实用大学生数学建模论文(案例18篇)
总结是我们对过去一段时间工作和生活的回顾,是对自己成长的一种评估。怎样才能将复杂的问题简洁明了地总结出来,让读者更易于理解呢?下面是一些值得借鉴的总结写作技巧和经验分享。
大学生数学建模论文篇一
全国大学生数学建模竞赛是由教育部高等教育司和中国工业与应用数学学会联合举办,面向全国大学生的一年一届的群众性科技创新活动。数学建模竞赛由最初的1992年的79所高校314个参赛队发展到2011年来自全国33个省/市/自治区(包括香港和澳门特区)以及新加坡和澳大利亚的1197所高校的17317个参赛队,成为了全国高校中规模最大,在国内外都具影响的大学生课外科技活动。且数学建模不再是要求学生生硬地记住几条数学公式解决几道应用题,它的应用性强,应用领域广泛,所涉及的学科众多,有化学、生物、经济、金融、信息、材料、环境、能源等,所以不仅要求学生能将实际问题转化为数学问题,更要求学生能灵活地运用数学、计算机及其他学科的知识来解决问题,而且参赛形式是3人组队,利用开放的图书馆、互联网等资源共同完成,最后提交一篇论文,学生在这样的学习和竞赛中既能提高自身的学习能力、应用能力、创新能力,又能提高沟通技能、团队协作能力及论文写作能力。
1、数据统计
从表中可以看到虽然西北赛区参赛队数占全国赛区参赛队数的`比例都有所上升,却仍然低于全国年增加参赛队占全国赛区总参赛队的比例。由此我们可以得出西北高校的大学生参与数学建模竞赛的积极性较低。
2、原因分析
造成西北高校大学生参与数学建模竞赛的积极性较低的原因是多方面的:(1)学生缺乏应有的积极性与学生本身的学习能力有一定的关系,与内地高校大学生相比,西北高校大学生的基础较差,专业理论功底薄,动手能力相对较差,而且数学建模对学生的能力要求较高,不仅要求学生能将实际问题转化为数学问题,更要求学生能灵活地运用数学,计算机及其他学科的知识来解决问题。因此,有些学生虽然对数学建模竞赛有参与的想法,且在对数学建模不够了解的情况下参与,而在参与过程中受到知识结构和水平,客观条件的限制,不得不中途退出。(2)学校对数学建模重视不够,对数学建模竞赛活动的宣传、推广、组织力度不到位,以青海大学为例,青海大学近三年的参赛队都只有几队,而且都是教师通过数模选修课选拔出进行参赛的,每年竞赛学校都未发过通知,而且学校很少举办有关建模的讲座,以及开展此类活动,数学建模协会也是在近几年才创办的,由于学校对数学建模不够重视,数学建模的发展失去了最关键的引力,学生由此对数学建模反应冷淡。(3)教师的参与面窄也影响了学生参与数学建模竞赛及活动的积极性,目前数学建模的指导工作大多依靠数学系的老师,而且其他专业的教师对数学建模了解甚少,教师的参与面窄,指导力度非常有限,而且很多学校都是在临近竞赛了才对学生进行一个月左右的集中培训,然而数学建模本身是一项系统工程,牵涉的知识面广,不是短时间的“集中培训”突击应试教育就可以奏效的,这样的指导对学生的作用不大。
二、提高大学生参与数学建模竞赛的积极性的有效途径
1、学校应提高对数学建模的重视程度,积极宣传和组织数学建模活动
西北高校大多都将数学建模作为选修课开设,对学生该课程的考核也很简单,所以笔者建议学校能将数学建模作为一门必修课开设,提前让学生有机会接触,掌握一些数学建模的理论基础,并同时开设数学实验课,要求学生掌握多种数学软件。学校还可通过学校网站,学生社团举办活动定期宣传数学建模,扩大数学建模竞赛的影响力,围绕数学建模开展学术交流,邀请专家及有经验的老师开展数学建模讲座,由此营造一种良好的数学建模气氛。
2、学生应注重自身各方面能力的培养,积极主动地参与数学建模竞赛
学生应有意识地通过各种渠道尽可能多地去了解数学建模竞赛,并在平常的学习过程中丰富自己数学、计算机、工程等各方面的知识,并能将单科知识相互联系和渗透,同时利用互联网了解更多的学科前沿及社会热点,将书本知识应用于这些未解决的社会热点问题上,通过这样长时间的实践,自身的学习能力、创造能力、“应用”数学的能力真正能得到提高,进而加深对数学的热爱。
3、学校教师应增强对数学建模教学的热情,引导学生积极参与数学建模活动
数学建模不仅对学生的能力要求较高,对参与的教师的要求更高,因此教师应该不断地进行知识的扩充,创造性地从事教学,做到将学科前沿及社会热点融入到教学中来,并在学生日常的数学建模活动中给予指导,主动地与学生共同去探讨,教师和学生能相互启发,相互促进,共同提高其能力。
三、结束语
由于西北高校的数学建模竞赛起步晚,且学生的基础较差,专业理论功底薄,加上学校对数学建模重视不够,以及教师的参与面窄,指导积极性不高,势必造成数学建模在校内影响和学生的认知面极其有限的境地,且培养学生数学建模能力也是一项长期而艰巨的任务,因此我们必须坚持不懈,通过学校、学生、教师的共同努力将数学建模竞赛在西北高校中更有效的推广,促使更多的学生积极参与到数学建模竞赛中来,更好地完成学校承载的培养高素质,高技能人才的教育目标。
【参考文献】
大学生数学建模论文篇二
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用
1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用
2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。
2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。
3.数学建模对大学数学及其他学科教师的作用
数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。
随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。
参考文献:
[1]李进华.教育教学改革与教育创新探索.安徽:安徽大学出版社,20xx.8.
[2]于骏.现代数学思想方法.山东:石油大学出版社,1997.
