优质分数和整数相乘教案范文(18篇)
教案是教学过程的记录和反思,可以促使教师的教学能力的提升。教师应该合理安排教学过程,保证教学环节的有机衔接和流畅进行。教案是教师为了开展教学而编写的一种书面指导材料,它起着指导和规范教学活动的作用。如何编写一份优秀的教案一直是教师们面临的重要问题。以下是小编为大家整理的一些精选教案范本,供大家参考借鉴。
分数和整数相乘教案篇一
整数与分数相乘的意义和计算方法
1.复习分数乘整数的意义和计算方法。
2.复习求一个数是另一个数的几分之几。
1.操作活动。出示活动内容和小组活动要求
(1)拿出纸条,先折出它的,再用涂色表示它的的长度。
(2)用尺量一量涂色部分的长度是多少厘米。
(3)想一想可以怎样列式来验证你的结果。
(4)组内交流你的想法
2.汇报
(1)因为9÷12=,所以12×=9。
(2)根据汇报得到算式:16×=12、20×=15、24×=18
(3)仔细观察这四个算式,各表示什么意义?
(4)这几个算式都有什么特点?
3.揭题:今天我们就来研究整数乘分数
1.教学例1
(1)出示例1。用线段图来表示数量关系
(2)汇报、交流线段图
(3)根据线段图列对应关系
(4)要求所对应的具体量,就是求什么?
(5)列出算式
(6)如何计算(写出过程,说明算理)
2.:求一个数的几分之几用乘法计算
3.教学例2
(1)试列式
(2)比较算式的区别
(3)补充说明计算过程中能约分要先约分
4.分数和整数相乘的计算方法
分数和整数相乘教案篇二
授课课题分数四则混合运算
教学基本
内容第80页的例1、“练一练”,练习十五第1-5题。
教学
目的
和要
求1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2、使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3、使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点
及难点分数四则混合运算的顺序及理解整数运算律在分数运算中同样适用
理解整数运算律在分数运算中同样适用
教学方法
及手段本课设计从学生已有的经验入手,利用推移、类比的方法,通过学生自己的尝试、观察发现规律。
学法指导
尝试与教师一同解决问题,积极思考
集体备课个性化修改
教学
环节
设计
一、创设情境。
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2、集体交流。教师根据学生的回答板书算式。
25×18+35×18(25+35)×18
追问:列式时你是怎么想的?
3、指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)
二、教学分数四则混合运算的运算顺序。
你会计算上面这两道式题吗?
学生分别计算,并指名板演。
3、小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
4、做“练一练”第1题。让学生先说出运算顺序再计算,然后交流、订
正。
三、教学把整数的运算律推广到分数。
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2、做“练一练”第2题。先让学生独立计算,再讨论分别应用了什么运算律或运算性质?
作
业1、做练习十第1题。
让学生按要求直接写出得数,再集体订正。
2、做练习十第2题。
让学生独立计算,再选择一两题要求说说运算顺序。
3、做练习十第3题。
让学生独立计算,然后说说每道题分别应用了什么运算律或运算性质。
4、做练习十第4、5题。
学生独立解答后,指名说说解题思路。
板书设
计
执行
情况
与课
后小
结
分数和整数相乘教案篇三
1.算一算。
37×2=()211×5=()
2.填一填。
(1)18+18+18+18+18=()×()=()
(2)27×4=()+()+()+()=()
(3)311+311+311=()×()=
3.算一算。
27×25×32018×4
916×247×821310×15
4.一杯牛奶的.质量是34千克,5杯牛奶的质量是多少千克?
6.一根钢管锯成2段需要分钟,如果锯成11段,那么需要多少分钟?
分数和整数相乘教案篇四
教学准备:12厘米、16厘米、20厘米、24厘米的纸条若干;课件等
教学重点:整数与分数相乘的意义和计算方法
教学难点:
教学过程:
一、复习引入
1.复习分数乘整数的意义和计算方法。
2.复习求一个数是另一个数的几分之几。
二、展开
1.操作活动。出示活动内容和小组活动要求
(1)拿出纸条,先折出它的,再用涂色表示它的的`长度。
(2)用尺量一量涂色部分的长度是多少厘米。
(3)想一想可以怎样列式来验证你的结果。
(4)组内交流你的想法
2.汇报
(1)因为9÷12=,所以12×=9。
(2)根据汇报得到算式:16×=12、20×=15、24×=18
(3)仔细观察这四个算式,各表示什么意义?
