论的基础,还提出了新的数学概念和结构,推动了数学的发展。
最后,数学悖论启示我们要保持怀疑的态度。在数学领域中,我们常常被传统的理论和证明所束缚,很少去质疑它们的正确性。然而,数学悖论告诉我们要勇于挑战和怀疑已有的结论和推导过程。只有通过不断地质疑和探索,我们才能够发现隐藏的错误和矛盾,进而对数学领域做出更深入的理解和贡献。
综上所述,数学悖论是一个令人兴奋和富有挑战性的研究领域。通过对数学悖论的思考和研究,我们能够深入理解数学的逻辑和思维方式,增强我们的数学思辨能力,同时也为数学的发展提供了新的思路和方法。因此,我相信通过对数学悖论的研究与学习,我们能够在数学领域中取得更大的进步。
数学悖论的论文篇十六
1、仙鹤怎样解答问题
有一只失群的孤雁,在天空飞着。远处飞来一群大雁,孤雁迎上去说:“朋友们好。你们一共有多少只“呀?”前面的一只老雁答道:“你看,要是再有我们这样多的一样,再加上一群的一半,再加上一群的四分之一,再加上你,那么,就刚好是一百只。”
孤雁一边继续向前飞行,一边思考着,它究竟遇见了多少同伴呢?想啊,想啊,怎么也解答不了这个问题。这时候,它看见一只仙鹤歇在池塘边,它高兴极了。仙鹤在鸟类中享有“数学家”的称号,一定能帮助解决这个问题。大雁飞到仙鹤跟前,讲了刚才经历的事情。
仙鹤听完后,慢慢地向前走了几步,然后回过头来对大雁说:“试试看。只要细心,会搞清楚的。”
仙鹤弯下脖子,用嘴在地上画了一条线,在旁边又画了一条同样长的线,然后画长度为一半的一条线,再画四分之一长的一条线,最后点了一点如图:“现在你来看,明白了吗?”仙鹤抬起头问道。“还是不明白。”大雁看了图,沮丧地回答。
仙鹤说:“好,我来讲给你听。一条线,又一条线,表示一群大雁,再加一群;一半的那条线表示一群大雁的一半,四分之一条线表示四分之一群大雁,最后的一小点,就是你。明白吗?”
“明白啦,这么多就是一百只。”大雁高兴地说道。“要是没有你,那是多少只?”
“九十九只。”
仙鹤用脚把一点抹掉,说:“现在,让我们来算一算,四分之一群加二分之一群的和,是四分之几群?”大雁看着地上的`图,答道:“是四分之三群。”“好”。仙鹤夸奖大雁,“那么,整群是多少个四分之一群?”“当然是四个。”大雁回答。
“对。可是领头的大雁说的是一群加一群,再加半群,再加四分之一群,总数是九十九。所以,要是全部化成四分之一,那总共有多少个四分之一?”大雁想了想,回答道:“一群是四个四分之一群;再加一群,又是四个四分之一群;再加半群,是两个四分之一群;再加上一个四分之一群,总共是十一个四分之一群。”
“对啦。”仙鹤说,“现在请你说说,这个题的答案是多少?”
“我知道了,”大雁说,“十一个四分之一群等于九十九只大雁,一个四分之一群有九只大雁。”
“那么,一群大雁..”