大学生数学建模论文篇三
一.数学建模协会简介
数学建模协会作为一个参加竞赛兼有学术理论性的社团,本着以学术为主,深入钻研的原则,以”创新意识,团队精神,重在参与,公平竞争”为指导思想,已”将平常所学的抽象的数学知识应用到实践或生活中,将平常所学的电脑知识趣味化为特色,以集中对数学建模有兴趣的同学,引导他们学习应用数学领域内各方面知识,培养他们运用理论解决实际问题的能力和团队合作精神,激发他们去学习从未接触过的知识,培养他们动手动脑的积极性,提高学生程序设计和应用计算机解决实际问题的能力,使他们在协会中得到更好的锻炼与发展,挖掘学生中的数学建模人才,为参加更高层次数学建模竞赛选拔精英的目的.
近十年来,大学生数学建模竞赛在培养学子的创新精神,实践能力,团队精神的同时,逐渐成为各高校教学能力的重要评测指标..我们坚信,数学建模协会在团委的关心支持和自身的不懈努力下,一定年选拔和培养更多的数学建模人才,让我院学生在高层次数学建模竞赛中取得更好的成绩.
二.数模背景
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
三.数学建模的定义
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
四.活动背景
本次数模竞赛是学院数学建模协会为响应中国矿业大学“行健杯”的号召,举办的竞赛项目。数学建模作为当代中国大学生普遍喜爱和乐于参加的竞赛,已经成为大学生竞赛中专业性最强技术含量最高的竞赛项目之一。随着数模竞赛的普及率越来越高,影响力越来越达,各地高校纷纷培养数模人才。
五.活动目的
(1)数学建模竞赛作为科技竞赛一种,要体现出科技运动会的价值,展示出社团及矿大学子的风采。
(2)通过本次竞赛,使同学们对数学的本质,数学的价值与数学的作用有更深切的理解与体会。培养同学们数学化的思维方式,从而提升同学们的数学修为,熟悉数学化的符号表达,提升同学们的论文水平,为苏北赛打下扎实的基础。
大学生数学建模论文篇四
【摘 要】本文重点分析了数学建模对当前数学教育教学改革的现实意义,探讨了数学建模对学生应用数学能力的培养,阐述了计算机在数学建模竞赛中的作用和地位,最后介绍了数学建模对数学教学改革的启示意义。
【关键词】数学建模;综合素质;教学改革
长期以来,我国的数学教学中一直普遍存在着重结论而轻过程、重形式而轻内容、重解法而轻应用等弊端,不注重学生数学能力和素质的培养;过分强调对定义、定理、法则、公式等知识的灌输与讲授,不注重这些知识的应用,割断了理论与实际的联系,造成学与用的严重脱节,致使在我们的数学教育体制下培养出来的学生的能力结构都形成了一种严重的病态,主要表现在:数学理论知识掌握得还可以,但应用知识的能力很差,不能学以致用,缺乏创造力和解决实际问题的能力,这些问题使我们的学生在走向工作岗位时上手速度慢,面对新的数学问题时束手无策,不能将所学的知识灵活运用到实际中去。显然,这种教育体制和理念与现代教育理念是背道而驰的,是必须抛弃的。开展数学建模教学或数学建模竞赛,能够培养学生各方面的综合能力,提高学生的综合素质,对于当前数学教育教学改革有着极为重要的现实意义。
1 数学建模能够丰富和优化学生的知识结构,开拓学生的视野
数学建模所涉及到的许多问题都超出了学生所学的专业,例如“基金的最佳适用”、“会议筹备”、“地震搜索”等许多建模问题,分别属于不同的学科与专业,为了解决这些问题,学生必须查阅和学习与该问题相关的专业书籍和科技资料,了解这些专业的相关知识,从而软化或削弱了目前教育中僵死的专业界限,使学生掌握宽广而扎实的基础知识,使他们不断拓宽分析问题、解决问题的思路,朝着复合型人才和具备全面综合素质人才的方向发展。
2 数学建模可以培养学生利用数学知识解决实际问题的能力
数学建模要求建模者利用自己所掌握的数学知识及对实际问题的理解,通过积极主动的思维,提出适当的假设,并建立相应的数学模型,进而利用恰当的数学方法(现有的或新创造的)求解此模型,并对解做出评价,必要时对模型做出改进。这一过程包括了归纳、整理、推理、深化等活动,因此把数学建模引入课堂教学,必将改变目前数学教学只见定义、定理不见问题背景的局面,必将改变知识僵化、学而不用的局面,从而调动了学生学习的积极性,培养了学生解决实际问题的能力。
3 数学建模能够培养学生的创造力、想象力、联想力和洞察力
数学模型来源于客观实际,错综复杂,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,必须积极动脑,而且常常需要另辟蹊径,在这里,常常会迸发出打破常规、突破传统的思维火花,通过这种实践活动,可以培养学生的创造能力,促使他们在头脑中树立推崇创新、追求创新和以创新为荣的意识。在从实际问题中抽象出数学模型的过程中,须把实际关系转化为数学关系,这要求他们敢于想象和联想,此外他们还要从貌似不同的问题中抓住其本质的和共性的东西,这将培养他们把握问题内在本质的能力,即洞察力,可以说,培养学生的这些能力始终贯穿在数学建模的整个过程。
4 数学建模可以培养学生熟练地运用计算机的能力
5 数学建模可以增强大学生的适应能力
通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题,如何进行分析、推理、概括以及如何利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论以后到哪个行业工作,都能很快适应需要。不仅如此,由于建模决不是一件轻而易举的事,需要学生对实际问题进行反复多次的研究、分析、观察和对模型进行反复多次的计算、论证及修改等,整个过程是一个非常艰辛的探索过程,这可以培养学生高度的责任感、坚韧不拔的毅力、遭遇挫折后较强的心理承受能力以及孜孜不倦、精益求精的探索精神,使他们具有良好的心理素质与精神状态。同时数学建模一般都是由几个人组成的团队来完成的,其成功与否,完全取决于大家的密切合作,既要合理分工,又要密切配合,这样又可以培养学生的组织管理能力、协调能力和相互协作的团队精神,这些对他们今后走向工作岗位都是大有裨益的。
此外,数学建模从教育观念、内容、形式和手段都有一定的创新,对数学教学改革有积极的启示意义。首先,数学建模突出了教与学的双主体性关系。教师要根据学生的学习兴趣、能力及特点,不断修正自己的教育内容和方法。学生要对教师所给予的信息有批判性地、创造性地、发展性地能动反映,要在相互讨论、相互启发下寻求更多更好的解答方案。这种双主体的关系是对传统教学方式的根本突破。
其次,数学建模促进了课程体系和教学内容的改革。长期以来,我们的课程设置和教学内容都具有强烈的理科特点:重基础理论、轻实践应用;重传统的经典数学内容、轻离散的数值计算。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的那些内容。因此,这迫使我们调整课程体系和教学内容。比如可增加一些应用型、实践类课程等等;在其余各门课程的教学中,也要尽量注意到使数学理论与应用相结合,增加实际应用方面的内容和例题,从而使教学内容也得到了更新。
再次,数学建模增加了教师对新兴科技知识的传授,拓宽了学生的知识面。这些特点对于目前数学教材中存在的内容陈旧、知识面狭窄及形式呆板等问题,具有借鉴作用。数学建模的试题通常联系新兴的学科,在科学技术迅猛发展的今天,各种新兴学科、边缘学科、交叉学科不断涌现,广博的知识面和对新兴科学技术的追踪能力是获得成功的关键因素之一。
数学建模不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。
【参考文献】
[1]颜筱红,粱东颖。高职院校数学建模教学的研究[j].广西教育,2013(2):54,134.
