优质人教版小学数学六年级教学设计(汇总14篇)
简洁明了的总结能够给读者带来更好的阅读体验和理解效果。总结是对经验和教训的总结和归纳,要注重深度和广度。写作是运用语言文字进行表达和交流的一种创作活动,可以用于传递信息、表达思想和感情。如何提高写作能力是许多人关注的问题,可以通过多读书、多写作、多思考来不断提升。下面是小编为大家整理的一些写作技巧和方法,供大家参考和学习。
人教版小学数学六年级教学设计篇一
思考并回答:
1、在小学里我们学过哪些数?
2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?
3、小数又可以怎样分类?
4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?
6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、
三亿零五十万六千、零点零四零六
练习:
1、在数位顺序表里,小数点左边第一位是()位,计数单位是();第五位是()位,计数单位是()。小数点右边第一位是()位,计数单位是();第三位是()位,计数单位是()位。
2、最高位是百万位的整数是()位数;最后一位是百分位的小数是()位小数。
3、5830070420读作()。“8”在()位上,表示();“7”在()位上,表示()。
4、有一个四位数,加上“1”就变成五位数,这个四位数是();有一个四位数,减去“1”就变成三位数,这个四位数()。
5、地球有多大?请读出下面数据。
地球的半径6378.14千米赤道长40073.92千米
地球表面积510067860平方千米地球海洋面积361745300平方千米
思考并回答:
1、3.150=3.15、7.8=7.8000,这是根据什么?
2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?
3、1÷3、70.7÷33,商的小数部分的数字有什么规律?
5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?.....
0.720.33.150
6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?
8、三个连续的自然数的和是45,这三个数分别是()、()、()。
练习:
1、9035000以万为单位写作(),省略万后面的尾数写作()。408000000以亿为单位写作(),省略亿后面的尾数写作()。
2、7.85353……写作(),0.346346……写作()。
3、0.04×1000就是将0.04的小数点向()移动()位。
4、25.4÷100就是把25.4的小数点向()移动()位。3.002的小数点左移两位,是原数的(),小数点右移三位,是原数的()倍。
5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动一位,商是()。
数的整除
思考并回答:
1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?
32÷4、45÷7、12÷0.3、720÷90、2÷4
4、什么叫质因数?什么叫分解质因数?
5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?
6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18
7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?
练习:
1、在16、4、8、32、36、80、84、160这些数中,80的约数有(),16的倍数有()。
2、20的约数有(),32的约数有(),20和32的公约数有(),其中最大的公约数是()。
3、按照下面要求写出互质数:两个都是质数();两个都是合数();一个是质数,一个是合数()。
能被3整除的数
能被5整除的数能被2整除的数
5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15
6、一个数用2、3、5除正好都是整数,这个数最小是();有一个数用它去除30、45、60正好都是整数,这个数最大是()。
7、判断题:
(1)没有约数2的自然数一定是奇数。
(2)一个自然数的约数总比它的倍数小。
(3)两个质数相乘,积一定是合数。
(4)一个奇数加上7,一定能被2整除。
(5)2、3、5都是质因数。
(6)两个合数不能成为互质数。
(7)17的约数都是质数。
(8)因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。
分数和百分数
思考并回答:
1、先填空,在回答:4/5=1÷×、4/5=÷;7/9=1÷×、7/9=÷
什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?
2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?
3、什么是分数的基本性质?分数的基本性质与
商不变的性质、比的基本性质有什么联系?
4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?
5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?
24/40=()/20=48/()=()/5=()/15=36/()
6、举例说明分数、小数、百分数的互化方法。
8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。
练习:
1、把3米长的钢管平均分成5段,每段钢管是全长的()/(),每段的长度是()/()米,3段占全长的()﹪。
2、生产500吨化肥,计划25天完成,平均每天完成计划的()﹪,每天生产()吨。
3、3里面有()个1/3,2/3里面有()1/12,1里面有11个2/(),100个1/7是()。
4、7/15的分数单位是(),添上()个这样的分数单位等于1,减去()个这样的分数单位等于1/5。
5、5/8的分母加上24,要使分数的大小不变,分子要();6/15的分母减去5,要使分数的大小不变,分子要()。
6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(),化成小数是(),化百分数是()。
量和计量
思考并回答:
1、在小学里已经学过哪些量?它们各有哪些计量单位?
各种量基本单位各单位之间的关系
长度1米1千米=()米
1米=()分米
1分米=()厘米
1厘米=()毫米
面积1平方米1平方千米=()公顷
1平方千米=()平方米
1公顷=()平方米
1平方米=()平方分米
1平方分米=()平方厘米
体积1立方米
1升1立方米=()立方分米
1立方分米=()立方厘米
1升=()毫升
质量1千克1吨=()千克
1千克=()克
时间1秒1日=()时
1时=()分
1分=()秒
2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?