(4)这几个算式都有什么特点?
3.揭题:今天我们就来研究整数乘分数
三、教学例【1】、【2】
1.教学例【1】
(1)出示例【1】。用线段图来表示数量关系
(2)汇报、交流线段图
(3)根据线段图列对应关系
(4)要求所对应的具体量,就是求什么?
(5)列出算式
(6)如何计算(写出过程,说明算理)
2.小结:求一个数的几分之几用乘法计算
3.教学例【2】
(1)试列式
(2)比较算式的区别
(3)补充说明计算过程中能约分要先约分
4.小结分数和整数相乘的计算方法
四、巩固与提高
五、课堂总结
分数和整数相乘教案篇五
教学目标:
1、知识目标:
使学生理解分数乘以整数的意义与整数乘法相同。
2、能力目标:掌握分数乘以整数的计算法则,能够正确地进行计算。
3、创新目标:使学生学会用不同的方法解决同一个问题
4、德育目标:培养学生的讨论意识和交流意识。
教学重点:本节的教学重点是使学生理解分数乘以整数意义,因此在教学中应注重让学生通过讨论发现并总结计算出方法并能正确运用先约分再相乘的方法进行计算。
教学难点:能正确运用先约分再相乘的`方法进行计算。
教具准备:一个大西瓜。通过切西瓜的实物演示,帮助学生理解分数乘以整数的意义与整数乘法的意义完全相同。
教学过程:
一、导引目标
1、复习:整数乘法的意义是什么
2、思考:你能很快计算出下面算式的结果吗?
+++++++++=
导出课题“分数乘以整数”师板书课题。
3、组织研究
(1)通过以上的观察和计算,你发现了什么?
(2)小组之间合作交流,自学例1。
讨论归纳分数乘以整数的意义和法则
二、创设条件
(一)指名到台上,按要求切西瓜。
1、将西瓜平均分成两份。问:
(1)两份合在一起,一共是几块?
(2)怎样列式计算?
+===1
×2===1
2、将西瓜平均分成四份。问:
(1)四份合在一起,一共是几块?
(2)怎样列式计算?
+++===1
×4===1
3、将西瓜平均分成八份。问:
(1)八份合在一起,一共是几块?
(2)怎样列式计算?
+++===1
×8===1
三、引导创新
计算×3=思考可以有几种计算方法,哪一种更简便一些?
四、反思小结
1、独立完成第2页的做一做。
谈谈自己本节课的收获,还有哪些知识没学明白。
分数和整数相乘教案篇六
教学目标:通过自主探索理解分数乘整数的意义。
通过有效练习初步理解分数乘整数的计算法则(会分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步))
体验探索学习的乐趣。
(学生通过经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能)
重点与难点::分数乘整数的意义和计算法则
课前准备:
板块教师活动学生活动教学目标及达成情况
一、
创设情境
二、
组织探究
分乘整数的算理数
复习:1、5个12是多少?怎样列式?(多媒体示题)
2、16+26+36=
29+29+29
教学例1
教师引导学生概括出书上
的结语。(分母不变,只用分子与整数相乘,能约分时,先约分再计算)
通过复习连加巩固乘法的意义及同分母分数加法计算方法及意义
通过乘法算式与连加法算式的联系理解分数乖整数的算理和归纳出分数乖整数的计算方法
三、
练习1、做“练一练”第1题。
2、做“练一练”第2题。
3、做
练习八第3-5题
通过练习明确求几个几分之几相加的和,可以用乘法计算。进一步巩固
分数乖整数的意义和计算方法
四、全课小结今天学习了哪些内容?