[3]李大潜。中国大学生数学建模竞赛[m].2版。北京:高等教育出版社,2001.
[4]谢金星。2008高教社杯全国大学生数学建模竞赛[j].工程数学学报,2008(25):1-2.
大学生数学建模论文篇五
1、海选和优选有机结合借助纸质宣传单、大型讲座等方式进行数学建模竞赛的宣传,对其作用以及影响进行充分的讲解,鼓励校园内的同学来积极的进行参加。倘若想要参与其中的同学人数过多时,毕竟参赛名额是有一定限制的,可以利用面试的方式对其进行筛选。为不打击学生的积极性,在条件允许的情况下,可以尽可能保留更多的参赛者,通过面试成绩把大家划分为正式参赛队和业余参赛队。
2、充分利用现有资源在进行数学建模竞赛组队时,应充分的全面考虑有效利用现有的资源。首先是要掌握不同队伍中不同人员属于什么年级,其次了解她们的每个人学习状况以及所学专业等等,通常来说,同一队伍中的每个人最理想的状态是学习不同专业的,如此一来大家可以做到取长补短,理论知识与实践动手两手抓,一个团队里需要出众的知识更需要过人的文笔。如此一来才能保证队伍的整体实力,力争在建模竞赛中取得好成绩。
3、重点培训在对学生进行赛前相关培训时,在培训的过程中,教师可根据自身的擅长专题,来进行相关内容的讲解,与此同时结合不同队伍的自身特点划设侧重点,同学之间的接受能力也是各不同的,能力强的可以开小灶,没有相关竞赛经验的要进行重点培训,这种因人而异的讲解模式确保不同能力的同学,在培训中的过程中都能够学有所获。
4、合理分工密切合作在参加数学建模竞赛的同学得到竞赛试题之后,老师应该及时帮助学生进行试题分析与指导,根据团队内不同人员的实际情况以及试题的具体内容难易,进行针对性的讲解从而对同学们进行合理分工,确保每个人所负责的部分都是自己相较于其他人而言是最擅长的。值得注意的是,虽然进行分工,但这并不是绝对的分割,而是有侧重的合理分工,彼此之间的密切合作才是核心,毕竟建模竞赛中需要的是团队协作,而不是英雄主义。
5、坚持可持续发展培训师资队伍必须要有新鲜血液不断注入,以老带新最佳的血液注入方式,面对朝气蓬勃的参赛学生,培训师资队伍既要有身经百战经验丰富的老师,也要有跟他们拥有更多共同话题的青年教师。在此期间通过不断的学习,青年教师跟同学们共同成长,从而保证师资队伍的可持续发展。
二、大学生数学建模竞赛组织和管理方式的探索
1、进行课程教学并给出有效的教学计划每个学生的知识储备都有着各自的特点,借助良好的教育对学生们的知识架构进行完善,实现培养出学生强大能力的目标,数学建模对学生来说裨益良多,被视作是大学校园中必备课程之一。但是进行课程开展的时候,要根据不同的培训对象大致分为以下两类:第一、以选修课形式开设数学建模竞赛课程,选修课程所面向的群体为整个学校的所有学生。第二、以必修课的方式开设数学建模竞赛课程,必修课就要有针对性,因为并不是所有的学生都需要学习数学,所以必修课针对的群体应该是数学专业的学生。不同性质的课程在教授上应该有所区分,内容的深浅也要有适当的调整。
2、利用建模教学实现知识与能力双培养有效的教学是获得数学建模竞赛好成绩的最佳途径,但是教学的过程中要注重数学知识与实践能力的均衡共同培养,不能过分的注重知识的灌输,而忽略了建模相关能力的培养,对二者的培养必须要并驾齐驱,如此才能真正的'掌握数学建模的精髓,从而在竞赛中取得良好的成绩。
3、数学建模竞赛队员的筛选数学建模所需要的人才是全方面的人才,除此之外还要对数学建模有足够的兴趣,并且还要有足够多的时间来参加培训。以上述条件为基础,报名之后通过面试的测试,然后再从中筛选出相对优秀的学生组成参赛队伍,在筛选的时候要充分的考虑到团队整体知识的涵盖面,不同人之间所擅长的专业不同为最佳。
4、培训培训工作通常被划分为不同的阶段:首先是初级阶段,这一阶段所注重的是对相关知识的培训。从初等模型、简单优化模型、常微分方程模型等建模的基础知识和方法入手由浅入深;其次是拔高阶段,主要以专家讲座为主,邀请建模专家进行系统的讲解,并结合精典范例进行深入剖析,在扩大学生的知识面和视野的同时提升学生的建模能力。
三、结语
通过以上的一系列论述,我们已经对大学数学建模竞赛的队伍组织及管理方式,有了更加清晰的了解和掌握。大学数学建模竞赛对于大学生来说好处颇多,一方面能够使学生们对学习的数学知识有更深的理解与更为灵活的应用,另一方面,通过竞赛中的组队让大家感受到合作的重要性,为以后步入社会的工作打下基础。希望这篇文章能够对针对数学建模的研究有一定的借鉴作用!