练习:
1、填空:
(1)5米=()分米3.2分米=()厘米5平方米=()平方分米
3.2平方分米=()平方厘米52700平方米=()公顷
(2)4.8升=()毫升1.6千克=()克7.3米=()分米=()厘米
(3)4.2公顷=()平方米0.8平方千米=()公顷
1.05立方米=()立方分米1.45吨=()千克
(4)210秒=()分1/6日=()时1时20分=()分
2、选择:
(1)下列年份中,不是闰年的年份是()a1980年bc21
(2)25厘米×()=1米a1/2b4c40
(3)面积是1平方米的正方形的边长是()a10厘米b100厘米c10000厘米
3、判断题:
(1)第一季度有91天的这一年是闰年。
(2)一水池装了0.3立方米的水,这池水的容积是300升。
人教版小学数学六年级教学设计篇二
一、导课:诗歌是中国的文学之瑰宝,从上周开始,我们就一起“轻叩诗歌的大门”,开始了“与诗同行的日子”。我们共同在诗海中徜徉,共同在诗海中拾贝,一路同行,留下了一串串快乐的音符。
二、精彩回放与诗同行
1、复习要求:快速浏览《与诗同行》几篇课文,注意每篇文章中的“泡泡语”
三、补充资料给诗加腰的作诗方法
1、习题法2、依句法3、依韵法4、推敲法5、反意法……
读诗的方法
1、联系生活读古诗,就容易读懂诗意。
2、读诗时将诗句在脑海中描绘出一幅幅图画,这样就能进入诗的境界里。
3、拿不同的诗对比读,在比较中能更好地体会诗人的感情。
四、考考你,相信自己
让学生仔细观察配套练习题《与诗同行》看看题型、内容、难易程度,做到心中有数。
(基础知识题;应用练习题;课内外阅读拓展题)
1、基础知识题(我会画我会补):认真;快速;准确。
2、方法与技能(我会写我会辨我能行):善思;灵活;正确
3、课内外拓展(我会填阅读屋):
语文阅读理解的答题有些什么技巧和方法呢?
1、平心静气审题,切忌粗心。
2、仔细研读语段,整体感知文章内容。
3、巧妙借助“原话”,确定解题空间。
4、选择适当方法,答题力求言之有理。
上下联系。联系生活。立足中心。
5、合理控制答题时间,先易后难。
知识竞赛
1.填颜色:
(1)_________日依山尽,_______河入海流。
(2)日暮_______山远,天寒_______屋贫。
(3)一年好景君须记,最是橙_______桔_______时。
2.填数字:
(1)飞流直下_______尺,疑是银河落_______天。
(2)朝辞白帝彩云间,_______里江陵_______日还。
(3)碧玉妆成_______树高,_______条垂下绿丝绦。
3.填植物:
(1)忽如一夜春风来,千树万树_______开。
(2)借问酒家何处有,牧童遥指_______村。
(3)接天莲叶无穷碧,映口_______别样红。
写出含有下面字的诗句(12分)
1、月:“举头望明月”、____________________、
2、花:“竹外桃花三两枝”、_________________
3、雨:“清明时节雨纷纷”、______________________、
按要求写诗句。
(1)描写山水的有关诗句:
(2)歌颂情谊的有关诗句:
(3)反映科学哲理的有关诗句:
(4)反映边疆将士的有关诗句:
(5)表现爱国主义的有关诗句:
学生感情诵读自己写的诗歌
五、总结:我们中华民族文化历史悠久,源远流长,在历史文化的长河中,诗歌就是那大海中的朵朵浪花,装扮我们的精神家园。让我们一起读诗,读书,读人生。可谓:诗行碧波上,人在书中游。腹有诗书气自华,发奋学习强中华。
[与诗同行(人教版六年级教学设计)]
人教版小学数学六年级教学设计篇三
一、指导思想:为了把好教学质量关,检测课程标准的落实请况,全面了解学生的数学学习历程,查找学生在学习过程中和教师教学经历中的问题,促进学生的学习和改进教师的教学。寻求更适应学生自我发展的学习模式,强化学校对教学管理、教师对教学行为的反思的重视程度。提升理念,更好的指导引领我们的复习,取得评价主、客体都满意的评价结果。
二、复习范围
1-6年级学习内容,侧重5-6年级所学内容。
三、新课程命题的特点:
1、以新的教育理念为指导,重视基本技能的考查,着眼发展能力。培养学生科学的思维方式和创新意识。
2、试题力求贴近社会生活,突出联系实际,富有时代特征,引导学生关注社会,独立思考问题,学有所用。
3、具有较强的开放性和综合性,注重学科知识的内在联系和多学科的综合联系。
4、关注学生情感、态度、价值观的协调发展,彰显人文魅力。
5、关注学生知识网络的自主构建。
四、课程内容学习的核心目标及目标达成策略:
切实发展学生的数感、符号感、空间观念、统计观念、以及应用意识和推理能力。达成核心目标,学生就可以以不变应万变,灵活解决所面对的实际问题。
数感:是人对数与运算的一般理解,这种理解可以帮助人们用灵活的方法做出数学判断和为解决复杂的问题提出有用的策略。是一种主动地、自觉地或自动化地理解数和运用数的态度与意识。数感是人的一种基本的数学素养,是建立明确的数概念和有效地进行计算等数学活动的基础,是将数学与现实问题建立联系的桥梁。
数感使人眼中看到的世界有了量化的意味,当我们遇到可能与数学有关的具体问题时,就能自然地、有意识地与数学联系起来。比如:参加辅导时我们常常要估计一下大约有多少人参加;看到体形较为特殊的人,我们很多时候在估量,这个人有多少斤或千克。大家可能还记得一道期末质量检测题:选择重量单位的题目是:老师的体重可能是65()后面有三个选项(吨、千克、克)一些学习成绩优秀的孩子这道题答错了,选择了“吨”。这说明孩子没有建立相应的数感,没有形成吨这个重量单位的概念,没有衡量、辨析、推理验证的意识和能力。
我们强化发展学生的数感可从以下几个方面入手
a、应用数字表示具体数据和数量关系。
b、能判定不同的算术运算,有计算能力,并能选择恰当的方法;
c、能依据数据进行推论,并对数据和推论的精确性和可能性进行检验。
典型例题:1、辨析:1米的50%,是50%米。
2、排列:加循环节使排列符合要求:
3.14163.14163.14163.1416
3、一个滴水的水龙头每天白白地流掉12千克水。照这样计算,第一季度就要浪费掉()千克水。
比如|:间隔问题,间隔数与物体数有什么关系,内隐着什么规律,我们可以画图,摆学具,画线段图,用图形或可用介质来抽象其中的数量关系或变化规律。这是初步的符号感的表现。再如用n表示一个自然数,那么与之相邻的两个自然数就可以用n-1和n+1来表示。还有比较典型的用字母表示公式、关系式等。
典型例题:1、利用关系式判断:8x=yy和x成()比例
x/2=yy和x成()比例
y/6=3/xy和x成()比例
2、在长方形内截取一个最大的正方形,阴影表示剩余部分
(1)阴影部分的周长是(2a)
(2)阴影部分的面积是((a-b)*b)b
a
空间观念:主要表现在能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观进行思考。
