实用人工智能的优点论文(案例14篇)
健康的身心状态对于实现个人目标非常重要。在写总结时,我们可以借鉴他人的成功经验,以求更好地提升总结的质量。如果你正在写总结,不妨参考以下这些范文,或许会有所帮助和引导。
人工智能的优点论文篇一
人工智能是一门交叉性的前沿学科,也是一门极富挑战性的科学。人工智能技术和理论在一定程度上代表了信息技术的发展方向,所以对其人才的培养也是重中之重。
人工智能;信息技术;智能教育
人工智能是多种学科相互渗透而发展起来的交叉性学科,其涉及计算机科学、信息论、数学、哲学和认知科学、心理学、控制论、不定性论、神经生理学、语言学等多种学科。随着科技的飞速发展和人工智能技术应用的不断扩延,其涉及的学科领域将愈来愈多,它已和人们的学习、生活息息相关,时代和社会需要此方面的大量人才。在高中信息技术课中开设人工智能初步模块是十分必要的,本文拟从其发展现状、存在问题等几个方面对我国高中信息课程中人工智能教育做一下探讨。
(1)人工智能定义
人工智能(ai,artificial intelligence)是计算机科学的一个分支,己成为一门具有广泛应用的交叉学科和前沿学科。它研究如何用计算机模拟人脑所从事的推理、证明、识别、理解、设计、学习、规划以及问题求解等思维活动,来解决人类专家才能解决的复杂问题,例如咨询、探测、诊断、策划等。
(2)开设人工智能课程的意义
现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。
将人工智能课程引入到我国现行的教育中,可以让学生在了解人工智能基本语言特征、理解智能化问题求解的基本策略过程中,体验、认识人工智能技术的同时获得对非结构化、半结构化问题解决过程的了解,从而使学生了解计算机解决问题方法的多样性,培养学生的多种思维方式,更好的解决现实问题。
目前,该学科的教育正处于摸索阶段,由于中学信息技术师资水平、学校硬软件设备等条件的制约,我国尚未在中学专门开设独立的人工智能类课程,internet上与人工智能教育相关的中文信息资源也十分贫乏,在教学环境上大致存在以下问题:
(一)教学条件参差不齐
开设好人工智能课程,就要求安排更多的实践课程和活动来增强课程的趣味性,让广大师生切实体会到人工智能对我们生活的影响。这些活动大部分要求上机操作或利用网络资源来学习交流,这就对教学条件提出了较高的要求,尤其是一些偏远农村、条件相对落后的中学在开设人工智能课程上存在很大困难。
(1)对硬件性能的要求
人工智能课程中有较多的实践课程需要老师和学生利用网络资源,使用计算机进行操作。这就需要学校配备计算机网络教学机房,若其性能较差,会延长学生在线进行人机对话的时间,一旦遇到网络堵塞,可能连网页都打不开,这不仅浪费了仅有的'上课时间,而且大大降低了学生的学习兴趣。
(2)对软件性能的要求
为了降低成本,学校可以利用互联网上提供的免费下载软件和免费在线教学网站等进行实践教学,可大大减少自研开发软件和软件维护的费用。但一旦遇到网络不通、网络拥挤或在线网站停止服务等情况,将无法使用网络资源进行教学,可见,软件的依赖性较强也存在很大的问题。
(二)对人工智能科学的认识不足
(1)学生的认识误区
提及人工智能,给大多数学生的感觉是一门神秘、遥不可及的科学。很多学生认为人工智能技术是很高深的科学,离我们现实生活有一定距离,研究和接触这门科学是少数科学家的事情,从而对该科学的关注程度不高。其实,人工智能学科是一门渐渐成长的科学,它将应用在我们生活的方方面面。我们应在教学中让学生多去体验人工智能的魅力所在,吸引更多对该学科感兴趣的人去研究和使用它。
(2)教师对人工智能学科开设存在偏见
一些从事该学科教学的教师没有接触过人工智能方面的知识,在接触过后被其中深奥难理解的知识所吓倒,认为即使开设了这门课程也不易被同学们所接受;而一些在大学接触过人工智能课程的教师则认为,其理论枯燥乏味,知识内容艰深,不适合放在高中开设。
(三)一线教师经验不足
在我国大学教育中,开展人工智能专业课程的大学为数不多,师范类院校更是少之又少。从事人工智能领域的专业人才输出少,所以,缺乏具备一定知识结构、有专业素养的教师来担任高中信息技术课中人工智能课程的教育工作。绝大多数的一线教师并没有接受过人工智能课程的专业培训,在授课内容上的着重点掌握不好,教学目标不够明确;在授课形式上也没有前人的经验可寻,这就给一线教师带来了极大的挑战。
(一)加强软、硬件建设
在学校条件允许的条件下,应加大硬件设施的投入,改善网络传递信息的效率,同时加强软件资源建设。鼓励师生上网搜索更多适合ai教学的网站,教师应整理出和ai相关的趣味小故事、电影、光盘等和教材相关的素材,以便更好的配合硬件教学。
(二)端正认识,增强支持
作为教师要树立对高中人工智能选修课程的正确认识。通过对课标中规定的相关内容的深入了解和学习,克服对人工智能的神秘感或恐惧感,理性而客观的看待人工智能技术及其应用,明确在高中开设该课程的目的。同时,教师也不能因为该课程的“选修”性质,从而轻视该课程的作用。
作为学生不应该仅仅看见这门课程的娱乐趣味性,应把一些重要的技术理论知识重视起来,不能过分的放松自己而偏离了我们的教学目标。家长也应该支持和赞同学生选择该课程,不能应认识不到这门课程的作用、怕耽误学生主干课的学习而反对学生积极参与。
校方领导也不应条件限制就轻易放弃这门课程的开设,应给予积极的配合。社会各界也应加强舆论与正确引导,让更多的人们认识人工智能并予以肯定。
总之,人工智能是一门逐渐成长的科学,开设好该课程需要广大教育工作者和校方领导不断努力,互相交流,共同克服困难。
参考文献:
[1]张剑平.人工智能技术与“问题解决”[j].中小学信息技术教育,2003(10).
[2]段东辉.浅谈信息技术课程中人工智能教育[j].新乡教育学院学报,第19卷第二期2006,6.
[3]教育部.普通高中技术课程标准(实验稿).人民教育出版社,2003年4月.
[4]张家华,张剑平.开展高中人工智能教学存在的问题及对策[j].