参考文献:
[1]韩成标,贾进涛、高职院校参加数学建模竞赛大有可为[j]、工程数学学报,(8)
[2]全国大学生数学建模竞赛赛题讲评与经验交流会在广西大学举行[j]、数学建模及其应用,(04)
[3]钱方红、基于数学模型解决数学建模竞赛队员选拔和组队问题[j]、信息与电脑:理论版,(3)
[4]肖帆,张兰、高职院校数学建模竞赛培训模式研究[j]、延安职业技术学院学报,2017(2)
大学生数学建模论文篇六
1.数学建模对学生创新思维和创新精神的培养
数学建模解决的都是与我们生活息息相关的实际问题,很多都是当前社会比较关注的热点问题,比如开放性小区的建立,人工智能机器人在工作中的应用,这些问题开放性比较强,有明确的目的和要求,但它没有唯一的结果和方法。因此留给学生很大的创新空间,使学生对数学产生了极大的兴趣,他们发现这几年学习的高数、线性代数、概率论与数理统计终于派上了用场。数学建模课程会结合《高等数学》,《线性代数》,《概率论与数理统计》等数学基础学科,还会经常涉及到物理,工程,经济,金融,农林等各个领域各个学科,从不同的学科中找最热门最真实的案例进行教学,这要求学生有很强的自学能力,要不得学习新知识,新思路和新方法,让学生结合所学的数学知识把自己学科的专业知识转化成数学模型,让数学充分发挥它的优势,以达到培养学生的创新能力,更重要的是对学生的知识体系起到了完善的作用。在整个竞赛中从模型建立与求解到写作,都是由学生独立完成,充分发挥了他们的自主性和创造性。
2.数学建模能培养学生团队合作精神和创新创业能力
数学建模竞赛是由三个人组成一个小团队共同处理一个问题,在这个团队中每个人都各有分工,有的人擅长建立模型,有的人擅长计算机编程求解模型,有的人擅长写作,这三个人缺一不可,任何一个人都发挥着举足轻重的作用。通常我们还会设一个队长能协调队员之间的关系和对题目的把控。每个人都有不同的性格,能力,学识,知识结构,在做题的过程中会产生不同的想法,比如在模型的建立中,数据的处理过程中,算法的选取,编程语言的选取,写作的过程中都会有很多的不同,所以每个成员都要有团队精神、相互信任、相互沟通、相互尊重、取长补短、充分发挥集体的力量共同完成一个项目。同时每年无论在培训还是正式比赛过程中由于高强度的脑力活动,强大的心理压力以及队员之间的不和睦都会造成中途退赛,这样无疑是最可惜的。所以,在竞赛中除了培养学生的创新意识和团队合作精神,还培养了大家的心理承受能力,强大的意志力以及与他人沟通交往的能力,是对自己综合素质的一个提高,对未来考研、出国、就业都有很大的帮助。
3.数学建模培养学生的创新创业的.综合能力
通过在大二一年的数学建模选修课,以及假期的集中培训培养了学生的创新创业能力,很大程度上提高了他们思考问题解决问题的能力等综合素质,同时还培养了他们应用计算机去处理各种问题的科技能力。他们学会了各种软件、语言,很多同学会数据挖掘、机器学习以及人工智能,这些都是未来科技的前沿,科技创新是企业发展的动力,现代教育不能只停留在教授学生理论知识的学习,更重要的是理论与实践的结合,走产学研相结合的道路,数学建模很好的把理论与实践相结合,激发学生科研热情,提高学生科研积极性,激发了学生的创新创业能力,为以后工作生活奠定了扎实的基础。为了让建模更好的服务学生,我们将不断的努力,探索和改进培养模式和方法,争取通过数学建模平台使更多的同学受益,培养出更多的具有创新创业能力的大学生。
参考文献:
[2]韦程东.数学建模能力培养方法研究[m].北京:科学出版社,.