比如:认识球体,想象球中心的点就是球心,球心到球面的线段就是球半径。在实物不在眼前时,学生的头脑里依然有球立体的形象概念。再比如,在绿化栽树、载花,设计成什么样的图案,用哪些几何图形、如何组合等等。到第三学段经常要依据条件叙述画出图形,如果没有形成一定的空间观念是无法保证后续学习的。
典型例题:1、用4个同样的正方体木块,摆(一层两排)成一个长方体,表面积减少了32平方厘米,每一块的体积是()立方厘米。
2、用一张正方形的纸正好卷成一个圆柱,这个圆柱的底面周长和高一样长。()
3、把圆柱的侧面展开不能得到()
长方形、梯形、正方形、平行四边形。
4、一个正方形,以一条边为轴,旋转一周,会出现的立体图形是()
统计观念具体表现:认识到统计对决策的作用。能从统计的角度思考与数据有关的问题;能够通过收集数据、描述数据、分析数据的过程作出合理的决策;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
在现代社会里人们面临更多的机会和选择,常常在不确定的情境中,根据大量的无组织的数据作出合理的决策,这是每一个公民都应具备的基本素质,比如投资论证、采购、炒股等都离不开统计,需统计观念作保障的。
典型例题:污染指数
150
轻度污染
100
良
50
优
0
大连太原上海杭州厦门重庆昆明
应用意识主要表现在:认识到现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用;面对实际问题能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策论。
推理能力:能通过观察、实验、类比等获得数学猜想,并进一步寻求证据;能有条理地表达思考过程;在与他人交流的过程中能运用数学的语言合乎逻辑地进行讨论与质疑。
(推理能力已落实到了四个内容领域之中。应用意识和推理能力重在关注数学与生活的联系,能够进行理性的思考。)
典型例题:一条平均水深为1.5米的河,一个身高1.7米、水性不好的人下河游泳有危险吗?(用你喜欢的方法简要说明)
以上通过六个方面,说明了复习的着眼点,要使知识转化成内在的东西,形成能力,使学生得到实质的发展才是我们追求的目标。另外义务教育阶段的数学课程应突出体现基础性、普及性、和发展性,所以评价也应体现基础性、普及性、和发展性。体现国家对小学阶段学生数学素养的基本要求。因此要在基础性的基础上去追求发展性,不必过高要求。
根据建构主义理论的合理内核:学习是个体主动建构自己知识的过程,是一种结构改变的过程。不是简单的信息积累,而是新旧知识经验的冲突,经由磋商与和解引发学习者认知结构的重组或改变的过程。所以我们在上复习课时,要重视促成学生经由磋商与和解而形成知识经验的重组。经由主体作用重建形成的个性知识网络,才是学生真正获得的知识。才能达成学生真正意义的发展。
四、小学数学各模块知识网络分析:
以下提供各模块的知识网络仅供参考:(可以做学生的学案)
数的认识简易方程
数和数的运算数的整除代数初步知识
数的运算比和比例
一般复合应用题长度
典型应用题面积
应用题分数、百分数应用题量的计量体积
列方程解应用题重量
比和比例应用题时间
线
平面图形的认识与计算角
平面图形
空间与图形长方体、正方体
立体图形的认识与计算
圆柱体、圆锥体
统计表
统计与概率
统计图
数和数的运算
(一)数的认识
整数的含义:像…-3,-1,0,1,2,3,…这样的数统称整数。
正数和负数的含义:像0,1,+5,6,…这样的数叫做正数;像-3,-2,-9,…这样的数叫做负数。
占位
0是最小的自然数,0的作用表示起点
表示界线
a自然数1是最小的一位数,是自然数的基本单位
数的意义:是整数的一部分,可表示基数也可以表示序数
分数
分类:真分数--分子比分母小(小于1)
假分数--分子大于或等于分母(大于或等于1)
小数有限小数
按小数部分分无限不循环小数
无限小数纯循环小数
分类循环小数
按整数部分分纯小数混循环小数
带小数
人教版小学数学六年级教学设计篇四
一、教材分析:
这一册教材内容包括:位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。
在数与代数方面,教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。会解决简单的有关百分数的实际问题,是小学生应具备的基本数学能力。
在空间与图形方面,教材安排了位置、圆两个单元。通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;初步认识研究曲线图形的基本基本方法,促进学生空间观念的进一步发展。
在统计方面教材是安排扇形统计图。进一步体会统计在生活和解决问题中的作用,发展统计观念。
在数学解决问题方面,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。
教材安排了两个数学综合应用的实践活动,体会探索的乐趣和数学的实际应用,感受数学的愉悦,培养学生的数学应用意识和实践能力。
二、教学目标:
(一)、知识和能力方面:
1.理解分数乘除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2.理解倒数的意义,掌握求倒数的方法。
3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题
4、掌握圆的特征,会用圆规画圆;理解圆周率的意义,探索并掌握圆的周长与面积公式,能正确地计算圆的周长与面积。
(二)、过程与方法方面:
5、知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6、能在方格纸上用数对表示位置,初步体会坐标思想。
7、使学生理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。
8、认识扇形统计图,能根据需要选择合适的统计图表示数据。
(三)、情感态度价值观方面:
9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10、体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12、养成认真作业、书写整洁的良好习惯。
三、教学中需要准备的教具和学具:
在前面几册的教师教学用书中,已经介绍了许多教具和学具,其中的一些仍可继续使用,如小棒、方木块、量角器、三角板、直尺、计算器等。结合本册的教学需要,介绍几种使用效果较好的教具和学具,以供参考。
1.圆形纸板作为演示分数计算以及认识圆的教具。可以用硬纸板做成大小相同的圆若干个。拿其中的两个圆形纸板做成如五年级下册教师教学用书第14页介绍的教具,用来演示不同的分数。作为教师演示用的教具要大一些,作为学生操作用的学具可小一些。