反思重建
分数和整数相乘教案篇七
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
++=++=
同学之间交流想法:++==3××3=
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=
二、自主探索
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)
方法2:×3=++====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书:++=×3
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+++=()×()
+++++++=()×()
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4×6×21×4×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)
用乘法算:×3=++====(块)
答:3人一共吃了块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
分数和整数相乘教案篇八
整数与分数相乘的意义和计算方法
1.复习分数乘整数的意义和计算方法。
2.复习求一个数是另一个数的几分之几。
1.操作活动。出示活动内容和小组活动要求
(1)拿出纸条,先折出它的,再用涂色表示它的的长度。
(2)用尺量一量涂色部分的长度是多少厘米。
(3)想一想可以怎样列式来验证你的结果。
2.汇报
(1)因为9÷12=,所以12×=9。
(2)根据汇报得到算式:16×=12、20×=15、24×=18
(3)仔细观察这四个算式,各表示什么意义?
(4)这几个算式都有什么特点?
3.揭题:今天我们就来研究整数乘分数
1.教学例1
(1)出示例1。用线段图来表示数量关系
(2)汇报、交流线段图
(3)根据线段图列对应关系
(4)要求所对应的具体量,就是求什么?
(5)列出算式
(6)如何计算(写出过程,说明算理)
2.:求一个数的几分之几用乘法计算
3.教学例2
(1)试列式
(2)比较算式的区别
(3)补充说明计算过程中能约分要先约分
4.分数和整数相乘的计算方法
读书破万卷下笔如有神,以上就是为大家带来的4篇《《分数与整数相乘》教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
分数和整数相乘教案篇九
一、说教材
1.教材简析
本节课是在学生理解整数乘法的意义,掌握整数乘法的计算方法;理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的。通过本节课的学习,为下面进一步学习分数乘法(包括分数乘整数、分数乘分数),解决分数乘法的简单实际问题,分数除法和分数四则混合运算奠定基础。
这部分教材在编排上有以下几个特点:
(1)把计算学习和解决问题有机结合;
(2)注重计算方法的探索过程。
2.学情分析
对于本节课的内容有的学生并不陌生,有的可能已经会计算分数与整数相乘的算式。但是,这节课的学习对于他们来说并不多余。因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要关注学生理解为什么可以这样算。
3.教学目标定位
基于教材特点与学生的学情分析,本节课的教学目标确定如下:
(1)了解分数和整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,学会正确的计算。
(2)通过观察比较等体验性活动,引导学生归纳分数乘整数的计算方法,培养抽象概括的能力。
(3)引导学生探求知识的内在联系,激发学生学习兴趣。
4.教学重难点确立
教学重点:知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,理解分数与整数相乘的算理。
教学难点:让学生探索、发现能先约分的要先约分,再相乘,这样计算比较简便,而且能减少计算的错误。
二、说教法、学法
根据教学内容的特点以及学生学习的现状,为了有效的突出重点,突破难点,这节课采用自主探究、合作交流的学习方式,让学生在观察的基础上,进行分析、综合、抽象和概括,进而总结分数与整数相乘的计算方法,让学生感受由直观到抽象,由个别到一般的学习模式,学会独立思考,积极交流,实现学习者自觉、积极、主动地建构新知。教师在整个过程中通过创设情境,引导启发,调动学生的积极性让全体学生参与整个学习活动。
三、说教学过程
下面再具体说一下教学环节的设计:
(一)以旧引新,唤醒认知
首先出示如:4/9+4/9+4/9=
2/7+2/7+2/7+2/7=
让学生先计算,然后思考:这些算式有什么特点,还可以用怎样的形式表示?
设计说明:本节课的知识基础是整数乘法的意义和计算方法,分数加法的计算等。由于时间关系,学生可能对于上述知识点有些遗忘。通过复习热身,试想唤醒学生对乘法的意义以及分数加法计算的认知,调动学生的知识储备,为后面的例题教学作好相应的准备。
(二)情境设疑,探索新知
1.创设情境:学校要举行“国庆”庆祝活动,要求大家做绸花布置环境。
出示:例1中的长方形直条图,标注出长是“1米”
提问:做一朵绸花用3/10米绸带,你能在图中涂色表示这个已知条件吗?
(学生涂色)追问:你是怎么涂色的?
出示问题:小芳做3朵这样的绸花,一共用几分之几米绸带?
这里可以引导学生先猜一猜是几分之几米,再提问:
你能在图中涂色表示做3朵花的米数吗?
你是怎样涂色的?
屏幕上再显示:3/10米就是3个1/10米,3朵花就是3个3/10米。
提问:解决这个问题可以怎样列示?