大学生数学建模论文篇七
我们仔细阅读了西北民族大学研究生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的',如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从a/b/c中选择一项填写):
我们的参赛论文题目是:
参赛队员(打印):
队员1姓名:;联系电话:;邮箱:;
学院:;专业年级:;
队员2姓名:;联系电话:;邮箱:;
学院:;专业年级:;
队员3姓名:;联系电话:;邮箱:;
学院:;专业年级:;
参赛队员签名:1;2;3。
日期:年月日
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
大学生数学建模论文篇八
1.数学建模对学生创新思维和创新精神的培养
数学建模解决的都是与我们生活息息相关的实际问题,很多都是当前社会比较关注的热点问题,比如开放性小区的建立,人工智能机器人在工作中的应用,这些问题开放性比较强,有明确的目的和要求,但它没有唯一的结果和方法。因此留给学生很大的创新空间,使学生对数学产生了极大的兴趣,他们发现这几年学习的高数、线性代数、概率论与数理统计终于派上了用场。数学建模课程会结合《高等数学》,《线性代数》,《概率论与数理统计》等数学基础学科,还会经常涉及到物理,工程,经济,金融,农林等各个领域各个学科,从不同的学科中找最热门最真实的案例进行教学,这要求学生有很强的自学能力,要不得学习新知识,新思路和新方法,让学生结合所学的数学知识把自己学科的专业知识转化成数学模型,让数学充分发挥它的优势,以达到培养学生的创新能力,更重要的是对学生的知识体系起到了完善的作用。在整个竞赛中从模型建立与求解到写作,都是由学生独立完成,充分发挥了他们的自主性和创造性。
2.数学建模能培养学生团队合作精神和创新创业能力
数学建模竞赛是由三个人组成一个小团队共同处理一个问题,在这个团队中每个人都各有分工,有的人擅长建立模型,有的人擅长计算机编程求解模型,有的人擅长写作,这三个人缺一不可,任何一个人都发挥着举足轻重的作用。通常我们还会设一个队长能协调队员之间的关系和对题目的把控。每个人都有不同的性格,能力,学识,知识结构,在做题的过程中会产生不同的想法,比如在模型的建立中,数据的处理过程中,算法的选取,编程语言的选取,写作的过程中都会有很多的不同,所以每个成员都要有团队精神、相互信任、相互沟通、相互尊重、取长补短、充分发挥集体的力量共同完成一个项目。同时每年无论在培训还是正式比赛过程中由于高强度的脑力活动,强大的心理压力以及队员之间的不和睦都会造成中途退赛,这样无疑是最可惜的。所以,在竞赛中除了培养学生的创新意识和团队合作精神,还培养了大家的心理承受能力,强大的意志力以及与他人沟通交往的能力,是对自己综合素质的一个提高,对未来考研、出国、就业都有很大的帮助。
3.数学建模培养学生的创新创业的.综合能力
通过在大二一年的数学建模选修课,以及假期的集中培训培养了学生的创新创业能力,很大程度上提高了他们思考问题解决问题的能力等综合素质,同时还培养了他们应用计算机去处理各种问题的科技能力。他们学会了各种软件、语言,很多同学会数据挖掘、机器学习以及人工智能,这些都是未来科技的前沿,科技创新是企业发展的动力,现代教育不能只停留在教授学生理论知识的学习,更重要的是理论与实践的结合,走产学研相结合的道路,数学建模很好的把理论与实践相结合,激发学生科研热情,提高学生科研积极性,激发了学生的创新创业能力,为以后工作生活奠定了扎实的基础。为了让建模更好的服务学生,我们将不断的努力,探索和改进培养模式和方法,争取通过数学建模平台使更多的同学受益,培养出更多的具有创新创业能力的大学生。
参考文献:
[2]韦程东.数学建模能力培养方法研究[m].北京:科学出版社,2012.
大学生数学建模论文篇九
摘要:数学建模作为现代应用数学的一个重要组成部分被越来越多的人所重视。本文描述数学建模课程及数学建模竞赛在培养大学生各种能力中的作用。
关键词:数学建模;竞赛;大学生;能力
一、引言
数学建模是运用数学的语言和方法,去描述或模拟实际问题中的数量关系,并解决实际问题的一种强有力的教学手段。数学建模是应用数学的语言和方法解决实际问题的过程,也是一个培养大学生各种能力的综合过程。
大学生数学建模竞赛最早是1985年在美国出现的。1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的大学生开始参加美国的竞赛。自1994年起,教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届,这项活动被教育部列为全国大学生四大竞赛之一。随着全国大学生数学建模竞赛的广泛影响,越来越多的高校组织队员参加该项竞赛,这项竞赛的规模以平均年增长25%以上的速度发展。2008年全国有31个省/市/自治区(包括香港)1,023所院校、12,846个队、38,000多名来自各个专业的大学生参加竞赛,比2007年新增院校15所。2009年全国有33个省/市/自治区(包括香港和澳门特区)1,137所院校、15,046个队、45,000多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)。
20世纪八十年代以来,我国各高等院校相继开设数学建模课程。数学建模课程是在高等数学、线性代数、概率与数理统计之后,为实现理论和实践一体化、进一步提高运用数学知识和计算机技术解决实际问题,培养创新能力所开设的一门广泛的公共基础课。教育必须反映社会的实际需要,数学建模课程进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。
素质教育是新世纪高校高等数学教育改革的一个重要方向。在大学校园中,数学建模课程的开设及数学建模活动的开展,能有效地激发大学生学习的兴趣和积极性,使大学生掌握准确快捷的计算方法和严密的逻辑推理,培养大学生用数学工具分析解决实际问题的能力,是实施素质教育的一种有效途径。
二、数学建模对大学生能力的培养
通过数学建模课程的教学与参加数学建模竞赛的实践,使我们深刻感受到数学建模过程,不仅是对大学生知识和方法的培养,更是对当代大学生各种能力的培养有着深远的意义。
1、有利于提高学生分析解决问题的能力。数学建模教学强调如何把实际问题转化为数学问题,要求建模者利用自己所掌握的数学知识及对实际问题的理解提出合理的假设,从一个个实际问题中抽象出数学问题,建立相应数学模型,利用恰当的数学方法来求解此模型,解决实际问题,并对模型进行评价改进。因此,数学建模教学为大学生架设了由抽象的数学理论知识通向具体的实际问题的桥梁,是使大学生的数学知识和应用能力共同提高的有效方式。大学生通过参与数学建模及竞赛活动,能切身体会到学习数学的实用价值,这是传统教学无法达到的效果,从而激发了大学生学习数学的兴趣,提高了学生分析解决实际问题的能力。