2.圆规教学圆的认识时用。教师要准备可以在黑板上画圆的圆规。每个学生也要准备一套自己用的圆规。
3.说明圆面积计算公式用的教具可以仿照教材第68页的图用纸板制作,供教师演示用。另外在本册教材的附录中印有同样的图,学生可以剪下来贴在纸板上,作为操作用的学具。
4.方格作图纸学习位置时用。在本册教材的附录中印有几幅10×10的方格纸,可以让学生剪下来用。
5.其他教具教师还可以根据各部分教学内容的需要自己准备或设计制作一些教具和学具。如教学位置时在本地区的简易路线图上画上方格子作为教具;教学百分数时,可搜集一些含有百分数表示含量或性能的商品标签作为教具或学具等。教师还可以根据需要自己制作其他适用的教具。
四、教学措施:
1、创设愉悦的教学情境,激发学生学习的兴趣。
2、提倡学法的多样性,关注学生的个人体验。
3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。
4、加强基础知识的教学,使学生切实掌握好这些基础知识。
人教版小学数学六年级教学设计篇五
教学目标:
1、理解圆的周长的概念
2、通过实践操作体验圆周率得出的过程
3、会用圆周长计算公式解决实际问题
4、结合课堂开展爱国主义教育
教重难点:
体验圆周率的得出过程
教学准备:
ppt课件,尺子、绳子,每个同学准备直径是3厘米、5厘米、8厘米的圆一个
教学过程:
一、创设情境,导入新课
二、用心感悟,理解概念
a)要求兔八哥所跑的路线,实际上就是求这个正方形的什么?
要知道这个正方形的周长,只要量出它的什么就可以了?能说出你的依据吗?(突出:正方形的周长与它的边长有关)
b)要求鸭小弟所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。
c)你能用自己的话说说什么叫圆的周长吗?(围成圆的曲线的长叫做圆的周长)
d)指出你手上的圆的周长
三、动手操作,体验过程
2、请同学们用自己喜欢的方法测量任意两个圆的周长并完成表格
圆的直径
圆的周长
周长是直径的几倍?
3、提出猜想
你觉得圆的周长与什么有关呢?引导学生观察手上三个圆,说说你的想法。
跟直径、半径有关。那你觉得有什么关系呢?
直径越长,圆的周长就越长
5、汇报展示
观察数据,你有什么发现得出结论:圆的周长总是它直径的3倍多一些。板书:3倍多一些。
6、认识圆周率
7、引导出圆周长计算公式:圆的周长=直径圆周率用字母表示c=d
四、运用所学,解决问题
1、计算下面圆的周长
两个圆先求出示一个知道直径的圆,利用公式完成练习
2、判断题:
1)圆的直径越大,圆周率就越大
2)圆周长是它直径的3.14倍()
3)半圆的周长就是它所在圆的周长的一半()
3、解决开始跑步的问题
4、计算我们人民币1元的外周长,不知道条件怎么办?先测量然后计算
5、拓展
五、温故知新,总结课堂
人教版小学数学六年级教学设计篇六
正比例和反比例
学习目标
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。
2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。
考点分析
1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy=k(一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
典型例题
例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?
时间/时123456……
路程/千米120240360480600720……
分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。所以它们是两种相关联的量。
(3)路程和时间的比值始终不变,=120,=120,=120……这个比值就是火车的行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:=速度(一定)。
具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
例2、(判断是否成正比例)
练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?
分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。
买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:
=练习本的单价(一定)
所以练习本的数量和总价成正比例。
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
时间/分1234567……
路程/千米7142128354249……
(1)图中的点a表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?
42
35
28
21
14
7●a
0
1234567时间/分
分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。
(1)描点、连线如图。
路程/千米
42●
35●
28●
21●
14●
7●a
0
1234567时间/分
(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。
(3)根据图像,列车运行2分半钟时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?
分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。
可列表判断。
半径/cm123456……
直径/cm24681012……
周长/cm6.2812.5618.8425.1231.437.68……
面积/cm3.1412.5628.2650.2478.5113.04……
圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
例5、(反比例的意义)
每小时加工零件的个数/个2030406080……
加工的时间/时128643……
分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20×12=240,30×8=240,40×6=240……而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间=零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy=k(一定)。
例6、(判断是否成反比例)
总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?