估计学生可能会列出加法算式,也可能列出乘法算式。
教师在巡视的过程中,注意用加法列式的同学,交流时,指名其先说,并计算出得数。而后再请用乘法算式列式的同学回答。首先追问学生怎么想到用乘法计算?让学生明确相同的分数连加,也可以用乘法表示。通过这第一次的追问,帮助学生理解分数乘整数的意义。
而后再请所有的学生一起思考:3/10×3的得数怎么求。估计学生中一定会出现直接会用3/10的分子3与整数3相乘作分子,用10作分母的计算方法。如果出现这种情况,教师要再一次追问,为什么能这样进行计算?有的学生可能借助图说明算理,有的可能根据乘法和加法的联系来阐述原因。但不管哪一种原因,最后教师都要归纳到分数乘整数的意义角度,即3/10×3就是3/10+3/10+3/10,等于3+3+3/10,就是3×3/10。通过这两次追问,让学生理解分数乘整数的算理。
设计说明:在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。所以,在这部分的教学中,我通过直观操作,连续追问,帮助学生由“实物感知”向“算理理解”的自然过渡,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的突出重点,让学生知其然,知其所以然。
2.自主练习,突破难点:
出示:小华做了5朵这样的绸花,一共用了几分之几米绸带?
第一种方法是先计算,计算结果不是最简分数的,再约成最简分数;第二种方法是先约分,再算出结果。说明:两种方法都是可以的。计算结果不是最简分数的,要约成最简分数。
出示一组判断题:
(1)2/51×17=34/51(2)3/4×3=1/4
(3)5/12×6=5×6/12=5/2(4)5/6×4=20/6=10/3
比较:你认为哪一种计算方法不容易算错、比较简便?
小结:“先约分再计算”的计算方法,参与计算的数字比原来变小了,这样就便于计算,因此提倡同学们采用这种“先约分再计算”的方法。
请同学们注意约分的书写格式:在约分时,约得的数要与原数上下对齐。
设计说明:虽然在五年级教学分数的基本性质以及分数的加减法,要求学生都要将计算结果约成最简分数。但是在历次作业和检测中,仍然有相当一部分学生由于结果不是最简分数,或者数据较大约错了而导致失分。可见,学生没有化成最简分数的意识,没有养成这种习惯,约分的能力也欠缺。所以这部分的教学设计重在帮助学生突破这一难点。学生在练习时出现两种计算方法,首先要先肯定两种计算过程都是正确的,明确计算结果不是最简分数的,要约成最简分数。接着根据同学们在作业中容易出现的一些问题,出示一组判断题:(1)的结果没有约分成最简分数;(2)是将分子与整数约分,是错误的约分方法;(3)是先约分再计算,是正确的;(4)是先计算再约分,也是正确的。通过这组题的练习,让学生在比较中感受到:先约分再计算,可以使计算时数据小一些,就会减少计算的失误。进而要求学生在今后的计算中采用这种“先约分再计算”的方法。
3.总结归纳:分数和整数相乘可以怎样计算?先同桌商量,再全班交流。
(三)分层练习,强化认知
为了帮助学生巩固新知,我安排了三个层次的练习:
1.巩固分数和整数相乘的意义。
主要是完成“练一练”中的第一题和练习八中的第1题。
“练一练”的第1题,让学生先涂一涂,再列出算式。
练习十八的第1题,让学生看图先填一填,再说说自己的想法。
2.巩固分数乘整数的算理和算法。
“练一练”中的第2题
强化对分数与整数相乘的算理和算法的理解,以及如何正确约分的处理。3.结合实际,解决问题。
练习八的第三、四两题,这两题是分数与整数相乘的实际应用题,通过练习让学生把分数和整数相乘的意义,分数与整数相乘的计算方法有机结合起来。以此体会学习数学的价值,体验数学与生活的联系!