2、有利于培养大学生应用数学的能力。数学建模通过积极主动的发散性思维,培养学生“应用数学”的能力。这是数学教育的根本任务,当然应当成为数学应用于教学目的中的重中之重。应用数学的能力是一种综合能力,它离不开数学运算、数学推理、空间想像等基本的数学能力,但它主要侧重于从实际问题中提出并表达数学问题的能力,运用并初步构建数学模型的能力,对数学问题及模型进行变换化归的能力,对数学结果进行检验和评价、阐释和处理的能力。数学建模过程包括了归纳、整理、推理、深化等过程,因此把数学建模引入课堂教学,学生能够学会如何利用所学知识构造数学模型,求解数学模型,从而解决实际问题,并且做出必要的评价与改进,从而加深对数学知识的理解,提高了应用数学的能力。
3、有利于学生抽象概括能力的培养。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化,抽象、概括为合理的数学结构的过程。抽象是抽取事物的本质属性,使它与其他属性分开;概括是将同类事物的相同属性结合起来。抽象和概括是紧密联系的,只有抽象出事物的本质属性才能进行概括,如果思维不具有概括性也无从进行抽象。抽象能力是指在建模过程中能抛弃无关的非本质因素,从本质上看问题,自觉地进行层层的抽象概括,建立数学模型的能力。数学建模过程使学生对复杂的事物,有意识地区分主要因素与次要因素,本质与表面现象,从而抓住本质解决问题。它有利于提高学生思维的深刻性和抽象概括能力,它主要体现在学生能善于从复杂的事物中把握事物的本质及规律,使学生面对具体问题能有条理地在简约状态下进行思考,并有助于真理的发现。
4、有利于提高大学生自学的能力。数学建模以学生为主,教师事先设计好问题,启发、引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论。学生通过学习数学建模课程,参加数学建模竞赛,需要自学他完全不了解或知之不多的有关学科的专业知识,在这个过程中,有助于培养大学生获取新知识的主动精神,有利于提高大学生的自学能力。
参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、优化、微分方程、计算方法、层次分析法、数学软件包的使用等等讲座,用的学时并不多,多数是启发性的讲一些基本的概念和方法,主要是靠学生自己去学,充分调动学生们的积极性,充分发挥学生们的潜能。同时,在比赛的短短3天时间里,要查阅大量的资料,取其精华,从中寻找到所需要的资料,收集必要的信息,这也必须要求大学生掌握科学的方法。这种能力必将使大学生在未来的工作和科研中受益匪浅。
5、有利于培养大学生的洞察力和想像力。洞察力是人们对个人认知、情感、行为的动机与相互关系的透彻分析。通俗地讲,洞察力就是透过现象看本质,变无意识为有意识。就这层意义而言,洞察力就是学会用心理学的原理和视角来归纳总结人的行为表现。洞察力是指深入事物或问题的能力,更多的是掺杂了分析和判断的能力,可以说洞察力是一种综合能力。
想像力是人在已有形象的基础上,在头脑中创造出新形象的能力。in有一句名言:想像力比知识更重要,因为知识是有限的,而想像力包括世界的一切,推动着社会进步,并且是知识的源泉。这句话可以认为是开设“数学建模”这门课程的一个指导思想。
数学建模的模型假设过程就是根据对实际问题的观察分析、类比、想像,用数理建模或系统辨识建模方法作假设,通过形象思维对问题进行简单化、模型化,做出合乎逻辑的想像,形成实际问题数理化的设想。例如,2006年全国大学生数学建模竞赛中c题“易拉罐的最优设计问题”,第四问要求大学生利用对所测量的易拉罐的“洞察力和想像力”,做出自己的关于易拉罐形状和尺寸的最优设计。大学生做题的过程,无异于是对大学生洞察力和想像力培养的真实体现。
6、有利于提高大学生利用计算机解决问题的能力。首先,计算机是数学建模的得力助手。数学建模过程中,大多数问题灵活多变,很多模型的求解都面临着大量的计算;其次,所建模型是否与实际吻合,常常要用模型的解来判断,而且这种工作,在建立一个实际问题的数学模型中经常要重复多遍。因此,熟练使用计算机计算数学问题是对学生的必须要求。我们倡导大学生尽量利用计算机程序或某些专用的数学应用软件如mathematica、matlab、lingo、mapple等,以及当代高新科技成果,将数学、计算机有机地结合起来去解决实际问题。数学建模教学中结合实验室上机实践,计算机的应用不仅仅表现在数学建模中模型的简化与求解,而且给大学生提供了一种评价模型的“试验场所”,这就有助于培养大学生利用数学软件和计算机解决实际问题的能力。
7、有利于培养大学生的创新能力。创新是指人类为了满足自身的需要,不断拓展对客观世界、自身任职与行为过程和结果的活动。创新能力指人在顺利完成以原有知识经验为基础的创建新事物活动中表现出来的潜在心理品质。我们在教学中应给学生留有充分的余地,鼓励学生开阔视野、大胆怀疑、勇于进取、勇于创新,让学生充分发挥想像力,不拘泥于用一种方法解决问题,从而培养学生的创新能力。在数学建模竞赛中,对给出的具体实际问题,一般不会有现成的模型,这就要求大学生在原有模型的基础上进行大胆的尝试与创新。创新是一个民族的灵魂,只有创新才能发展。而创新教育是以全面、充分发展学生的创造力为核心的教育,它是适应经济时代发展的教育思想。数学建模课程就是培养创新能力的一个极好的载体,数学建模的过程是一个创造性的过程,我们应该充分发挥它在创新能力培养中的作用,它为培养大学生创造性思维能力和创新精神提供了广阔的空间。
8、有利于提高大学生论文写作和表达能力。数学建模成绩的好坏、获奖级别的高低与论文撰写有着密切关系,数学建模的答卷是评价的唯一依据。建模方法独特、结果出色,但如果不能做到结构清晰、重点突出、文字流畅,也将会失去获奖的机会。写好论文的训练,是科技写作的一种基本训练。通过建模竞赛,学生能够学会如何更加准确地阐述自己的观点。所以,数学建模对培养学生的论文写作能力和表达能力,都起到了积极的作用。
9、有利于培养大学生的合作交流能力和团队合作精神。数学建模的问题涉及各个领域,都有一定的深度和广度,所需知识较多,数学建模课程广泛地采用讨论班的教学方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,与此同时,同学之间互相平等,互相尊重,培养了学生合作交流的能力。
参考文献:
[1]姜启源,谢金星,叶俊。数学模型[m].高等教育出版社,2004.
[2]赵静,但奇。数学建模与数学实验[m].高等教育出版社,2004.
[3]刘来福等。数学模型与数学建模[m].北京:北京师范大学出版社,1999.