“一群包含四个四分之一群,我遇见了三十六只大雁。”大雁高兴地大声说。
“问题的答案正是这样。”仙鹤郑重地说。
数学悖论的论文篇十七
摘要:
数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。
提到数学,我有一种感觉,数学是自然中最基础的学科,它是所有科学之父,没有数学,就不可能有其他科学的产生。就人类发展史而言,数学在其中起的作用是巨大的,难怪有人说数学是人类科学中最美的科学。但在数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。
直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。
第三次数学危机发生在19,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。
罗素在该悖论中所定义的集合r,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于r是集合,若r含有自身作为元素,就有rr,那么从集合的角度就有rr。一个集合真包含它自己,这样的集合显然是不存在的。因为既要r有异于r的元素,又要r与r是相同的,这显然是不可能的。因此,任何集合都必须遵循rr的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的'一切rr的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,r也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓zf公理系统),这场数学危机到此缓和下来。
现在,我们通过离散数学的学习,知道集合论主要分为cantor集合论和axiomatic集合论,集合是先定义了全集i,空集,在经过一系列一元和二元运算而得来得。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。
我们应该怎样看待这三次数学危机呢?我认为数学危机给数学发展带来了新的动力。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。然而,矛盾和人们意想不到的事仍然不断出现,而且今后仍然会这样。就拿悖论的出现来说,从某种意义上并不是什么坏事,它预示着更新的创造和光明,推进了科学的进程,我们应用辨证的观点去看待他。
通过数学的发展史和这三次数学危机,我越来越感到m克莱因教授著的一本书,是关于确定性的丧失,其中书中说道:数学需要绝对的确定性来证实自身吗?特别是,我们有必要确保某一理论是相容的或确保其在使用之前是通过非经验论时期绝对可靠的直觉得到的吗?在其他科学中,我们并没要求这样做。在物理学中所有的定理都是假设的,一个定理,只要能够作出有用的预告我们就采用它。而一旦它不再适用,我们就修改或丢弃它。过去,我们常这样对待数学定理,那时矛盾的发现将导致数学原则的变更,尽管这些数学原则在矛盾发现前还是为人们所接受的。因此我们看问题的观念应该改变一下,数学是不确定性的。
不管数学以后向何处发展,但就数学仍然是可用的最好知识的典范。数学的成就是人类思想的成就,作为人类可以达到何种成就的证据,它给予人类勇气和信心,去解决那些一度看上去不可测知的宇宙秘密,去制服那些人类易于感染的致命疾病,去质疑去改善那些人们生活中的政治体系,因此我们说数学在这个大自然中是无处不在的,数学在人类发展中的作用也是不可估量的。
参考文献:
1.梁宗巨世界数学史简编辽宁人们出版社
2.朱学智等数学的历史思想和方法哈尔滨出版社
3.袁小明等数学思想发展简史高等教育出版社
4.确定性的丧失m克莱因湖南科技出版社
论数学史上的三次危机作文800字小学生作文(中国大学网)
数学悖论的论文篇十八
瘸腿狐狸偷吃了小鸡崽,要打他6下。小熊朝手上吐了唾沫说:“我劲大,由我来打吧!”
小熊抡圆了胳臂,朝狐狸猛揍了5拳,狐狸“扑通”一声倒在了地上,小熊最后一拳将他打到了树上。狐狸过了半天,才缓过气来。
这时,一只小松鼠左手拿纸,右手拿笔,在树枝上边走边说:“哎呀,这数学题可难死了,怎么做呀!”
小松鼠猛一抬头,吓了一大跳:“唉呀,树上怎么会有只死狐狸?”
瘸腿狐狸半睁着眼睛,有气无力地说:“你才死了哪!”
“是活的?”小松鼠又吓了一跳。
瘸腿狐狸小声问:“你遇到难题了?我能帮忙吗?”
小松鼠说:“你伤得这样重,还帮我解题,真是好狐狸!题目是这样的:
有3棵古树,它们的年龄分别由1、2、3、4、5、6、7、8、9中的不同的3个数字组成,其中一棵树的年龄正好是其他两棵树年龄和的一半,这3棵古树各多少岁?”
瘸腿狐狸说:“这题很容易。不过,我如果帮你做出来,你能帮我一把吗?”
“没问题!救死扶伤嘛!”小松鼠满口答应。
狐狸说:“你用这9个数字中最小的3个数1、2、3组成123,用最大的3个数字组成789,而123+789=912,恰好是456的两倍。也就是说456正好是123与789和的一半。”
小松鼠高兴地说:“这3棵古树年龄分别是123岁、456岁、789岁。年龄可真大呀!要好好保护这些古树。”
瘸腿狐狸说:“我已经帮你把题算出来了,你把我拉起来吧!”