四、说板书设计
分数与整数相乘
3/10×3=3/10+3/10+3/10=3×3/10=9/10米
3/10×5=3×5/10=3/2米
意义:表示几个相同分数相加的和。
计算方法:分母不变,分数的分子和整数相乘作分子。
注意:分子、分母能约分的,可以先约分。
分数和整数相乘教案篇十
《分数与整数相乘》是在学生掌握整数乘法、理解分数的意义和基本性质,以及同分母分数加法的基础上进行教学的,这是学生首次接触分数乘法。本节课所要教学的内容,虽然对于部分学生来说也许并不陌生,估计有学生可能已经会计算分数与整数相乘的算式。但这节课的学习对于他们来说并不多余,因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要让学生理解分数与整数相乘的含义,关注学生理解分数与整数相乘的算理,理解和掌握为什么可以这样算?这样做的理由是什么?要让学生不仅知其然,更重要的是知其所以然。
本节课的教学,教者紧紧围绕:理解意义――明确算理――巩固提高――形成技能,这几个方面来进行教学的。虽然课堂教学还算顺利,但通过本节课的教学,也反映出了一些不足。下面就这节课的教学谈谈一些教后感想。
计算教学的课注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,我创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察涂色的方格图,列出算式,从而有利于理解分数乘法的意义。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出×3的结果。但在教学中,我对一米绸带的这幅图没有充分地利用好,我只是在导入时让学生说了说,怎样在图中表示3个米,其实在这里,应该依据图形结合,借助图形来说明算理,最后教师再归纳到分数乘整数的意义角度,让学生理解分数乘法的意义与整数乘法的意义是相同的,就是求几个相同分数的和。
在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。因此,在这部分的教学中,我通过连续追问,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的.突出重点,突破难点,让学生知其然,知其所以然。
在教学先约分再计算的算法时,教者改编了教材,设计了一道比较大的整数与分数相乘的题目,对比之下简单与复杂一目了然,起到了很好的效果。但是在展示的学生计算过程中,出现了约分格式不规范的情况,有些同学在约分时,把约好的数写在原来数的右边,我忘了提醒学生要把约好的数写在原来数的上方,假如教师注重一下学生书写习惯的培养,这节课将更完善。
分数和整数相乘教案篇十一
一、利用已有知识引导学生实现正迁移。
《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,所以这节课在引入课题时我设计了下面的两道习题:(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实班里已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时×3的算法时直接问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?我重点在让学生明白为什么要这样乘。我抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
三、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
分数和整数相乘教案篇十二
《分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。
本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。
知识与能力:
在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感态度与价值观:
引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程
分数和整数相乘教案篇十三
1,借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2,掌握一个数除以分数的计算方法,并能正确计算。
一个数除以分数的计算方法
一个数除以分数的计算方法
教学时数1课时
一,创设一个“分一分”的活动。
1,出示:第27页的情境图。
从整数除以整数到整数除以分数,借助除法的意义和图形语言,体会“除以一个数”与“乘这个数的倒数”之间的关系。
2,创设自主的探索空间,让学生通过观察、比较与思考,发现知识的内在联系,让学生更好地理解分数除法的意义的机会,更主要的是教会学生一种学习的方法。(即分数除法的意义可联系整数除法的意义进行学习)
二,画一画。