大学生数学建模论文篇十
大学生数学建模竞赛,由教育部高教司和中国工业与应用数学学会主办,创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,同时成为高等院校文秘站-您的专属秘书,中国最强免费!一项重大的课外科技活动。尤其,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。每年的9月份举办,三人为一组,比赛时间共三天,最终通过论文的形式来体现,以创新意识、团队精神、重在参与、公平竞争为宗旨,旨在培养大学生的创新意识与团队精神。
一、大学生数学建模竞赛培训的重要性
数学建模竞赛作为教育部四大学科竞赛之首,规模最大,影响最大。因此,数学建模竞赛培训显得尤为重要。它有利于让学生尽早了解并掌握建模的基础理论知识及相关应用软件;有利于培养学生分析问题和解决实际问题的能力;有利于培养学生的团队合作精神,使队员间尽早磨合,相互了解;有利于培养学生的创新意识和发散思维;有利于训练学生快速获取有用信息和资料的能力;有利于增强学生的写作技能和排版技术等。
通过参加数学建模竞赛,受到了一次科学研究的初步训练,初步具备了科学研究的能力,提高了自身的分析问题和解决问题的能力以及计算机应用能力,培养了刻苦钻研问题的精神以及与他人友好合作的团队精神,培养了敢于战胜困难的坚强意志和创新能力,这些能力和精神为各自今后的学习和工作都带来了巨大的影响。因为参与数学建模比赛,许多学生收获了知识,取得了荣誉,参赛队员的共同体会是:一次参赛,终生受益。
二、培训中创新方法――案例模板式教学
数学建模培训一般是通过给学生讲解数学建模的基本知识与理论,相关的数学软件及软件包,辅以讲座,上机,讨论等方式,让学生对数学建模的基本方法及相关数学软件的使用有一定的了解,对数学建模的基本思想有基本把握。
在培训中,通过对以往竞赛试题的分析,将近几年的数学建模竞赛分为两大类:固定式问题和开放式问题,采用案例模板式教学对参加建模竞赛的同学进行辅导。其中,固定式问题指让学生对固定的有一定物理背景的问题进行数学建模求解;开放式问题指让学生准确把握题意后能充分根据自己的喜好,选取不同方向或方法进行建模求解。例如:
全国大学生数学建模大赛a题《车道被占用对城市道路通行能力的影响》为典型的固定式题目,要求学生对已给的.视频数据确定通行能力的数学模型,并且求出排队长度。而全国大学生数学建模竞赛b题《20上海世博会影响力的定量评估》为典型的开放式题目,让学生选取感兴趣的某个侧面,利用互联网数据,建立数学模型,使学生在准确把握题意后能充分根据自己的喜好,选取不同方向进行建模求解,相对于固定问题开放性较强。
因此,要求教师在数学建模培训中,既要突出固定式的求解思路,又要注意培养学生开放式的发散思维。具体表现为:在固定求解思路上,要包括深刻理解题意,挖掘问题内部的区别,结合已有的数学建模基础、数学建模基本方法、数学建模特殊方法,通过对具体竞赛题的分析,总结出相关类型问题的数学求解方法;在开放性问题上,充分调动学生的积极性,让学生在查阅相关资料后,进行讨论交流,各抒己见,从各个层面,多角度的找出可行性强的数学建模方法。求解思路如下图1和图2所示。
三、结束语
数学建模培训是对大学数学教学改革的一次推动,是对高校教学水平、管理水平的大检验,是对指导教师综合实力的展示和提升,也是对学生各种能力和综合素质的一次提高,参加过建模的同学收获很多,不但领会到数学之美,建模之乐,还体会到团队合作的强大,专业交叉的益处,可以说对学生是一个专业,性格,心智等全方面的锻炼和提高。
通过对大学生数学建模竞赛培训中教学创新方法的初步探究,数学建模培训变得更加系统化、专业化,为学生参加各级数学建模竞赛提供了更好地学习实践和交流的平台,为培养学生的专业建模能力探索了新的途径和方法。
大学生数学建模论文篇十一
优秀高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
a题城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、??、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10厘米深度)进行取样、编号,并用gps记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1)给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2)通过数据分析,说明重金属污染的主要原因。
(3)分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
大学生数学建模论文篇十二
对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。
数学建模;思想;高等教学
随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。
从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的.学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。
3.1制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。3.2开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。3.3开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。
总之,随着我国经济水平的不断提升,社会对于高职院校的重视力度日益提升,因此对于高职院校当中数学建模思想在高等数学教学当中的应用进行全面的分析是实现学生综合素质得以全面提升的关键措施,这对于学生的长远发展也相当关键,相关教育工作者要加大在这方面的研究力度,力求将高职院校的学生培养成为新时代所需要的人才。
[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[j].景德镇高专学报,20xx,(4).
[2]张卓飞.将数学建模思想融入大学数学教学的探讨[j].湘潭师范学院学报(自然科学版),20xx,(1).
大学生数学建模论文篇十三
将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。
数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。
数学这一学科不仅具有概念抽象性、逻辑严密性、体系完整性以及结论确定性,而且还具备非常明显的应用广泛性,伴随着计算机网络在社会生活中的广泛运用,人们对于实践问题的解决要求越来越精确,这就给应用数学的广泛运用带来了前所未有的机遇。应用数学在这一背景下也已经成为当前高科技水平的一个重要内容,应用数学建模思想的引入与使用能够极大的提升自身应用数学的综合水平以及思维意识,开展应用数学建模不仅能够有效的提升自己的学习热情与探究意识,而且还能够将专业知识同建模密切结合在一起,对于专业知识的有效掌握是非常有益的。
3.1充分重视建模的桥梁作用
建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的`将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。
3.2将建模的方法以及相关理论引入到数学教学中来
我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。
3.3积极参加数学模型课等相关课程与活动
数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。数学实验课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。
上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。
[1]余荷香,赵益民.数学建模在高职数学教学中的应用研究[j].出国与就业(就业版),20xx(10).
[2]关淮海.培养数学建模思想与方法高职高专数学教改之趋势[j].职大学报,20xx(02).