分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:
每公顷的产量×公顷数=总产量(一定)
所以每公顷的产量和公顷数成反比例。
例7、(辨析)和一定,一个加数和另一个加数成反比例。
分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。
和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。
点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。
例8、(综合题1)
(1)长方形的面积一定,长和宽成反比例吗?为什么?
(2)长方形的周长一定,长和宽成反比例吗?为什么?
分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。
(1)因为长方形的长×宽=长方形的面积(一定),所以长和宽成反比例。
(2)长方形的周长=(长+宽)×2,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。
例9、(综合题2)
分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;
(2)每天吃的千克数一定,大米的总千克数和天数;
(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。
(1)因为每天吃的千克数×天数=大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。
(2)因为=每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。
(3)因为=天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。
人教版小学数学六年级教学设计篇七
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
人教版小学数学六年级教学设计篇八
“算出它们的普及率”。
1、使学生能应用百分数的知识计算出本班同学家庭的电话、电脑的普及率,并能进行简单的比较、分析和估计发展趋势,培养学生比较、分析等思维能力和实践能力。
2、使学生体会和感受数学与生活的联系,逐步培养学生应用数学知识的意识和能力。
3、使学生认识到改革开放后我国人民生活水平迅速提高,增强热爱社会主义祖国的思想感情。
情景一:
师:同学们,老师昨晚想通知大家今天带计算器,可以用什么方法呢?
生1:可以打我们家的电话,或打爸爸、妈妈的手机。
生2:发电子邮件。我的e-mail是……
生3:您只要通知我一个人,然后我去通知5个人,被通知的同学再分别通知5个同学,这样又快又好。
师:我班同学家里有电话的很多,有电脑的也不少。今天,我们来调查一下,我班谁家已安装了电话,谁家购买了电脑。
生1:老师,不用调查了。我这儿有全班同学家的电话。我班100%同学家里有电话。
生2:我们可以调查哪些同学家里有手机或小灵通这些移动电话,这样方便联系。
师:(生1)李××,你真是一个有心人。100%同学家里有电话,可以说成电话的普及率是100%。在我们的生活里,经常要计算和使用“普及率”。这节课,我们就来计算一些普及率。如家庭移动电话普及率、电脑普及率等。
评析在这一环节中,能及时改变原来的教学预设,给了学生一次展示的机会,其意义将是深远的。
情景二:
学生分组统计后汇报统计和计算的百分率结果。
师:我班同学家庭移动电话的普及率是多少?你是怎样计算的?
生1:移动电话的普及率是96.6%,就是求出已有移动电话的56个家庭数占全班58个家庭数的.百分之几。
生2:老师,我觉得应说“大约是96.6%”。
生3:我班同学家庭有电脑的是39户,普及率大约是67.2%。
师:你能根据计算的结果推算出本地区电话和电脑的普及率大约是多少吗?
生1:我认为我们南通市居民的固定电话普及率接近100%,移动电话的普及率大概是95%,电脑的普及率低一些,可能有60%。
生2:我不完全同意你的观点。不能认为我班同学家庭电话普及率是100%,就认为南通市居民的固定电话普及率接近100%,你要考虑到南通市还有比较贫困的地方。应该说,学田地区的电话普及率接近100%。
生3:我同意刚才同学的观点。因为我班同学大部分住在学田新村,如果要调查南通市居民的固定电话普及率,还应该到其他学校或新村去调查。
师:你想得真周到,你认为应怎样调查呢?
生3:我想在南通市的东西南北中各确定一个学校或新村去调查统计才准确。
师:也就是说,推算和估计普及率要考虑我班同学家庭的经济状况在南通地区处于什么水平。
评析在这个过程中,让学生尽情地展示自己最为真实的思想,不必考虑教师希望他说什么,而在意“我”自己的观点,是否准确,是否独特,是否有自己的个性。教师的鼓励与反馈“有利于创造活动的一般条件------心理的安全和心理的自由”。学生在心理安全的环境中,才能大胆猜想,质疑问难,发表不同意见。
情景三:
师:通过这一次实践活动,你有哪些体会?
生1:我懂得了通过调查统计后,能求出某种东西的普及率。
生2:我知道电脑的普及率比电话的普及率低,我们可以把调查的结果反馈给电脑商,让他们加强宣传的力度,多搞促销活动。
生3:我知道了我们学习的统计和百分数的知识很有用。
生4:我觉得生活水平提高了,因为我奶奶说,以前人憧憬“楼上楼下,电灯电话”这样的好日子,现在我们不但有了电灯电话,还有了电脑,有人家还有了私家车呢!
生5:……
师:我们还可以进行哪些有意义的调查活动?