1,让学生画图个观察,分析图中反映的数量关系
2,学生体会分数除法的意义和算法。
三,填一填,想一想。
让学生观察、比较、从而发现问题中蕴藏的规律。(进一步理解分数除法的意义)
四,试一试。
学生巩固对除法计算的理解,重点引导学生先约分再乘,这样算比较简便。
五,练一练。
1,第28页第2题,利用分数除法解方程,既应用了分数除法的计算方法,又为今后用方程解决问题进行铺垫。
2,第28页第3题,利用分数除法知识解决实际问题,给学生交流的空间。集体订正时让学生说说解题的思路。
分数和整数相乘教案篇十四
一、复习铺垫,设疑激趣,引出新知。
由于学生已学过了同分母分数的加减法和整数乘法,具有一定的知识准备,以此作为新知的“生长点”。让学生复习整数乘法以及同分母分数加减法的计算,为学习新课做好铺垫,调动学生的知识储备。灵活设计,把例1转成生活中的数学,让学生帮小新解决这个问题。这富有挑战性的有趣味性问题,激起学生自主探究的欲望。此时学生处于“口欲言而不能,心求通而末达”的状态,为学习新课做好积极的心理准备。
二、自主探究,积极构建,解决问题。
知识不能靠传递,而要靠学习者在原有知识经验的基础上积极建构。根据学生的猜测,动手计算,就会出现两种算法,一种是加法,一种是乘法,引导比较两个算式结构上有什么特点?有什么关系?力求让学生自己去感悟分数乘整数的意义。并通过ppt的展示,生动地把加法和乘法联系起来,让学生学会分数乘整数的计算法则。利用知识的迁移,通过观察、思考、讨论、交流、质疑等数学活动抓住重点突破难点。
我适时鼓励学生尝试解答分数乘整数,引导学生在独立思考的基础上,合作交流,学会倾听,学会反思,学会表达。汇报自己的想法和算法,鼓励学生用自己喜欢的方法,再去计算。并讨论是怎样算的,无形中引导学生用自己的话概括出了分数乘整数的计算法则,渗透不完全归纳法,培养学生合情的推理能力。
三、边学边练,注重应用,巩固掌握。
本课教学针对重点、难点,完成相应的练习,边学边练,及时巩固强化认识,注重落实知识的应用,培养学生的应用意识和能力。同时练习注意层次的安排,最后我安排三个层次的练习:
(1)巩固意义,看图列式,多说分数乘整数的意义。
(2)多练习计算强化对法则的应用和理解。
(3)对比练习。兼顾到学习成绩比较好的`同学,设计一些比较有挑战性的问题。
作业布置:练习一:第3、4、5、题。
分数和整数相乘教案篇十五
设计教师:大桥中心小学 王丽霞
指导教师:内乡教研室教研员许守敬
教学内容:义务教育十一册课本29页内容
教材简析:分数除以整数,以分数加法、减法、乘法和求一个数的倒数为基础,推导其计算法则。为以后学习分数除以分数,及分数四则混合运算做铺垫。
教学目标:
1、知识目标:引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,感知法则的形成过程。
2、能力目标:让学生在动手做、动脑想的过程中,培养学生自主探究、归纳整理的能力,同时培养合作交流的能力。
3、情感目标:培养学生热爱数学、运用数学的情感。
教学重点:分数除以整数的计算法则的推导过程。
教学过程:
一、复习旧知,导入新课
1、 出示口算卡片,学生口答。
+ - 3 6
修改:(挑其中的二个或三个算式,让学生说出算理。)
2、把 米的绳子平均分成2段,每段占绳长的,每份长米。
二、合作探究,解决问题
(师出示一段绳子)
(师提示)大家可以利用身边的实物、可以画图、可以转化成以前学过的知识等等。下面分组讨论,讨论好后每组派代表展示。
(生小组活动,师巡视辅导)
三、展示交流,内化提升
a组:我们用实物:(拿出一段绳子)我们量得绳子长0.8米,即 米。把绳子对折就是把它平均分成2份,其中一份量得结果是0.4米,即 米。
b组:我们用画图的方法,如图: 米是4个 米,平均分成2份,每份就是2个 米,即 米。
c组:我们小组用一张圆饼来表示 米,把一张圆饼看做单位1,平均分成5份,4份代表 米,其中2份是 米。
米 米
d组:我们小组也是用折纸的办法,用一张长方形纸表示 米,把 米对折就是 米。
米
米
e组:我们小组用转化法,把 米转化成求 米的0.5倍是多少,列式是 2= 0.5= 米。
【评:引导学生把分数与倍数结合起来。使学生的知识融会贯通。】
f组:我们小组用转化法,把 2转化成求 米的一半是多少,也就是求 的 是多少,列式是 2== 。
师:大家用不同的方法,得到了相同的结果。你们很棒!
下面大家自由讨论。
生:我发现: 2== 把除法转化成乘法,计算起来简便。
生:我发现: 2= 0.5= ,也是把除法转化成乘法。
生:一个数如果除以2,可以转化成乘0.5;它除以3,可以转化成乘0.333;除以4,可以转化成乘0.25.
生:你这样计算的结果不精确,步骤太多!
生:把除法转化成乘法的第一种简便、实用。
师:你们发现除法转化成乘法时,被除数、除数发生变化了吗?怎样变的?
生:我发现除以2变成乘 ,2和 互为倒数。
生:我发现计算中,除法变乘法,除数变倒数。
(修改前:大家发现了这种除法运算中的规律,你能计算下面各题吗?)