小松鼠“吱吱”叫了几声,不知从什么地方钻出好几只小松鼠。大家喊着号子,连拖带拽把瘸腿狐狸拉了起来。帮忙的小松鼠一转眼又都不见了。
瘸腿狐狸对小松鼠说:“我想吃点东西,我可不吃素食。”
小松鼠问:“你想吃什么?”
瘸腿狐狸说:“鸡、鼠共有49,100条腿往前走,请你想一想,来多少只鸡来多少只鼠?鸡我是不敢吃了,只好吃鼠啦。”
小松鼠问:“要吃几只鼠?”
小松鼠惊讶地问:“这1只鼠是不是我呀?”
“就是你小松鼠!”瘸腿狐狸张嘴扑上前去。
数学悖论的论文篇十九
悖论问题是困扰人类心智千年的难题。有的哲学家甚至认为整个一部哲学史可以看作是与各种悖论做斗争的历史。在为数众多的悖论当中最著名当数说谎者悖论,这不仅因为它具有十分悠久的历史,更是因为该悖论以最为简单的形式告诉人们,通常对“真”这一我们日常生活中普遍使用的概念的直觉理解是包含矛盾的。考虑语句(l):l是假的。那么l这句话是真的还是假的呢?如果l为真,那么它说的是自己为假,因而它为假;如果l为假,那么说它自身为假是假的,因此它又为真。这显然是矛盾的,但我们又找不出问题究竟出在哪里。语句l被称为“说谎者语句”,“说谎者悖论”这一名称由此而来。
对说谎者悖论的探讨已经持续了两千多年,但遗憾的是至今仍没有就该悖论的解决意见达成一致。值得注意的是进入20世纪中后期以来,一类型新的悖论走进了研究者们的视线,并逐渐得到了逻辑学家与哲学家们的重视,这就是知道者悖论。在持续多年的研究过程中,该悖论多层面的理论意义与学术价值逐步得以彰显。与说谎者悖论类似,知道者悖论当中也涉及类似的语句,即所谓知道者语句(k):认知主体i知道k为假,该悖论由此而得名。然而,许多学者对“知道者悖论”(knowerparadox)这一概念所指称的对象却并不清楚,甚至与其简化形式或者其前身―――绞刑悖论―――相混淆。另外,在道义逻辑中也有所谓知道者悖论。因此,澄清“知道者悖论”这一概念就显得非常必要。
一、知道者悖论的前身
知道者悖论的起源可以追溯到20世纪40年代在欧洲民间流传的“突然演习问题”。在持续多年的研究中,“突然演习问题”逐渐演变为一个著名的哲学问题―――“绞刑悖论”。也就是说,知道者悖论来源于其前身―――绞刑悖论,但与该前身却并不完全相同。
绞刑悖论描述的是如下场景:法官向一名罪犯宣判,他被判处绞刑,而且该罪犯将在从宣判之日的第二天起的10天中的某一天被执行绞刑,但这次绞刑是一次令罪犯出乎意料的绞刑,意思是说,在执行绞刑的前一天晚上,罪犯不会知道绞刑将在第二天执行。这看似一则很正常的宣判,然而当这名聪明的罪犯听到该宣判时,心中一阵窃喜:按照该宣判,自己不会被执行绞刑。为什么呢?该罪犯的如意算盘是这样的:根据法官的宣判,绞刑不可能在这10天中的最后一天执行,这是因为如果在最后一天执行,那么由于前9天都没有执行绞刑,所以在倒数第二天(也就是第9天)晚上,我就会知道第二天(也就是最后一天)将执行绞刑,但这不满足法官所宣判的这次绞刑的“意外性”,因而绞刑不可能在最后一天执行。绞刑也不可能在倒数第二天执行,因为如果在倒数第二天执行,那么由于前8天都没有执行绞刑,而前面的推理已经排除了绞刑在最后一天执行的可能性,所以在倒数第三天(也就是第8天)晚上,我就会知道第二天(也就是倒数第二天)将执行绞刑,这再一次不满足法官所宣判的绞刑的“意外性”,因而绞刑不可能在倒数第二天执行。按照同样的思路进行推理,可以依次排除绞刑在倒数第三天、倒数第四天……执行。于是该罪犯断定法官的宣判是不可实现的。然而,法官就在接下来的第四天突然来到该罪犯面前对他执行了绞刑,这大大出乎该罪犯的意料,从而不折不扣地实现了之前的宣判。可悲的是,该罪犯到死都没有明白为什么自己无懈可击的推理当中却包含着矛盾。