人工智能的优点论文篇二
十九世纪末到二十世纪以来科学技术得到了飞速的发展,在这个时期里很多学科都得到了提高和补充,学科间的关系也越来越密切,一系列利好因素的共同作用下,机械电子工程学得以产生并发展。
顾名思义,机械电子工程就是电子信息技术与传统的机械技术的一个结合,充分的发挥了两个不同学科在技术上的共同点,达到了物理上和信息功能上的连结。这是一个跨学科的尝试,更是一个挑战,它可以将所有的机械工程信息进行分析,达到智能化的目的。虽然依旧属于机械工程行业,但是显然已经拥有了自己的特点。
1)不同的设计方法
机械电子工程与传统工程相比,已经不是单一的一个学科,它已经发展成为了有很多技术和科学共同组成的一个新学科,并且在工程设计上充分的吸纳了信息技术、机械技术,并为了使工程的各模块结构布局更加完整,设计人员一般都会采取自上而下的设计方法。
2)产品上的差异
2机械电子工程的发展过程
机械电子工程学并不是一个孤立的学科,它与很多工程和技术都有着密切的联系,是机械工程学科和电子信息工程、智能管理技术共同作用下,形成的一个新的发展体系。在信息系统不断完善的过程中,机械电子工程体系也更加完善,并日益成熟。机械电子工程学的发展历程主要是这样的几个方面:
1)机械电子工程学的开端
机械电子工程学在刚起步的阶段,其主要的生产形式是手工生产,此时社会的生产能力很低,没有充足的劳动力资源,发展生产力变得异常艰辛。为了改变这样一个窘迫的状况,科学家进行了大量的研究和尝试,在一次次的失败中,机械工程终于得到了一定的发展。
2)机械电子工程学的高速发展阶段
在经历了起初艰难的开始阶段以后,机械电子工程迎来了高速发展时期,随着标准件生产在同一的流水线下得以实现,这一时期的生产已经具备了一定的标准,并且极大地刺激了生产力的发展。但是这样的生产模式并不是没有缺点的,生产的过程过于标准,使产品过于单一,满足不了不同用户和社会不断变化的需要。
3)机械电子工程的成熟阶段
经过了多年的发展,机械电子工程产业已经形成了一定的体系,并与现代化科学技术有了一定的融合,进入了现代机械电子发展阶段。归根结底,机械电子工程的发展是为了满足社会工作和生活的需要,现代社会工作节奏加快,生产也更加灵活,对机械电子工程提出了更高的要求,机械电子行业的特点是柔性制造,这也为机械电子同信息化社会的融合创造了条件。
3人工智能在机械电子工程的运用
人类社会的发展始终离不开能源、信息。在古代,生产力水平及其低下,人们对信息的获取能力也十分有限,能源和物质是维持人类生产生活的必需品。长久以来,人类往往都没有认识到信息的作用。随着人类文明的不断发展,生产力水平的不断提高人类对信息的概念逐渐了解,同时也产生了对信息的需求,信息的价值逐渐被发现。
随着电子计算机技术的逐渐应用,人类的生活发生了质的变化,人类社会至此进入了高科技的信息时代。人工智能系统作为电子技术发展的产物,在近两年出现,并且迅速的应用到了机械电子工程领域。
电子信息技术在方便快捷的同时,也存在一定的弊端,比如缺乏一定的稳定性,这使机械信息系统在输入和输出上就会变得十分混乱,并且不利于描述。以往的描述方法一般包括:建设规则库、推导数学方程、学习并生成知识。
一般的解析方法都比较精密、准确,但是应用范围十分有限,只能应用于比较简单的系统,而对比较繁琐复杂的体系,却不能够提供完整的解析式,必须依靠人工操作才能实现。随着人们对系统的要求越来越高,处理的信息变得复杂多样,信息的内容不仅包括数据的形式,也出现了数字信息和语言信息等新形式。为了适应时代形势的发展,人工智能处理方式以其复杂、不确定的特点成为了解析数学的新方法、新手段。
人工智能处理体系一般是这样进行分类的,模糊推理体系和神经网络体系。这两个系统存在着联系,也有所不同。模糊推理系统一般通过对大脑功能进行模拟,从而分析出语言的信号;而神经网络系统模拟的却是大脑的结构,通过对数字信号的处理得出参考数值。
1)模糊推理体系和神经网络体系的相同点
我们可以说,模糊推理体系和神经网络体系都是利用网络结构,然后在某一精度上趋近一个函数。
2)模糊推理体系和神经网络体系的不同点
(1)映射方式
在映射方式的运用方面,模糊推理系统运用域和域之间的映射,神经网络体系则是点到点的映射。
(2)物理性质
模糊推理体系与神经网络体系相比拥有更明确的物理性质。
(3)计算量和计算精度
模糊推理体系没有固定的连接,计算量和计算精度都十分有限,神经网络体系则很好的克服了这一点,在输入的过程中使每个神经元相互作用,大大的提高了计算量,并且能够保证较高的输出精度。
(4)储存方式
在储存信息的过程中,模糊推理体系采用的是比较规则的方式,神经网络体系则是利用分布式对信息进行储存。
社会作为一个不断发展变化的有机结合体,单一的处理手段是无法满足人类发展的需要的。为此,智能系统研究专家开始了对综合智能系统的开发与探索。综合智能系统是对以往人工智能体系的继承和发展,它能够融合以往两种智能体系的优点,使数学描述变得更加全面。
4结论
机械电子工程产业发展是我国工业信息化过程的一个写照,在工程制造的过程中充分利用现代化科学技术的巨大优势,实现了生产力的提高,满足社会发展的需求,机械电子工程和人工智能和完美结合实现了不同学科之间的融合,为工业信息化的发展提供了成功经验和新思路。
人工智能的优点论文篇三
在航空业的发展中,人工智能技术起着积极的促进作用。本文介绍了空中交通管理中的人工智能理论及方法运用,为优化空中交通流量管理系统提供理论依据,更好地服务于空管系统。
人工智能;空中交通;管理
人工智能,即artificialintelligence,是计算机科学的一个分支,研究对人的意识及思维的信息过程的模拟并对其进行延伸和扩展,通过了解人类智能,研究出类似的反应的智能机器。随着计算机技术的发展,人工智能越来越多的运用于民航的各个方面,如飞行间隔的控制,空中流量的预测,飞行冲突的调配。但随着民航业的飞速发展,飞行流量日益增大,需要将人工智能技术有效运用于空中交通流量管理中,建立人工智能辅助系统,扩大空域容量,优化空中交通流量,提升空管秩序。
在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指单位时间和空间通过的航空器数量。通过优化空中交通流量,将空中交通管制服务与机场、航路有效结合,减少延误,提高机场和空域的.利用率。从时间角度上,空中交通流量管理可以分为航路流量管理和机场终端区流量管理两部分,从时间上又可划分为战略流量管理,预战术流量管理和战术流量管理。当航空器数量饱和时就要对航空器进行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本着地面让空中的原则,对地面航空器的起飞时间进行限制;2)空中等待,航空器在航路上或终端区规定的等待点或没有冲突的临时等待点进行盘旋等待;3)更改航路等待,当航路航线的容量饱和时,航空器可以通过选择其他航路航线;4)控制航路间隔,通过对航空器进入空域的间隔进行限制,来达到流量管理的目的,吸收部分拥挤的流量。
agent在人工智能的研究中,指能自主活动的软件或者硬件实体,目前国内普遍翻译为智能体。在人工智能中,设计关键智能体,对于研究人工智能的应用是非常重要的。在空中交通流量管理中,设计如下关键智能体:航班智能体、航路智能体和机场终端区智能体。航班智能体的属性有高度、速度、上升/下降率、起飞机场、目的地等。航班智能体可以与区域内或终端区的其他航班智能体建立通信,通过获取航班信息和逻辑判断,结合周围环境与自身状况,指导控制自身行为。如果航班智能体需要做出相应的调整如改变高度航向等,需要给上级的航路智能体或机场终端区智能体发出申请,上级智能体批准后,航班智能体才能采取相应的调整,作出相应的控制行为,才能通过交互环境反馈相应结果。在实际工作中,这个过程是通过空中交通管制员指挥航空器实现的。空中交通管制员在实际指挥工作中,需要结合当时的空中交通状况和自身的经验知识。航路智能体的主要属性有航路的高度、宽度、容量等。航路智能体需要对航班智能体进行指挥,管理航路上的智能体,同时与其他航路智能体和机场终端区智能体进行通信,对航班智能体进入和离开航路的时机进行协调,记录流量信息并报告给上级流量管理部门,接收上级智能体的指令。在航班智能体进入航路之前首先要进行容量评估。通过评估后的航班智能体回收到航路智能体发出的放行许可才能进入航路。如果没有通过容量评估,则要向上级智能体发送将流量限制的申请,发布流量限制后航路就不能批准航班智能体的进入,通过减少航班智能体的数量,控制航路交通流量。机场终端区智能体:在实际工作中,机场终端区的航班管理包括管制指挥、流量控制、地面场面监视、进离场等,难度较大。终端区智能体(通常运行中为塔台管制)首先要处理所收到的信息,如天气雷达信息、地面运行信息和情报信息等等,结合已有知识开展机场的容量评估。如遇到低云低能见度、雷雨等天气时可以调低终端区/机场容量,对进入离开的航空器进行限制。通过容量评估,塔台会给航班智能体一个slottime,航班智能体按照塔台的slottime起飞或降落,从而达到流量控制。如果没有通过容量评估,则需要通过上级的智能体批准,发布流量控制,限制终端区的流量,通过控制进入或离开的航空器数量达到流量限制的目的。机场终端区智能体(塔台)对终端区的航空器进行管理,还需要与航路智能体和平级的终端去智能体进行通信,对航班进出的slottime进行协调,并将流量管理信息报告给上级流量管理部门,接收上级智能体的命令。如果出现拥堵机场终端区智能体需要通过一些措施来管理流量,如分配slottime、指挥航空器地面或空中盘旋等待。
综上所述,以往在模拟空中交通流量进行研究的时候,首先制定流量控制信息,再在系统模拟航班飞行计划。这样的模拟过程不能解决容量告警问题。如果流量控制不合理,只能重新设定流控信息,再次进行模拟,因而加大模拟过程的工作量。而通过智能体的运用,可以在模拟中不断调整智能体来模拟空中流量,增加了模拟流量过程中的灵活性,将人工智能运用于模拟中,借助智能体来模拟空中流量,可以更好的分析空中交通流量问题。
[2]甘鑫鑫基于多agent的空中交通协同流量管理研究[j].科学与财富,2015(30):278.