5 10 7 14
(修改后)
师:大家发现了这种除法运算中的规律,来做个游戏好吗?
课中练习:
对口令
(1) 师说除法算式,生对相应的乘法算式。
5 10 7 14
(2) 男生说除法算式,女生对相应的乘法算式。
3 5 11 30
师:你能用一句话完整的说出,这种除法怎样计算的吗?
生:一个分数除以整数,等于乘这个整数的倒数。
(修改前:师说:这里的除数包括0吗?)
(修改后:)
师:谁能计算下面的算式? 0=?
(学生窃窃私语)
生:除数不能为0。
生:除数为0没有意义。
(生恍然大悟)生:一个分数除以整数(0除外),等于乘这个整数的倒数。
师:为什么要加上0除外?
(生略)
(修改后的内容)
师:你能结合五年级《字母与数》的知识,用字母来表示吗?
n=(n为非0自然数)
师:大家观察一下,这节课所学的算式用什么共同点?
生:都是除法。
生:都是分数除以整数。
师导出课题
这就是我们这节课共同探究的《分数除以整数》(板书课题)
四、回顾整理,拓展应用。
师小结:学习了这节课,你有什么收获?
生:我学会了怎样计算分数除以整数。
生:我学会了用转化的方法来计算分数除以整数,就是把除法转化成乘法,用被除数来乘这个整数的倒数。
生:我学会用多种方法表示同一个内容。
拓展应用:
一、 下面的计算对吗?把不对的改正过来。
3==
2= 2=
3==
二、在括号内填上合适的内容。
(1) 5= =
(2) 2= =
(3) 把 吨化肥,平均分给5户人家,每户分这堆化肥的, 每户分化肥的吨。
思考题:(修改后的内容)
如果a是一个不等于0的自然数
(1) a=
(2)a =
分数和整数相乘教案篇十六
:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的.计算法则,并能正确运用“先约分再相乘”的方法进行计算。
1、5个12是多少?
用加法算:12+12+12+12+12
用乘法算:12×5
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)
用乘法算:(块)
问:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)
1.第2页做一做。
2.练习一
分数和整数相乘教案篇十七
《分数除以整数》这节课的关键在于学生是通过自主探究获得分数除以整数的计算方法的。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的学习基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学生都有了足够的掌握,有了上面的基础保障,我觉得把研究新知识的权力交给学生是完全可以的。
整节课通过学生自己动手设计板书,上台展示,自我总结,发现方法,其中必要的操作是比不可少的。本节课中理解分数除以整数的计算方法的算理是这节课的重点和难点,学生经过动手操作,将实验中的图与式子对应起来,通过图形,学生直观感知了“4/5÷2”可以表示为“4/5里有4个1/5,把4个1/5平均分成2份,每份就是2/5,从而理解计算方法。同时也直观感知了”4/5÷2就是把4/5平均分成2份,每份是多少,可以理解为求4/5的1/2是多少,即4/5×1/2,真正理解“分数除以整数(0除外)等于分数乘这个整数的倒数“的计算方法。由于理解算理,学生能正确地掌握计算法则,课堂上表现在学生顺利完成4/5÷3的计算。
整节课,孩子们情绪比较激动,课堂纪律不太好,讲解的过程缺乏详细,只会照板书读下来,对于质疑环节,孩子们不太会提问,这在以后的课堂中要加以锻炼。
《分数和整数相乘》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
分数和整数相乘教案篇十八
一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。
二、口算,感受分数乘整数的含义
1、读出算式,并口算出结果:
1/5+2/5= 1/4+1/4= 2/6+3/6+1/6= 1/16+3/16= 2/9+2/9= 2/9+2/9+2/9+2/9+2/9+2/9= 2/9+2/9......2/9(30个)
2、感受分数乘整数的意义
30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。
三、尝试计算,归纳方法
1、尝试计算。
让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。
2、自己选择练习
自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。
3、概括分数成整数的计算方法
让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。
总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。
同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:
一、给孩子鼓劲儿,让孩子看到希望
告诉他们“我们这一学期数学课主要学习的都是有关分数的知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!
二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭
我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。
三、理解分数乘法含义、尝试计算
从分数加法的口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。
同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。