前面,我们以非形式的方式叙述了绞刑悖论。尽管该悖论还有诸多实质相同的其他版本,比如克里普克(s.akripke)[2]宁愿称之为“意外考试悖论”,但我们还是遵循蒯因(w.v.quine)的称谓将之称为“绞刑悖论”。经过奥康纳(d.o’con-nor)、斯克利文(m.scriven)、蒯因、沙乌(r.shaw)[、蒙塔古(r.montague)和卡普兰(d.kap-lan)等哲学家与逻辑学家的深入研究与整理,前述非形式叙述的绞刑悖论已经发展成一个关于“知识”概念的严格的自指悖论。
二、知道者悖论的严格刻画
由蒙塔古和卡普兰在其1960年发表的文章中给出的,他们认为该悖论的出现必将会引出哲学认识论上的某些新探讨,因此他们在给出这种刻画之后,对该问题进行了进一步深入的思考。蒙塔古和卡普兰发现,可以考虑一个从该悖论引申出来的更简单的结果,这样就会使问题变得更加尖锐。如前所述从前述非形式叙述不难看出,绞刑悖论中绞刑不可能执行的`推导与天数无关。因此,在这里为简洁明了起见,只考虑有两个可选择日子的情形,这不会影响问题的实质。
三、简化的知道者悖论
在多年的研究当中,知道者悖论有时候也以它的简化形式出现。从以上知道者悖论的严格形式刻画的过程中不难看出,哥德尔自指定理起到了至关重要的作用,因为该定理使得法官的宣判这一自指语句经符号表达之后成为形式算术系统的一条定理。稍加分析可知,由哥德尔自指定理所得,与前述(z)类似的a**堞kzp(「a**?)同样是皮亚诺算术系统或者鲁滨逊算术系统的定理。在以上解释之下,语句a**的意思是:认知主体p不知道a**。相比之下,语句a**在结构上比前面的语句a*更接近于“说谎者语句”l:l堞t(「l?)。如果把知道者语句构造为a**,则稍加修改认知规则以及推导建构所依赖的形式系统,就可以构造出知道者悖论的另一个简化版本(相应地,前面提到的可以称之为知道者悖论的经典版本)。
四、道义逻辑中的知道者悖论
值得注意的是,在相关文献中还有一类所谓的“知道者悖论”―――“道义逻辑中的知道者悖论”(theparadoxknowerindeonticlogic)。所谓“道义逻辑”(denoticlogic)也称规范逻辑,是研究“应该”“允许”“禁止”等概念的广义模态逻辑的分支之一。
五、结论
知道者悖论是关于“知道”的严格意义的逻辑悖论。所谓严格意义的逻辑悖论“指谓这样一种理论事实或状况,在某些公认正确的背景知识之下,可以合乎逻辑地建立两个矛盾语句相互推出的矛盾等价式”。由于该悖论以最为简单的形式告诉人们,通常对“知道”这一概念的理解是包含矛盾的,所以知道者悖论得到了来自任何关注知识概念的学科的广泛重视。尤其是进入21世纪以来,知道者悖论研究取得了迅速发展。由以上分析不难看出,因而与知道者悖论及其简化形式与前身有着十分密切的联系。但很显然,两者之间也存在着本质上的不同:道义逻辑中的知道者悖论还本质地涉及到了基本道义规则,因而是一个比知道者悖论更为复杂的问题。综上所述,在不同的情境当中,由于背景知识的不同,“知道者悖论”(knowerparadox)这一概念与4个悖论相关。因此,对知道者悖论进行研究,首先应该明确这4个悖论之间的联系与区别。