生1:我班同学戴眼镜的很多,可以调查我班的近视率,或全校的近视率,引起大家的重视。
生2:我经常看到有同学在校外的小摊买零食。我想调查一下我班同学每月零花钱的用法,到底有多少钱买学习用品,多少钱买零食。
生3:我想调查有多少人还知道张思德,现在许多同学知道“小燕子”赵薇,不知道英雄张思德了。
生4:我想调查南通市有多少贫困家庭。
生5:……
评析学生是课堂的主体,给学生提供参与的机会,凡是学生能操作的,能颔悟到的,教师绝不包办代替。不刻意要求学生与教师思维一致;不刻意要求个别学生给出的答案对全班具有代表性。数学教学应当培养学生的发现、提问、分析和解决问题的能力。
数学课程标准的基本理念之一是“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”这堂实践活动课是在学生初步学习了百分数的意义和应用后安排的。活动内容来源于生活,能使学生感受到数学就在身边,让学生感受到数学与生活是密不可分的。小学生的思维正逐渐从具体形象思维向抽象思维过渡,但这并不意味着学生就不需要具体形象思维。数学来源于生活,但高于生活,具有一定的抽象性和逻辑性。著名数学家华罗庚说:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
对学生来说,如果始终是被动地接受,像成人一样地学习,他们就会觉得学习数学是索然无味的,他们的主动性、积极性、创造性会渐渐地沉睡起来,他们会渐渐地疏远数学。实践活动使学生从被动型向主动型转变,重复性向创新性过渡,有利于学生个性的发展,有利于学生创新意识和实践能力的培养。生动有趣的实践感受使学生觉得数学并不枯燥。让儿童在自己的世界里用自己喜爱的方式探究数学,在探究中体验数学、享受数学。当数学与儿童的现实生活密切结合时,数学才是活的,富有生命力的。
提倡学生用自己的话说收获,而不是仅仅重复教师的讲授,面对着具有鲜活生命和灵动个性的学生,教师更多地关注学生在数学活动中表现出来的情感与态度,应当给予积极的评价,为学生提供自由表达自己思想、表述自己观点、实现自己思维飞跃的舞台,帮助他们认识自我,建立学习自信心,教师成为学生学习过程中的欣赏者、支持者和引领者。
如何正确认识数学实践活动,如何上好数学实践活动课,数学实践活动课以怎样的模式呈现,是我们迫切需要解决的问题。我感觉到这是极其新鲜而富有挑战性的。在探索中,我了解到实践活动是“做数学”的具体表现,它是以解决某一实际的数学问题为目标,以引起学生的数学思维为核心的一种新型的课程形态,让学生在解决具体问题的过程中,对数学本身的探索中理解、掌握和应用数学。实践活动是一种研究性学习,学生应经历一个收集信息、处理信息和得出结论的完整过程。这节课给我留下的启迪是:当你真正将新课程的理念落实到具体的教学行为时,学生会还你一个惊喜!
人教版小学数学六年级教学设计篇九
知识与技能:
1、理解比的基本性质。
2、正确应用比的基本性质化简比。
过程与方法:
1、利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。
情感态度与价值观:
初步渗透事物是普遍联系的辩证唯物主义观点。
理解比的基本性质,推倒化简比的方法,正确化简比。
正确化简比。
写有例题和练习题的小黑板。
一、导入
1、比与分数、除法的关系。
2、复习分数的`基本性质和商不变的性质。
老师:请大家回忆一下,分数有什么性质?除法又有什么性质?它们的内容分别是什么?
二、教学探究
1、猜想。
汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。
引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以同一个数(0除外),分数的大小不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以同一个数(0除外),商不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。
2、验证。
以小组为单位,讨论、验证一下刚才的猜想是否正确。
学生汇报。
3、小结。
经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。
板书课题:比的基本性质。
4、化简比。
老师:应用比的基本性质,我们可以把比化成最简单的整数比。
出示例1的第(1)题。
让学生在练习本上写出一小一大两面联合国旗长和宽的比,15:10和180:120
提问:你怎样理解最简单的整数比这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
让学生自己尝试把这两个比化成最简单的整数比,然后集体订正答案。
15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?(说明两面国旗大小不同,形状相同。)
出示例1的第(2)题。
(2)把下面各比化成最简单的整数比。
1/6:2/90.75:2
让学生独立试做,教师巡视指导,请两名学生在黑板上板演。
师生共同讲评。
1/6:2/9=(1/6×18):(2/9×18)=3:4
提问:为什么要乘18?可能会有学生想到不同方法,教师应给予肯定。
0.75:2=(0.75×100):(2×100)=75:200=3:8
或(0.75×4):(2×4)=3:8
老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
三、堂堂清测试
1、完成教材第46页的“做一做”,集体订正。在校对、交流的基础上,引导学生对化简比的方法进行小结。
2、完成教材第48页练习十一的第4
人教版小学数学六年级教学设计篇十
一、复习内容:
分数乘法应用题
二、复习目标 :
1、引导学生准确地找到单位“1”。
2、能准确找出数量关系。
3、能熟练地解答一步和二步的乘法应用题。
三、复习重点 :
引导学生找准单位“1”,分析应用题的数量系。
四、复习难点 :
让学生正确、独立地分析应用题的数量关系。
五、复习过程 :
(一)、创设情景,导入复习
我们已经对分数乘法进行了学习,今天这节课我们就一些简单的分数应用题进行复习。
(二)、回顾整理,构建网络
1、复习解答分数乘法应用题的步骤:
学校买来100千克白菜,吃了4/5 ,吃了多少千克?
如果想求出吃了多少千克,要分哪几步去思考?怎样分析这道题?
(1)找到题目中的分率句,确定单位“1”。
(2)找出数量关系。
(3)求出所要求的部分量。
(三)、重点复习、强化提高
1.指出下面每组中的两个量,应把谁看做单位“1”。
(1)男生人数占女生人数的4/5。( )
(2)甲的6/7相当于乙。( )
(3)乙的5/9与甲相等。( )
(4)男工人数是女工人数的1/8。
2、填空题
(1)、学校买来新书240本,其中的1/8分给五年级。这里是把( )看作单位“1”,如果求五年级分到多少本?列式是( )。
(2)、小红有36张邮票,小新的邮票是小红的1/2 ,小明的邮票是小新2/3的 。如果求小新的邮票有多少张?是把( )看作单位“1”,列式是( )。如果求小明有多少张是把( )看作单位“1”,列式是( )。
3、应用题
(1)、一堆煤12吨,又运来它的1/6 ,现在共有煤多少吨?