[5]陈言俊,刘甜甜.人工智能与机器人.[6]黄昱斌.基于multi-agent的空中交通流量的探究[j].科技创新与应用,2015(14):57-57.
人工智能的优点论文篇四
摘要:在航空业的发展中,人工智能技术起着积极的促进作用。本文介绍了空中交通管理中的人工智能理论及方法运用,为优化空中交通流量管理系统提供理论依据,更好地服务于空管系统。
关键词:人工智能;空中交通;管理
人工智能,即artificialintelligence,是计算机科学的一个分支,研究对人的意识及思维的信息过程的模拟并对其进行延伸和扩展,通过了解人类智能,研究出类似的反应的智能机器。随着计算机技术的发展,人工智能越来越多的运用于民航的各个方面,如飞行间隔的控制,空中流量的预测,飞行冲突的调配。但随着民航业的飞速发展,飞行流量日益增大,需要将人工智能技术有效运用于空中交通流量管理中,建立人工智能辅助系统,扩大空域容量,优化空中交通流量,提升空管秩序。
1空中交通流量管理探讨
在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指单位时间和空间通过的航空器数量。通过优化空中交通流量,将空中交通管制服务与机场、航路有效结合,减少延误,提高机场和空域的利用率。从时间角度上,空中交通流量管理可以分为航路流量管理和机场终端区流量管理两部分,从时间上又可划分为战略流量管理,预战术流量管理和战术流量管理。当航空器数量饱和时就要对航空器进行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本着地面让空中的原则,对地面航空器的起飞时间进行限制;2)空中等待,航空器在航路上或终端区规定的等待点或没有冲突的临时等待点进行盘旋等待;3)更改航路等待,当航路航线的容量饱和时,航空器可以通过选择其他航路航线;4)控制航路间隔,通过对航空器进入空域的间隔进行限制,来达到流量管理的目的,吸收部分拥挤的流量。
2人工智能的应用研究探讨
agent在人工智能的研究中,指能自主活动的软件或者硬件实体,目前国内普遍翻译为智能体。在人工智能中,设计关键智能体,对于研究人工智能的应用是非常重要的。在空中交通流量管理中,设计如下关键智能体:航班智能体、航路智能体和机场终端区智能体。航班智能体的属性有高度、速度、上升/下降率、起飞机场、目的地等。航班智能体可以与区域内或终端区的其他航班智能体建立通信,通过获取航班信息和逻辑判断,结合周围环境与自身状况,指导控制自身行为。如果航班智能体需要做出相应的调整如改变高度航向等,需要给上级的航路智能体或机场终端区智能体发出申请,上级智能体批准后,航班智能体才能采取相应的调整,作出相应的控制行为,才能通过交互环境反馈相应结果。在实际工作中,这个过程是通过空中交通管制员指挥航空器实现的。空中交通管制员在实际指挥工作中,需要结合当时的空中交通状况和自身的经验知识。航路智能体的主要属性有航路的`高度、宽度、容量等。航路智能体需要对航班智能体进行指挥,管理航路上的智能体,同时与其他航路智能体和机场终端区智能体进行通信,对航班智能体进入和离开航路的时机进行协调,记录流量信息并报告给上级流量管理部门,接收上级智能体的指令。在航班智能体进入航路之前首先要进行容量评估。通过评估后的航班智能体回收到航路智能体发出的放行许可才能进入航路。如果没有通过容量评估,则要向上级智能体发送将流量限制的申请,发布流量限制后航路就不能批准航班智能体的进入,通过减少航班智能体的数量,控制航路交通流量。机场终端区智能体:在实际工作中,机场终端区的航班管理包括管制指挥、流量控制、地面场面监视、进离场等,难度较大。终端区智能体(通常运行中为塔台管制)首先要处理所收到的信息,如天气雷达信息、地面运行信息和情报信息等等,结合已有知识开展机场的容量评估。如遇到低云低能见度、雷雨等天气时可以调低终端区/机场容量,对进入离开的航空器进行限制。通过容量评估,塔台会给航班智能体一个slottime,航班智能体按照塔台的slottime起飞或降落,从而达到流量控制。如果没有通过容量评估,则需要通过上级的智能体批准,发布流量控制,限制终端区的流量,通过控制进入或离开的航空器数量达到流量限制的目的。机场终端区智能体(塔台)对终端区的航空器进行管理,还需要与航路智能体和平级的终端去智能体进行通信,对航班进出的slottime进行协调,并将流量管理信息报告给上级流量管理部门,接收上级智能体的命令。如果出现拥堵机场终端区智能体需要通过一些措施来管理流量,如分配slottime、指挥航空器地面或空中盘旋等待。
3结论
综上所述,以往在模拟空中交通流量进行研究的时候,首先制定流量控制信息,再在系统模拟航班飞行计划。这样的模拟过程不能解决容量告警问题。如果流量控制不合理,只能重新设定流控信息,再次进行模拟,因而加大模拟过程的工作量。而通过智能体的运用,可以在模拟中不断调整智能体来模拟空中流量,增加了模拟流量过程中的灵活性,将人工智能运用于模拟中,借助智能体来模拟空中流量,可以更好的分析空中交通流量问题。
参考文献
[2]甘鑫鑫基于多agent的空中交通协同流量管理研究[j].科学与财富,20xx(30):278.
[5]陈言俊,刘甜甜.人工智能与机器人.[6]黄昱斌.基于multi-agent的空中交通流量的探究[j].科技创新与应用,20xx(14):57-57.
人工智能的优点论文篇五
1、构思要围绕主题展开:若要使论文写得条理清晰、脉络分明,必须要使全文有一条贯穿线,这就是论文的主题。主题是一篇学术论文的精髓,它是体现作者的学术观点学术见解的。
2、构思论文布局,要力求结构完整统一:在对一篇论文构思时,有时按时间顺序编写,有时按地域位置(空间)顺序编写,但更多的还是按逻辑关系编写,即要求符合客观事物的内在联系和规律,符合科学研究和认识事物的逻辑。但不管属于何种情形,都应保持合乎情理、连贯完整。
3、要作读者分析:撰写并发表任何一篇科技文章,其最终目的是让别人读的,因此,构思时要求做“心中装着读者”,多作读者分析。有了清晰的读者对象,才能有效地展开构思,也才能顺利地确定立意、选材以及表达的角度。
提高构思能力
1、写学术论文之前,先拟定提纲,可以极大地帮助作者锻炼思想,提高构思能力。
2、写作提纲,可以帮助作者勾划出全篇论文的框架,体现自己经过对材料的消化与进行逻辑思维后形成的初步设想,可计划先写什么、后写什么,前后如何表述一致,重点又放在哪里,哪里需要进行一些注释或解说。按此计划写作,可使论文层次清晰,前后照应,内容连贯,表达严密。
3、拟制写作提纲,只需要运用一些简单的句子甚至是词与词组加以提示,把材料单元与相应的论点有机组织编成顺序号,工作量并不大,也容易办到。提纲中用以提示写作的句子,有时即可用来做论文段落的标题。
讨论部分的写作技巧
1.描述结论:首先,从专业角度对自己的研究进行总结,此部分务必与研究结果和研究目的保持一致,也就是说讨论部分的内容必须在结果中找到依据。否则就会给人一种课题设计不完善的感觉。
2.解释结论:对本研究的结论进行解释,为了突出解释的科学性和可靠性,一般是在和别人的研究分析对比中进行解释。列出几篇和自己结论一致的文献,同时也要列出几篇和自己不一致或者相悖的文献,但要解释出不一致的理由,比如是因为所选群体不一致,研究条件不一致等等,因为科学研究中的可控变量较多,所以解释两个结论不一致一般不难。
3.研究价值:结论解释完之后,还要说明本研究的应用价值,也就本研究所能给社会或者临床带来什么实际价值,比如本研究可以进一步明确某种方法治疗某种疾病的效果,本研究发现某种药物存在一些尚未发现的治疗作用,或者本研究可以为相关研究提供参考。
4.不足之处:任何一项研究由于客观条件的限制,不可能尽善尽美,都会或多或少存在一些不足之处,或者由于当前科技水平的限制,也会导致研究所存在的一些局限性,描述此部分内容时,一定要慎重。
尽量列出1~2个不影响本研究结论科学性和准确性的限制,比如本研究的样本含量较小,或者本研究随访时间较短等等,一般不要列出诸如本研究所用统计方法不当,或者本课题的所用评价标准不够成熟等。
5.研究心得:在文章最后,应说明本文所要传递的信息,或者是对后续研究的展望。一般文章最后写出本文要传递给读者什么有价值的知识或信息,也可以是给读者带来的启发。比如:“随着对不稳定型上颈椎结核性骨折的研究不断深入,探求一种既能实现理想的复位固定,又可保留寰枢椎关节活动功能的内固定方法是我们当前研究的方向。”
人工智能的优点论文篇六
长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(mit)、卡内基-梅隆大学(cmu)到ibm公司,再到日本的本田公司、sony公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着ai技术的实验。不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(a.i.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。
在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
"智能"源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machineswhothinks,1979)中所提出的:在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。
人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(artificialintelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。
当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。
我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
问:目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢?