指生板演 ,集体订正,针对学生出现的问题进行评价。
(四)、自主评价,完善提高
人教版小学数学六年级教学设计篇十一
比较正数和负数的大小。
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的`比较。
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-85.6+0.9-+0-82
2、如果+20%表示增加20%,那么-6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
人教版小学数学六年级教学设计篇十二
苏教版义务教育课程标准实验教科书二年级上册第56~57页《确定位置》。
【教学目标】
(一)知识教学点:
学生在具体情境中学会用“第几排第几个、第几组第几个、第几层第几号”等方式描述物体所在的平面位置,或根据平面位置确定物体。
(二)能力训练点:
1、在探索和解决问题的过程中培养学生初步的空间观念。
2、培养学生的语言表达能力。
(三)情感体验:
体会生活里处处有数学,产生对数学的亲切感。
【教学重、难点】
让学生掌握确定位置的方法,能用比较准确的语言描述物体的位置。
【教材分析】
本课是苏教版小学数学二年级上册内容。主要是教学用“第几排第几个、第几组第几个、第几层第几号”等方式描述物体的位置,,在描述中语言表达能力得到提高,并能根据具体描述找到相应的位置。这部分内容学生在生活中经常接触到,在一年级时也有了一些初步的感知,学生掌握这部分知识并不感到困难。教学的重点是让学生把这些知识能真正应用到生活中去解决一些实际的问题,让他们真切地感受到生活中处处有数学。
【教学过程】
创设情境,导入新课
学生可能得出几种答案:
(1)从前往后数第四排,从左往右数第二个:兔。
(2)从后往前数第四排,从左往右数第二个:猪。
(3)从前往后数第四排,从右往左数第二个:狗.。
(4)从后往前数第四排,从右往数第二个:猪。
……
提问:咦,我喜欢的小动物只有一个,你们怎么会找出这么多呢?什么原因?(学生讨论)
小结:看的方法不一样,找出的动物就不一样,看来要知道是哪个小动物必须确定它的位置才行。今天我们就来学习确定位置。(板书课题)
体会感悟,学习新知
1、第几排第几个
(1)出示小猴和小熊的话:
(小猴说:“我在第一排第一个,”小熊说:“我在第二排第二个。”)
提问:哪是第一排?你用手指一指。(指名学生上台来指)
小动物一共站了多少排?我们一起数。
横着的是第几排,按从左到右的顺序确定第几个。
(板书:第( )排第( )个)
确定了方法,那你现在能肯定老师喜欢的小动物是什么呢?(学生说)
(2)练习
a、用第几排第几个说说自己喜欢的小动物在哪里?
(出示:我喜欢( ),它在第( )排第( )个。)
b、请同学说出最喜欢的动物在什么位置,让其他同学猜一猜。
(出示:我喜欢的小动物在第( )排第( )个,它是( )。)
2 、第几组第几个
小动物有自己的位置,那在教室里同学们也有自己的位置,我们是以第( )组第( )个来表示的。(板书:第( )组第( )个)
(1)定位:
请这一组的同学起立,我们将这一组定位第一组,那这位同学就是第一组第一个同学。请这组同学依次报位。
(2)报位置
a、指名学生报位置,学生判断对错。
b、说说其他同学的座位。
(例如:xx坐在第几组第几个。或坐在第几组第几个的是xx。)
c、小游戏:猜猜我的好朋友
你报你的好朋友的位置,大家来猜他是谁?
(例如:我的好朋友坐在第几组第几个,他是( )。)
d、考考全班的反应
找找他是谁,并很快说出他的名字,比一比谁说得快。
a、第三组第三个
b、第一组的倒数第二个
c、最后一组的最后一个
3、第几层第几号
你们都能准确的确定位置了,想不想到动物公寓去参观,看看小动物住在哪里?(出示想想做做第1题图)
显示:毛猴子最性急了,它嚷嚷道:“我住在第2层第3号。”
提问:小猴子是怎么数的?(指名生说)引出第( )层第( )号。
(板书:第( )层第( )号)
a、师:每个同学选出你喜欢的小动物,说给同桌听。
(例如:我喜欢( ),它住在第( )层第( )号。)
b、指名说自己喜欢的小动物住在第几层第几号,让同学来猜。
(例如:我喜欢的小动物住在第( )层第( )号,它是( )。)
反馈练习,深化认识
第几层第几本
(1) 小动物的公寓参观了,想不想到图书室去看看。(出示图)
出示:第1层第2本是《新华字典》。
提问:《成语词典》在哪里?你是怎么看的?你们想看什么书?(指名说说)
(2) 你觉得这些方法有什么共同的地方?
小结:都有两个“第几”,几就是数,用两个数可以帮我们清楚地描述出这些物体的位置。
联系生活,拓展提高
1、提问:生活中需要确定位置的情况有很多,你还知道哪些?(学生自由说说)
(出示图)这是开发商刚建好的房子,请你帮开发商给这些房子的每户人家编门牌号。
要求:编的号码要合理,符合生活实际。
2、开发商为了感谢我们,要请你们去看电影,想看的来领座位号。(出示电影院图)
(发座位号,学生自己找座位。)
比较两家电影院的座位,感受不同的排列方式。
总结全课
通过这节课的学习,你有什么收获?