答:ai研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的`不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。
智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。
答:我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。
但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是:课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走;立项论证时,惯于考虑国外怎么做;落实项目时,又往往顾及面面俱到,大而全;再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。
今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。
问:请您预测一下人工智能将来会向哪些方面发展?
答:技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。
目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。
人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
在一年一度at&t实验室举行的机器人足球赛中,每支球队的"球员"都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。
这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。
我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。
安放于加州劳伦斯·利佛摩尔国家实验室的asciwhite电脑,是ibm制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,ibm正在开发能力更为强大的新超级电脑--"蓝色牛仔"(bluejean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。
麻省理工学院的ai实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。
人工智能的优点论文篇七
在二十一世纪的将来,宁波市室验小学的中心,有一座巨大的建筑物――大本钟。
这不是大本钟的仿照,而是一座高科技的智能教学楼。这座楼分成一个个小小的圆,那是一个个教室。现在,可以让你见识见识所谓的“高科技”啦。走上楼梯,来到四(五)班的教室门口,门口摆着好多双鞋,不用惊奇,教室是圆的,固然得穿特别的鞋啦。在门框上,有一个指甲大小的洞,那是微形录像头,假如你晚到了便会自动发信息给教师,以防你不诚恳,偷偷溜进来。教室的中心有一大个一大个的沙包,那是学生座椅,你任凭怎么坐都可以,由于它有一个芯片,可以测你的心理,只要在听课就可以。假如没听课,它就会像一把扎满钉子的“活火山”,把你弄得苦痛不堪。教室里没有桌子,一人一个平板电脑,教师讲课的板书占一半,不用怕看不见,在为可以放大。另一半是录像机,把教师讲的课全程录像。
教室前面的讲台更牛,还有那个“大本钟”语。数教师(包括全部教师)要拖课,那把教室建成大本钟干吗?钟一响,学生倒安平稳稳的,教师在讲台上却被震得象在12级地震现场,五脏六腑都“蹦”了出来。假如学生很喜爱,只要在“课后评分”地方点一个好,教师就会留下来。“墙”上的黑板也有芯片,教师不用找文件,心里一想,文件就会立即翻开。芯片还能识别人。同学假如在动,不到5秒,电脑就会自动关机,以防坏掉。黑板角落一个个白色的,上面画有图案的是教室按扭,一按,相应的教室布置,让同学们和教师不会为没有教室而苦恼。
教室后边的图书角也很奇妙。想到什么书,什么书就会被推出一个角,不用我们一本本地找了。图书角的边上有一个生物角,透亮的玻璃里一个“动物园”一样的地方。每天都会引来很多奇怪的眼睛,里面除了凶狠的野兽,其它动物几乎都不缺。进入边上的“更衣室”,一套适合你的衣服就穿在了你身上,再走进“迷你动物园”,边上不是透亮的了,而是一望无际的“动物天堂”。尽管知道这是幻觉,但学是很吸引人。走近那些动物,衣服起了作用,让人听懂了它们的语言,还能和它们沟通呢!
不止这些呢,节日里,“天花板”上的灯会身出五彩的`光线,平常只会在摔倒时变软的“地板”现在一不当心踩着了哪块,“砰”地一下就会炸出五色的彩带,立即又自动恢复,为节日增加不少乐趣。
噢,差点遗忘了,教室是园的,真正的目的就是不让教师体罚学生。由于那把“沙包椅”已经起到这个作用了啦!
这样一个智能教室,肯定会在21世纪被创造出来让我们用的。我们肯定要去研发出这种高科技的智能教室。
人工智能的优点论文篇八
语言文学专业学术论文具有突出的学术性,它只能把学术问题当作自己的论题,把学术成果当作自己的描述对象,把学术见解作为自己的核心内容。它以学术性区别于一般的社会理论文章和政治理论文章。学术是有系统、较专门的学问,它往往以学科的形式表现出来。人们通常将学科分为自然科学和社会科学两大类。两大类又可逐层划分下去。如社会科学可以分为哲学、政治、经济、法律、历史、语言文学等,语言文学又可划分出语言、文学,文学又可以划分出文学理论、文学史,文学史又可以分为中外文学史,中外文学史又可以划阶段、设专题。分工越细,学问也就越专门化。但一切专门化的学问,又隶属于它的上级学科。语言文学专业学术论文所研究的,就是这些专门化的学问。语言文学专业学术论文所要研究和解决的问题,是这些专业知识中的某一问题。
(二)独创性
人工智能的优点论文篇九
智能交通系统(intelligenttransportationsystems,简称its)是将先进的信息技术、数据通讯传输技术、电子传感技术、电子控制技术及计算机处理技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。its能有效地利用现有交通设施、减少交通负荷和环境污染、保证交通安全、提高运输效率、促进社会经济发展、提高人民生活质量,并以推动社会信息化及形成新产业而受到各国的重视。目前已形成世界二十一世纪的发展方向。
交通仿真是智能交通领域的重要分支,它是利用最先进的计算机技术,通过仿真模拟的方法来分析交通问题,辅助交通管理人员做决策。传统上,数学推导、科学实验是进行科学研究、解决科学问题的主要方法。对于交通问题来说,由于参与交通的人很多,影响交通出行的因素也很多,人们很难、甚至无法对交通问题建立精确的数学模型。同时,由于安全、法规,以及开销方面的原因,进行现场交通实验通常也是不可行的。而交通仿真恰恰能够有效地解决上述两个方面的困难。
然而,传统的交通仿真由于设计理念上的原因,并不能从根本上有效地解决交通问题。这是因为,交通系统是一个庞大的复杂系统,必须用对付复杂系统的方法来处理,也就是要用综合的方法,而不是还原分解的方法来处理。
城市交通系统是一个典型的复杂系统:
1)城市交通系统是由经济、环境、人口等因素综合作用的结果,必须全面综合地考虑城市交通和这些系统之间的关系。例如,不能为例城市交通问题的解决,而导致城市生态恶化,危害人居环境;不能为了城市交通的畅通,阻碍城市社会经济活动的健康发展。我们必须在已有工作的基础上,突破传统思维,探索研究此类复杂系统的新途径,而基于人工系统的研究方法正是这种有效途径之一。
2)城市交通问题不存在“一劳永逸”的解决方案。城市交通系统涉及人与社会的动态变化,本身也在不断变化和发展之中,不可避免地需要一个不断深化地认识过程,这类系统实际上不存在精确完备的整体解析模型。因此,无法“一劳永逸”地解决城市交通问题,我们需要基于“不断探索和改善”的原则,研究建立有效可行的计算实验方法体系,为不断地完善城市交通系统的综合可持续发展方案提供科学依据。
3)城市交通问题不存在一般意义下的最优解,更不存在唯一的最优解。首先,基于解析模型的最优解与假设条件直接相关,具有条件敏感性,但对于城市交通这样的问题,假设条件与实际情况往往存在很大差别。其次,解决这些问题一般不存在单一的优化指标,而多层次多目标优化往往导致多个甚至无数个解决方案,就连采用近似模型的多目标优化也是如此。再者,对于这类复杂系统,有时甚至连确定一个量化的综合优化指标也有困难,特别是由于复杂系统长期行为的不可预测性,试图求解其某一最优化解决方案本身就是不可行的。因此,我们应当接受有效解决方案的概念,而且还要接受一般情况下存在多个有效解决方案的事实。在这种情况下,我们应该利用平行系统方法,追求具有动态适应能力的有效解决方案。
基于以上分析,中国科学研自动化所王飞跃研究员提出了人工交通系统的概念。其基本思想是利用人工社会的理论与方法,把交通仿真推向更高的层次、获得更广的视野。它利用基于代理的建模、面向对象的编程和并行分布式计算等方法和技术,“生长”和“培育”交通系统,即“人工交通系统”。
利用人工交通系统解决问题的思路跟改革开放摸着石头过河差不多,不断探索和改善,使过程、方法更科学化、系统化、综合化,不断改善探索建立城市交通、物流、生态综合发展的理论和方法体系。
人工交通系统有三个核心组成部分:
三是平行管理运行,虚拟交通系统与实际交通系统相结合,直接采集现实交通数据,进行超前运算,以判断可能发生的交通事件,提前采取预防措施,为交通的高效畅通提供保障。
人工交通系统具有以下特点:
1)在宏观认识上,人工交通系统不是单纯的讨论交通自身的问题。相反,人工交通系统将交通看作社会整体的一个子系统,与经济、人口、环境、气候等子系统具有平等的地位,并将各个子系统之间的相互衔接、相互联系、相互作用和相互影响作为研究的重点之一。
2)在仿真方法上,人工交通系统属于微观仿真的范畴,但是不局限于研究局部的交通问题。人工交通系统面向大区域的仿真研究,采用复杂性科学中“涌现”的原理,在底层建立单个交通出行元素的代理模型,通过大交通区域内单个代理模型之间的相互作用,“涌现”出宏观的交通现象。
3)在实现手段上,人工交通系统不能在单一、孤立的计算机上进行仿真,要使人工交通系统具备真实交通系统的分散性和社会性,必须采用先进的分布式计算方法,如网格和p2p等,在互联网上建立结构化、分散化的虚拟交通路网系统,并且通过终端界面将网络中的真实人吸引到人工交通系统的运行中来,以使每一个代理模型具有逼近现实的社会属性。
4)在仿真目的上,人工交通系统不是一味的追求逼近现实交通环境和状态。除此之外,人工交通系统可以通过调整参数、添加随机事件等方法产生现实交通系统可能但尚未发生的交通现象,用以制定突发事故的紧急预案、交通控制方案的预评估以及交通参与人员的培训等等。
人工系统说起来有一点抽象,其实说穿了很简单。第一是充分利用计算机技术的发展,第二是仿真与模拟的常态化。仿真不再是一个项目立项前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永远在。它是经验与知识的数字化、动态化和即时化,使人工影响现实,虚拟影响实在。
人工交通系统完善之后,人们可以像玩网络游戏一样,作为一个行人或司机加入到系统中,不必出门即可体验交通;交警同志可以在人工交通系统中学习指挥交通,而不必担心造成拥堵;交通分析人员可以利用人工交通系统研究各种突发事故对交通的影响,而不必担心人民的生命财产受到威胁;交通管理和决策人员可以在人工交通系统试验交通政策和方案,而不必承担决策失败的风险。
人工智能的优点论文篇十
(一)人工智能的发展
1950年,艾伦,麦席森,图灵发表了一篇划时代之作《制作机器会思考吗?》里面提出了测试机器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。约翰,麦卡锡在1956年的达特茅斯学术会议上,第一次提出人工智能(artificialintelligence,ai)。1997年,ibm公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。2017年7月,国务院印发了《新一代人工智能发展规划》,这是我国首个面向2030年的人工智能技术的战略发展蓝图,也表现出我国对发展人工智能技术的重视与支持,同时,人工智能人选“2017年度中国媒体十大流行语”。
人工智能是计算机科学的一个分支,可以对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
(二)人工智能的意义
人工智能在会计、审计、税务等行业的广泛运用,使得传统、简单、重复性的基础会计工作岗位将面临被智能化取代,人工智能已成为促进会计行业转型发展的重要推手。近三年来,德勤、普华永道、安永、毕马威4大国际会计师事务所通过利用财务机器人进行会计、审计等工作,使得数据的准确性、工作效率、管理决策水平等明显提升,由此可见,人工智能早已潜移默化的影响到了会计工作的方方面面。
(一)会计工作效率提高了。人工智能技术与财务管理系统的对接,实现了系统自动识别票据、生成会计记账凭证、记录明细账户以及生成总账和各类报表。作业过程中系统按时间顺序记录每笔业务,对每一笔账务进行核实和验证。财务机器人还实现了信息的语音、扫描录入,财务软件可自动生成证、帐、表,这将更加高效准确地完成基础会计核算工作,提高此项工作的效率,会计人员因此节省了大量用于基础核算工作的时间,从而能将更多的精力投入在企业内部管理型的工作上,同时又提高了管理工作的效率。
(二)会计信息质量提高了。受自身能力、专业素质以及外部环境等因素的影响,会计信息数据的滞后性和人为失误在所难免。人工智能将会计模型和方法程序化,它既减少了人为失误又极大地提升了数据处理能力,工作重心逐渐转向数据的挖掘、分析等重要环节和高附加值工作中,同时,会计档案由纸质变成电子档案更便于信息系统的管理、流程化的管理和监控,避免了人工作业的失误以及造假的可能,数据信息和记录的真实性和精准度得到保证。
(三)会计职能重心转移了。人工智能虽然可以替人做一些简单、繁冗、重复性的基础会计工作,但并不能完全替代会计人员,随着人工智能与会计信息系统的不断结合,从事简单记账工作的初级会计人员将会越来越少,而中高级会计人员将会集中于行业中涉及分析、预测和统筹的领域。因而会计职能的重心将向预测、决策、规划、控制、评价等目前人工智能无法取代的管理会计的职能转移。
(四)会计人员从业压力加大了。随着人工智能被引入到会计行业中,一方面,简单的会计核算工作将被智能化财务软件逐步替代,普通核算类型工作的岗位势必减少,基层会计人员面临失业的压力:另一方面,由于财务软件能够高效完成基础财务工作,企业更需要财会人员发挥管理会计的职能,会计从业人员需要将工作重心转移到决策分析和经营管理上,使其有从财务会计到管理会计转型的压力。
人工智能的发展与应用是社会经济发展过程中的必然产物,它的到来就像一把双刃剑,虽然可以对会计行业整体工作效率与工作方式带来提升,但是人工智是不能完全代替会计人员的工作的。比如,智能化的设备无法完全替代充满人情味的服务。李开复也指出,社交能力强、应变能力强、协商能力强的人,永远不会被人工智能取代。人类的感情,想象、创造等特质也是人工智能所无法企及的。所以,对于会计从业人员而言,人工智能只是一种行业对于自身的探索以及进步,顺应这种变化,会计人员应当认清挑战,抓住机遇。
一方面,会计从业人员应调整好心态,快速适应行业的变革,重新找回自己的价值。努力提升自己的专业分析能力和管理能力,成为人工智能代替不了的高级会计工作者。比如:财务战略制定,纳税筹划,风险控制,合理避税、财务分析等。同时,向复合型人才发展。正如任正非所说,称职的cfo应随时可以接任ceo。会计人员应当开阔眼界,放大格局,不能只着眼于本职工作,还应该了解工作其他岗位的工作内容,比如销售类、生产类等部门的业务,提高自己的企业价值以及行业地位,做一名复合型人才。
另一方面,人工智能技术在财会领域的突破离不开懂会计知识的专业人员的配合,财务人员要努力学习新技能,加强计算机、信息技术的知识储备,协助人工智能会计信息系统的研发,担当人工智能会计系统的设计者和监督者。
参考文献:
[1]闰钰.企业人工智能时代下对会计行业的思考[j].商场现代化.2018(1z)
[2]杨秀琴.浅议人工智能时代财务会计与管理会计的融合发展趋势[j].现代商业.2018(18)
[3]李牧阳,运用给会计行业带来的问题和思考[j],中国管理信息化.2019(42)
人工智能的优点论文篇十一
人工智能、基因工程、纳米科学被认定是21世纪的三大顶端高科技,其中人工智能在近些年来其研究领域不断扩大,涉及到哲学、神经生理学、心理学、计算机科学以及仿生学等多个科学领域的研究,其科技成果也层出不群,被广泛应用于科学研究以及工业生产中[1].工业生产过程中采用电气自动化生产模式,能够大大降低劳动成本,提高生产效率的同时还能保证产品质量,因此被众多企业用于生产实践中,而在电气自动化控制系统中应用人工智能技术,可谓是如虎添翼,保障了生产环节控制的高效性和科学性。
1人工智能在电气自动化控制中的应用优势
1.1受干扰程度低
以往工业生产中的电气自动化控制都是依靠既定的程序和管理器来实现的,管控系统根据各个生产环节仪器仪表中传递的数据进行分析,套入固定的问题处理软件上,选择指令发布,不具备具体问题具体分析的能力,会受到多个生产因素的干扰。人工智能技术其神奇之处就在于智能,不需要精确的动态模型和具体参数的设置,就能够有效处理生产信息,调控电气化生产设备。除此之外,人工智能技术能够实现调控的一致性,掌控全局进行智能调控,根据生产信息作出有效应答,而不会局限于某一固定生产指令,只调控某一环节的生产设备。
1.2操作误差小
人工智能本身的运行条件没有太多的限制,与因此与传统的控制器相比,本身的操作误差更小,基本上不会受到外界因素的干扰[2].一般来说,人工智能技术在电气自动化控制体系中应用,会现根据实际生产需求设置参数,随后又人工智能系统进行统一的调控,而在实际应用过程中,这些参数是基本上不会因为外界干扰而改变的,这也就保证了人工之能够系统的管控质量,不会因为本身的故障而引起决策的失误,大大降低了操作误差,使得各个生产环节能够按照预先设想的方案有序进行。操作误差小,是人工调控与传统控制都不具备的特点,完全符合机械化自动生产的理念。
1.3调节效率高
人工智能其数据处理分析能力更为强大,因此在实际应用过程中,即使生产环节发生了变化,需要调整人工智能控制系统的一些参数,其难度也是相对更低的,不需要专门的技术专家来进行指导,只要调整部分参数,人工智能体系就能捕捉到生产环节的变化,执行调整管控模式。例如,在生产环节中,产品种类发生了变化,如果是传统的电气自动化控制体系,就可能要重新输入控制参数,调整控制程序,而人工智能系统能够根据收集到的生产信息,进行合理的自我调整,操作简便快捷[3].