希望同学们确定好自己的人生位置,走出美好的明天。
人教版小学数学六年级教学设计篇十三
(1)创造性地使用教材,拓展教学知识,丰富教材内容
根据教材的安排,教学的程序是先讲座教材情境图的内容,然后现说一说自己班级的位置,而我的设计是先说一说自己在班级中的位置,再把情境图作为巩固练习。因为讨论的是学生每天都坐的位置,所以这一交换就很容易激发起学生兴趣,使教材内容更加丰富了。
(2)充分利用现场资源,把数学问题简单化
我根据学生已有的知识经验,创设真实、具体的问题情境,让学生大胆探索确定位置的方法,体会“数对”在确定位置的作用。在教学时,我让学生从自己十分熟悉的座位入手,用自己唤起探究如何确定位置的欲望。在学生探究确定位置的方法时,我不急于告诉学生答案,而是让学生开动脑筋,尝试用自己的方法去描述,组织学生讨论谁的方法比较好。引入“数对”表示位置的方法时,我没有直接讲授,而是让学生运用自己喜欢的方式表示。此时,本课重要的知识点从学生之口引出,使学生获得极大的满足感,更进一步激发学习兴趣。同时从学生已有的知识经验中逐步抽象出数学的表示方法,也使学生更易理解和接受。
2.《整数乘法运算定律推广到分数乘法》的教学反思
(1)、注重了情境的导入,提高孩子们的参与热情。
本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
(2)、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。
3.《解决问题》的教学反思
“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义.在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:
(1)、让学生用画图的方式强化理解一个分数的几分之几用乘法计算.
(2)、强化分率与数量的一一对应关系.并根据关键句说出数量关系。
(3)、帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同.
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
4.《倒数的认识》教学反思
(1)、在课的导入部分,联系学生熟悉的生活情景,由倒影和一些有趣的文字引出本节课所要探究的问题――倒数,从形象直观上感受颠倒位置,既激发了学生的探究兴趣,为学生学习新知识做了充分的准备,为学生较好理解倒数的意义做了铺垫。
(2)、变例题教学为学生自学课本,发现求一个数的倒数的方法,然后通过举例,检查学生的掌握情况,再总结出求一个数的倒数的方法。
(3)、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习中提高。比如设计的“比较大小”,在比较大小之后,让学生找找其中的规律,为接下来的分数除法做铺垫。“猜一猜“,不仅用到了倒数的知识,也联系到前面学的分数乘法应用题。
(4)、给学生独立思考的时间,相信学生能具有独立思考的能力,教学中每一个问题的提出,要使学生不是坐等听别人讲,而是能养成先自己积极思考的习惯。
5、分数混合运算教学反思
(1)、重视新旧知识之间的联系.
虽然是分数四则混合运算,但是只要旧知识过关,这一单元并不难,于是我在教学中特别重视新旧知识之间的联系.首先,我把分数乘除法练好.再复习分数加减法,这样学生记算起来感到很顺利.最后,我又充分复习整数四则混合运算,主要是让学生明白分数混合运算运算顺序和整数四则混合运算的顺序一样.
(3)、提出问题,引导学生发现问题.“学源于思,思源于疑”.尝试题的出示,促使学生心理上产生疑惑而发生认识上的冲突,激发了学生的内部动机,有利于在新旧知识的联结点上展开教育.因而我注意在关键处提出一些问题,且内容恰当,难易适度,并富于思考性,易调动学生思维的积极性.出示尝试题后,说:“谁能不听老师的讲解就能做题”引导学生自己去探索知识,做的过程中提出:“先算什么后算什么”由于学生对这些知识并不陌生,很快会根据先算什么,后算什么而计算.这一系列问题,对于学生的思维,有明确的导向作用.
6.《分数乘法的意义整理和复习》的教学反思
为了更好地完成本节课的教学目标,这节课我在以下几个方面做了努力:
(1)、充分发挥学生的主体地位在整个教学过程中,我努力把自己的角色转变为学生学习的组织者,引导者与合作者。发挥学生的主体地位,注重学生理解性学习和主动性学习,使学生在活生生的情境中,通过观察、变换、、自主探索、合作交流等多种形式使学生真正地理解所学知识,并对所学知识进行梳理。
(2)、注重《整理和复习》课的条理性、系统性在上课初,首先采取提问的形式让学生回忆本单元所学的知识,使学生很快的进入教学情景当中。教学中的知识安排上层层递进;在应用上,既重视发挥课本习题的导向作用,面向全体学生,掌握基本知识,形成基本技能,又注意培养学生的创新意识。注重补充习题的生活性,习题与生活紧密联系,使学生感受到数学就在身边,生活中处处存在着数学。不足之处:在操作过程中难免会有一些处理不当的地方。如对学生的评价语言不够到位,没有起到激励的作用,因而课堂气氛不是特别活跃,我会在以后的教学过程中不断改进,争取更大的进步。在上过分数乘法后,才知道有多少得失..
7.《分数乘法》教学反思
今天的教学内容是分数乘分数,重点是巩固和进一步理解分数乘法的意义,探索分数乘分数的计算法则。
在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:
(1)、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
(2)、学生运用数形结合的方法独立完成教材中的“做一做”,进一步达成以上目标,并为总结分数乘分数的计算积累知识。
可以说整体教学的效果还好。
通过今天的课我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,帮助学生理解分数乘分数的计算道理;体现了教材对数形结合思想渗透的一个过程。
人教版小学数学六年级教学设计篇十四
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:
理解数量关系。
教学难点:
根据多几分之几或少几分之几找出所求量是多少。
教具准备:
多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去。
(2)用去一部分钱后,还剩下。
(3)一条路,已修了。
(4)水结成冰,体积膨胀。
(5)甲数比乙数少。
2、口头列式:
(1)32的是多少?
(2)120页的是多少?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。