1.4降低生产成本
在电气自动化控制系统中还没有应用人工智能技术之前,生产虽然已经不要使用人力,但是在其他环节比如设备故障检查以及设备整理仍然需要人工来完成,这样不仅耗费时间,而且产生了一定的人工费用,一直是限制电气自动化生产的一个问题。人工智能能够实现器械故障的自动检测,实现工业生产的全方位管理,确保所有的电气设备都按照设定好的方案进行工作,消除了生产过程中一些常见的生产问题。
2人工智能在电气自动化控制中的实际应用
人工智能技术的实际应用主要有专家系统、人工神经网络、启发式搜索以及模糊集理论,这些运作体系是其应用于生产实践的基础。一直以来,人工智能技术的目标就是为了让机器能够拥有与人相同的智力,具备接受信息处理事情的能力[4].计算机技术的发展,使得工业生产实现了初步实现了电气自动化生产的目标,但是要想这一管控体系进一步发展,还需要更为先进的机器调控技术,人工智能正好符合这一发展要求,为电气自动化生产的进一步发展提供了无限的可能。
2.1电气产品的优化设计
一直以来,电气产品的优化设计是一项巨大的工程,受限你要掌握市场行情,融合更为先进的科学技术,根据以往的产品设计经验,进一步优化产品的性能,才能确保产品的销售额度,保证企业的市场占有率。这一研发环节,不能过长,因为如今的市场雪球变化极快,而且市场竞争较大,必须抢占先机,但是又不能以为追求研发速度而忽视质量。随着人工智能技术的应用,目前产品的优化设计模式已经有纯人工操作转变为人工智能辅助设计,大大缩短了产品的研发周期,并且在人工智能的帮助下,产品参数的设置更为合理,数据精确度大大提升。
2.2电气设备的故障诊断
在工业生产过程中,往往是多个生产环节数千台机器一同运转,单靠人工或者是笨拙的控制器,是无法找出具体故障设备的,需要花费大量的时间,而为了保证生产安全,就必须停下可疑范围内的所有电器设备,对于电器自动化生产来说,时间就是金钱,这样会严重耽误产品的生产,给公司造成巨大的经济损失[5].人工智能技术在电气自动化控制体系中的应用,很好地解决了这一难题,通过专家系统和模糊理论的结合,分析各个生产环节中仪器仪表的数据信息,系统能有效掌握全部的生产信息,实现电气自动化生产的智能控制,及时发现设备故障问题,停止故障设备,将生产损失降低到最小,切实保障企业的生产效益。
2.3运行过程的智能控制
社会在不断发展,数年前机械化生产代替了人工生产,而随着社会需求的不断扩大,企业生产效率也必须不断提高,才能在激烈的市场竞争中站稳脚跟。人工智能技术的发展,为实现电气自动化的智能控制带来了希望的曙光。在大数据时代背景下,工业生产中设计到的生产信息量是极为庞大的,人工无法快速处理这些信息作出有效决策,智能依靠计算机技术的使用,而计算机信息技术都是依靠固定的程序来处理信息,只有将二者结合,才能实现电气自动化生产的有效管控。人工智能系统是初步具备了人类智力的机械系统,具有计算速度快的优点,能够在短时间内处理大量信息,得出正确的结果,及时作出生产决策。
3结语
机械技术与计算机信息技术的结合,实现了工业生产的电气自动化控制,大部分的生产过程都是有机械完成的,然而在生产实践中,还是需要人工进行调控,及时调整机器的运行状态,定期检修器械,以免发生故障影响生产效率[6].人工智能技术的出现,实现了电气自动化的智能控制,与传统人工控制相比,其调控效率更高,能够直接处理各个生产环节中出现的一些问题,而且基本上不会受到外界因素的干扰,决策科学,管理高效,绝对是一项值得信赖的尖端技术。人工智能的应用,能够保证生产质量的统一性,优化产品设计,在生产过程中,及时发现电气设备运行故障的问题并进行有效处理,实现了电气化生产的实时动态管控。
参考文献:
[5]陈坤,史策,季永春.人工智能技术在电气自动化控制中的应用思考[j].艺术科技,20xx(08):76.
[6]姜关胜.人工智能技术在电气自动化控制中的应用问题探讨[j].电子技术与软件工程,20xx(20):150.
人工智能的优点论文篇十二
简要地介绍了人工智能科技技术的基本概念。对专家系统、人工神经网络、模糊理论、遗传算法等人工智能技术的含义进行了介绍,并对这些技术在电力系统中的应用和存在问题进行了分析。
人工智能技术(ai artificial intelligence)是一项将人类知识转化为机器智能的技术。它研究的是怎样用机器模仿人脑从事推理、规划、设计、思考和学习等思维活动,解决需要由专家才能处理好的复杂问题。在应用方面,以专家系统、人工神经网络、遗传算法等最为普遍 。
1.1 专家系统(es)
专家系统是利用知识和推理来解决专家不能解决的问题。传统程序需要固定程序和复杂算法,输入数据并得出结果。专家系统集中大量的符号处理,采用启发式方法模拟专家的推理过程,通过推理,利用知识解决问题。它具有逻辑思维和符号处理能力,能修改原来知识,适合于电力系统问题的分析。
1.2 人工神经网络(ann)
人工神经网络是大量处理单元广泛互联而成的网络,是一种模拟动物神经系统的技术。神经网络具有自适应和自学习的能力,能并行处理分布信息。电力系统应用人工神经网络可以进行实时控制、状态评估等。
1.3 遗传算法(ga)
遗传算法是一种进化论的数学模型,借鉴自然遗传机制的随机搜索算法。它的主要特征是群体搜索和群体中个体之间的信息交换。该方法适用于处理传统搜索方法难以解决的非线性问题。
1.4 模糊逻辑(fl)
当输入是离散的变量,难以建立数学模型。而模糊逻辑则成功地应用在潮流计算、系统规划、故障诊断等电力系统问题。
1.5 混合技术
以上各种智能控制方法各有局限性,有些甚至难以处理电力系统实际问题。因此需要结合各个算法的优势,采用人工智能混合技术。其中包括:模糊专家系统、神经网络模糊系统、神经网络专家系统等技术。
2.1在电能质量研究中的应用
人工智能技术可以对电压波动、电压不平衡、电网谐波等电能质量参数进行在线监测和分析。在检测和识别电能质量扰动时能克服传统方法的缺陷。专家系统随着经验的积累、扰动类型变化而不断扩充和修改,便于用户的.掌握[3] 。
此外,专家系统和模糊逻辑可用于培训变电站工作人员。智能软件可以模拟故障情形,有利于提高运行人员的操作技能。
2.2 变压器状态监测与故障诊断专家系统
变压器事故原因判断起来十分复杂。判断过程中,必须通过内外部的检测等各种方法综合分析作出判断。变压器监测和诊断专家系统首先对油中气体进行分析。异常时,根据异常程度结合试验进行分析,决定变压器的停运检查。若经分析发现变压器已严重故障,需立即退出运行,则要结合电气试验手段对变压器的故障性质及部位做出确诊。
变压器监测和诊断专家系统通过诊断模块和推理机制,能诊断出变压器的故障并提出相应对策,提高了变压器内部故障的诊断水平,实现了电力变压器状态检修和在线监测。
2.3 人工智能技术在低压电器中的应用
低压电器的设计以实验为基础,需要分析静态模型和动态过程。人工智能技术能进行分段过程的动态设计,对变化规律进行曲线拟合并进行人工神经网络训练,建立变化规律预测模型,降低了开发成本。
低压电器需要通过试验进行性能认证。而低压电器的寿命很难进行评价。模糊识别方法,从考虑产品性能的角度出发,将动态测得的反映性能的特性指标作为模糊识别的变量特征值,能够建立评估电器性能的模糊识别模型。
2.4 人工智能在电力系统无功优化中的应用
无功优化是保证电力系统安全,提高运行经济性的手段之一。通过无功优化,可以使各个性能指标达到最优。但是无功优化是一个复杂的非线性问题 。
人工智能算法能应用于电力系统无功优化。如改进的模拟退火算法,在求解高中压配电网的无功优化问题中,采用了记忆指导搜索方法来加快搜索速度。模式法进行局部寻优以增加获得全局最优解的可能性,能够以较大概率获得全局最优解,提高了收敛稳定性。禁忌搜索方法寻优速度较快,在跳出局部最优解方面有较大优势。遗传算法在解决多变量、非线性、离散性的问题时有极大的优势。要求较少的求解信息的,模型简单,适用范围广。
2.5 人工智能在电力系统继电保护中应用
自适应型继电保护装置能地适应各种变化,改善保护的性能,使之适应各种运行方式和故障类型。它能够有效地处理各种故障信息,获得可靠的保护。
借助于人工智能技术不但能够提取故障信息,还能利用其自学习和自适应能力,根据不同运行工况,自适应地调整保护定值和动作特性。
2.6 人工智能在抑制电力系统低频振荡的应用
大规模电网互联易产生低频振荡,严重威胁着电力系统的安全。人工智能为电力系统低频振荡的控制提供了技术支持。神经网络、模糊理论、ga等人工智能技术应用于facts控制器和自适应pss的研究,为抑制电力系统低频振荡提供了新的手段。
作为一门交叉学科,人工智能将随着其他理论的发展而进入新的发展阶段。应用新方法解决问题,或促进各种方法的融合,保持简单的数学模型和全局寻优情况下,寻求到更少的运算量,提高算法效率,将是未来发展的趋势。
随着电力系统的发展,电力系统的复杂性不断增加,不确定因素越来越多。随着人工智能技术的不断发展和提高,利用人工智能技术来解决电力系统的问题将会受到越来越多的重视。
随着我国电力系统的持续稳步发展,电力系统数据量不断增加,管理上复杂程度大幅度增长,市场竞争的加大,为人工智能技术在电力系统的应用提供了广阔前景。
但人工智能技术的基本理论还不成熟,只是停留在仿真和实验阶段。人工智能的开发是一个长期的过程,需要不断改进和完善,并在实际应用中接受检验。
人工智能的优点论文篇十三
摘要:
随着科学技术的不断创新与完善,人工智能化发展得到了质的飞跃。人工智能技术应用作为电气工程自动化过程的重中之重,是一个不可或缺的关键部分,直接关系到电气工自动化的稳定持续发展。人工智能领域涵盖的内容主要包括了图像识别、机器学习、智能搜索、语言识别以及专家系统等。为了推动我国电气自动化控制的创新发展,相关企业要加强对人工智能的研究开发工作,为社会创造出更多的价值效益。本文将进一步对人工智能在电气工程自动化中的应用展开分析与探讨。
关键词:
人工智能;电气工程;自动化控制;应用
当前是一个科学技术时代,电气工程发展要与时俱进,跟上时代前进的脚步。电气工程行业要想有效实现电气自动化控制和管理,就必须充分发挥出人工智能技术的作用。人工智能的研究范围不仅涵盖了图像语言识别和自动化控制,还包括了专家系统和人工神经网络等内容。因此,电力企业必须通过合理利用人工智能技术,才能有效实现对各项机械设备的自动化控制,从而大大降低企业的人工成本,保障企业创造出更多的经济效益和社会效益。
一、人工智能简述
二、电气工程自动化过程应用人工智能的主要优势
(一)利于参数的优化调节。
相比较传统的控制器,通过利用人工智能技术控制有利于各项参数的科学优化调节,同时还较为简单易学,具备了良好的适应能力。合理调整人工智能的相关参数,能够最大限度提升智能函数的各项性能。此外,人工智能控制器无需专家的现场指导帮助,其能够根据计算机事先设置好的合理数据,正确运用反馈的信息与语言进行设定,此外设置好的参数能够进一步完成修改和扩展作业,具有快捷方便的特征。
(二)受相关因素影响较小。
电力企业在传统电气工程建设中所应用的人工控制器会受到各种不确定因素的影响,导致在工作过程中出现各种问题,不利于企业安全稳定的持续发展。而通过在电气工程自动化中应用人工智能技术,能够有效省去获取精确动态模型的步骤,适应能力较强,无需为其提供固定不变的工作环境和参数设置,总体来说受到外界的因素影响较小,能够保障各项机械设备安全可靠的运行生产。
(三)自动化控制过程中产生误差小。
由于在电气工程自动化中有效融合了人工智能技术,该项技术的运行不会过多受到外界因素的干扰,造成严重的运行故障问题,从而确保机器事先设置好的参数在实际操作过程中不会发生任何变动,从而有效避免了实际值与理论值出现很大偏差的问题,充分保障了电气工程自动化的高效控制管理。
(四)具备良好的一致性。
(五)降低企业人力物力。
成本通过在电气工程自动化控制中应用人工智能技术,能够有效减少各项电力机器设备对变压器与线路的需求,企业也无需再专门调度安排更多的工作人员对设备进行管理维护,从而最大限度降低了企业在人力和物力上的投资成本,有利于企业更好地发展。
三、人工智能在电气工程自动化中的实践应用
(一)完善电气自动化性能,提高产品质量。
众所周知,人工智能技术最为显著的特征就是模拟人类大脑思维,设计人员通过将人工智能技术中的遗传算法有效融入到各项电器设备中,不仅仅能够完善优化各项产品的具体性能,还能够最大限度提升电子自动化性能,从而有效提高各项电气设备的工作质量和效率,充分保障了电气工程自动化控制过程的科学准确性。此外,人工智能技术在电气工程自动化领域的应用,能够降低企业人力成本的支出,推动我国电气工程高速稳定地发展进步。电力企业基于人工智能技术的辅助下,187页)能够将cad应用到任何电器产品设计工作中,从而大大缩减了各种电力产品的开发设计周期,并且拓宽了cad技术的研究应用程度,降低了设计人员的工作难度和任务量,在保障电器产品高质量的前提下,创造出更大的经济效益。
(二)实现智能化控制,提高工作效率。
人工智能技术所使用的智能化控制器,通过将人工智能与电气工程自动化控制有效结合在一起,能够最大化发挥出智能化控制器的作用。例如,智能化控制器能够科学根据下降和响应的具体时间完成对调节控制程度的合理控制,基于这种情况下,人工智能能够大大改善电气自动化控制管理的相关性能[3],为电气工程自动化建设工作打下扎实的基础。与此同时,电力企业通过引进应用先进的智能化控制器,能够实现电气工程自动化控制相关数据的实时分析调节,无需专门安排专家技术人员在现场进行指导和监督,相关工作人员在控制室通过计算机就能够实现远程控制操作,从而有效提高自动化控制管理的工作效率。
(三)改善故障诊断技术,提高诊断水平。
电力企业在电力工程自动化控制过程中,会遇到各种运行故障问题。例如,常见的发电机断电、变压器过热等事故,对于这些运行故障,传统的诊断方法是通过收集相关气体样本,并对其进行科学分析判断,最终得出发生该故障的具体结论,有针对性地采取解决措施。传统故障诊断方法除了需要维护检修人员花费较多的时间与精力,电力企业还必须安排管理人员对各项设备进行实时监控,这无疑加大了企业的人力支出成本。而通过利用人工智能诊断技术,在故障诊断过程中有效融入模糊理论、专家技术以及神经网络,能够大大提高电气设备故障的诊断效率,在第一时间发现问题并解决问题,从而降低了企业在人力成本上的支出,保障企业各项电力设备安全可靠地持续运行,满足社会对于高质量电力的需求。
四、结语
综上所述,为了推动我国电气工程自动化的稳定持续发展,政府相关部门要加强与社会企业的联系与合作,共同大力推广应用人工智能技术,不断提高电气工程自动化技术水平。通过在各项机器设备中加入智能化控制器,从而有效实现各个控制环节的自动化,方便企业内部人员的管理和维护,充分保障产品生产的高质量,满足社会用户的各项需求,为国民经济发展贡献最大的力量。
参考文献:
人工智能的优点论文篇十四
图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。
1图像识别技术的引入
图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。
1.1图像识别技术原理
其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有的本身特征而先将这些图像分了类,然后通过各个类别所具有的特征将图像识别出来的,只是很多时候我们没有意识到这一点。当看到一张图片时,我们的大脑会迅速感应到是否见过此图片或与其相似的图片。其实在“看到”与“感应到”的中间经历了一个迅速识别过程,这个识别的过程和搜索有些类似。在这个过程中,我们的大脑会根据存储记忆中已经分好的类别进行识别,查看是否有与该图像具有相同或类似特征的存储记忆,从而识别出是否见过该图像。机器的图像识别技术也是如此,通过分类并提取重要特征而排除多余的信息来识别图像。机器所提取出的这些特征有时会非常明显,有时又是很普通,这在很大的程度上影响了机器识别的速率。总之,在计算机的视觉识别中,图像的内容通常是用图像特征进行描述。
1.2模式识别
模式识别是人工智能和信息科学的重要组成部分。模式识别是指对表示事物或现象的不同形式的信息做分析和处理从而得到一个对事物或现象做出描述、辨认和分类等的过程。
计算机的图像识别技术就是模拟人类的图像识别过程。在图像识别的过程中进行模式识别是必不可少的。模式识别原本是人类的一项基本智能。但随着计算机的发展和人工智能的兴起,人类本身的模式识别已经满足不了生活的需要,于是人类就希望用计算机来代替或扩展人类的部分脑力劳动。这样计算机的模式识别就产生了。简单地说,模式识别就是对数据进行分类,它是一门与数学紧密结合的科学,其中所用的思想大部分是概率与统计。模式识别主要分为三种:统计模式识别、句法模式识别、模糊模式识别。
2图像识别技术的过程
既然计算机的图像识别技术与人类的图像识别原理相同,那它们的过程也是大同小异的。图像识别技术的过程分以下几步:信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。
信息的获取是指通过传感器,将光或声音等信息转化为电信息。也就是获取研究对象的基本信息并通过某种方法将其转变为机器能够认识的信息。
预处理主要是指图像处理中的去噪、平滑、变换等的操作,从而加强图像的重要特征。
特征抽取和选择是指在模式识别中,需要进行特征的抽取和选择。简单的理解就是我们所研究的图像是各式各样的,如果要利用某种方法将它们区分开,就要通过这些图像所具有的本身特征来识别,而获取这些特征的过程就是特征抽取。在特征抽取中所得到的特征也许对此次识别并不都是有用的,这个时候就要提取有用的特征,这就是特征的选择。特征抽取和选择在图像识别过程中是非常关键的技术之一,所以对这一步的理解是图像识别的重点。
分类器设计是指通过训练而得到一种识别规则,通过此识别规则可以得到一种特征分类,使图像识别技术能够得到高识别率。分类决策是指在特征空间中对被识别对象进行分类,从而更好地识别所研究的对象具体属于哪一类。
3图像识别技术的分析
随着计算机技术的迅速发展和科技的不断进步,图像识别技术已经在众多领域中得到了应用。20xx年2月15日新浪科技发布一条新闻:“微软最近公布了一篇关于图像识别的研究论文,在一项图像识别的基准测试中,电脑系统识别能力已经超越了人类。人类在归类数据库imagenet中的图像识别错误率为5.1%,而微软研究小组的这个深度学习系统可以达到4.94%的错误率。”从这则新闻中我们可以看出图像识别技术在图像识别方面已经有要超越人类的图像识别能力的趋势。这也说明未来图像识别技术有更大的研究意义与潜力。而且,计算机在很多方面确实具有人类所无法超越的优势,也正是因为这样,图像识别技术才能为人类社会带来更多的应用。
3.1神经网络的图像识别技术
神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。这里的神经网络是指人工神经网络,也就是说这种神经网络并不是动物本身所具有的真正的神经网络,而是人类模仿动物神经网络后人工生成的。在神经网络图像识别技术中,遗传算法与bp网络相融合的神经网络图像识别模型是非常经典的,在很多领域都有它的应用。在图像识别系统中利用神经网络系统,一般会先提取图像的特征,再利用图像所具有的特征映射到神经网络进行图像识别分类。以汽车拍照自动识别技术为例,当汽车通过的时候,汽车自身具有的检测设备会有所感应。此时检测设备就会启用图像采集装置来获取汽车正反面的图像。获取了图像后必须将图像上传到计算机进行保存以便识别。最后车牌定位模块就会提取车牌信息,对车牌上的字符进行识别并显示最终的结果。在对车牌上的字符进行识别的过程中就用到了基于模板匹配算法和基于人工神经网络算法。
3.2非线性降维的图像识别技术
计算机的图像识别技术是一个异常高维的识别技术。不管图像本身的分辨率如何,其产生的数据经常是多维性的,这给计算机的识别带来了非常大的困难。想让计算机具有高效地识别能力,最直接有效的方法就是降维。降维分为线性降维和非线性降维。例如主成分分析(pca)和线性奇异分析(lda)等就是常见的线性降维方法,它们的特点是简单、易于理解。但是通过线性降维处理的是整体的数据集合,所求的是整个数据集合的最优低维投影。经过验证,这种线性的降维策略计算复杂度高而且占用相对较多的时间和空间,因此就产生了基于非线性降维的图像识别技术,它是一种极其有效的非线性特征提取方法。此技术可以发现图像的非线性结构而且可以在不破坏其本征结构的基础上对其进行降维,使计算机的图像识别在尽量低的维度上进行,这样就提高了识别速率。例如人脸图像识别系统所需的维数通常很高,其复杂度之高对计算机来说无疑是巨大的“灾难”。由于在高维度空间中人脸图像的不均匀分布,使得人类可以通过非线性降维技术来得到分布紧凑的人脸图像,从而提高人脸识别技术的高效性。
3.3图像识别技术的应用及前景
计算机的图像识别技术在公共安全、生物、工业、农业、交通、医疗等很多领域都有应用。例如交通方面的车牌识别系统;公共安全方面的人脸识别技术、指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医学方面的心电图识别技术等。随着计算机技术的不断发展,图像识别技术也在不断地优化,其算法也在不断地改进。图像是人类获取和交换信息的主要来源,因此与图像相关的图像识别技术必定也是未来的研究重点。以后计算机的图像识别技术很有可能在更多的领域崭露头角,它的应用前景也是不可限量的,人类的生活也将更加离不开图像识别技术。
4总结
图像识别技术虽然是刚兴起的技术,但其应用已是相当广泛。并且,图像识别技术也在不断地成长,随着科技的不断进步,人类对图像识别技术的认识也会更加深刻。未来图像识别技术将会更加强大,更加智能地出现在我们的生活中,为人类社会的更多领域带来重大的应用。在21世纪这个信息化的时代,我们无法想象离开了图像识别技术以后我们的生活会变成什么样。图像识别技术是人类现在以及未来生活必不可少的一项技术。