[3]李传欣.数学建模在工程类专业数学教学中的应用研究[j].中国科教创新导刊,20xx(35).
[4]李秀林.高等数学教学中渗透数学建模的探讨[j].吉林省教育学院学报(学科版),20xx(08).
[5]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教.学中的探讨[j].景德镇高专学报,20xx(04).
大学生数学建模论文篇十四
1、从应用数学出发数学建模主要是通过运用数学知识解决生活中遇到实际问题的全过程。要让数学建模思想与大学数学教学课程进行有效的融合,最佳切入点就是课堂上把用数学解决生活中的实际问题与教学内容相融合,以应用数学为导向,训练学生综合运用数学知识去刻画实际问题、提炼数学模型、处理实际数据、分析解决实际问题的能力,培养学生运用数学原理解决生活问题的兴趣和爱好。授课过程中,要改变以往单纯地进行课堂灌输的行为,多引入应用数学的内容,通过师生互动、课堂讨论、小课题研究实践等多种形式灵活多样的教学方法,培养引导学生树立应用数学建模解决实际问题的思想。
2、从数学实验做起要加强独立学院学生进行数学实验的行为,笔者认为数学建模与数学实验有着密切的联系,两者都是从解决实际问题出发,当前的大学生数学实验基本上是应用数学软件、数值计算、建立模型、过程演算和图形显示等一系列过程,因此进行数学实验的全过程就是数学建模思想的启发过程。但是我国的教育资源和教学方针限制了独立学院学生的学习环境和学习资源,能够进行数学实验的条件还是有限的。即使个别有实验能力的学校,也未能进行充分利用,数学实验课的内容随意性较大,有些院校将其降格为软件学习课程或初级算法课。根据调研,目前大部分独立学院未开设此类课程,这是数学建模思想与大学数学教学课程融合的一大损失,不利于学生创新思维能力的提高。各校应当积极创造条件,把数学实验课设为大学数学的必修课,争取设立数学建模选修课,并积极探索、逐步实现把数学建模的思想和方法融入大学数学的主干课程。
3、从计算机应用切入数学是为理、工、经、管、农、医、文等众多学科服务的基础工具,它在不同的领域因为应用程度不同而导致被重视的程度不同。但在当今的信息化时代,计算机的广泛应用和计算技术的飞速发展,使科学计算和数值模拟已成为绝大多数学科的必要工具和常用手段。数学在不同学科领域有了共同的主题,即应用数学建模,通过计算机对各自领域的科学研究、生活问题等进行模拟分析,这成为数学建模思想在跨学科领域交流和传播的一个重要途径。每个领域的教学可以计算机应用为切入点,让数学建模思想与数学授课无缝结合,在提高学生掌握知识能力、挖掘培养创新思维的同时,增加了大学数学课程内容的丰富性、实用性,促进教学手段变革和创新。因此,大学应以适应现代信息技术发展的形势和学生将来的需求为契机,加快改进大学数学课程教学方式,把数学建模的思想和方法以及现代计算技术和计算工具尽快融入大学数学的主干课程当中。
大学数学课程是大学工科各专业培养计划中重要的公共基础理论课,其目的在于培养工程技术人才所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。数学建模课程的必修化,要从能够扩充学生的知识结构,培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力的角度出发,建立适合独立学院学生的数学建模教学内容。日前独立学院开展数学建模活动涉及内容较浅,缺少相应的数学建模和数学实验方而的教材。笔者近几年通过承担此类课题的研究,认为应该加强以下内容的建设:
。2、开设选修课拓展知识领域,让学生可以通过选修数学建模、运筹学、开设数学实验(介绍matlab、maple等计算软件课程),增加建立和解答数学模型的方法和技巧。比如以前用的“文曲星”电子词典里的贷款计算,就是一个典型的运用数学模型方便百姓自己计算的应用。这个模型单靠数学和经济学单方面的知识是不够的,必须把数学与经济学联系在一起,才能有效解决生活中的问题。
3、积极组织学生开展或是参加数学建模大赛比赛是各个选手充分发挥水平、展示自己智慧的途径,也是数学建模思想传播的最好手段。比赛可以让各个选手发现自己的不足,寻找自身数学建模出发点的缺陷,通过交流,还可以拓展学生思维。因此,有必要积极组织学生参入初等数学知识可以解决的数学模型、线性规划模型、指派问题模型、存储问题模型、图论应用题等方面的模拟竞赛,通过参赛积累大量数学建模知识,促进数学建模在教学中扮演更重要的`角色。教师应该对历年的全国大学生数学建模竞赛真题进行认真的解读分析,通过对有意义的题目,如20xx年的《葡萄酒的评价》、《太阳能小屋的设计》,20xx年的《交巡警服务平台的设置与调度车灯线光源的计算》、20xx年的《眼科病床的合理安排》等,与生活相关的例子进行讲解分析,提高学生对数学建模的兴趣和对模型应用的直观的认识,实现学校应用型人才的培养。
4、加快教育方式的转变高等教育设立数学这门学科就是为了应用服务,内容应重点放在基本概念、定理、公式等在生活中的应用上。而传统的高等数学,除了推导就是证明,因此,要对传统内容进行优化组合,根据教学特点和学生情况推陈出新,要注重数学思想的渗透和数学方法的介绍,对高等数学精髓的求导、微分方法、积分方法等的授课要重点放在解决实际生活的应用上。要结合一些社会实践问题与函数建立的关系,分析确定变量、参数,加强有关函数关系式建立的日常训练。培养学生对一些问题的逻辑分析、抽象、简化并用数学语言表达的能力,逐步将学生带入遇到问题就能自然地去转化成数学模型进行处理的境界,并能将数学结论又能很好反向转化成实际应用。
21世纪我国进入了大众教育时期,高校招生人数剧增,学生水平差距较大,需要学校瞄准正确的培养方向。通过对美国教学改革的研究,笔者认为我国的数学建模思想与大学数学教学课程融合必须尽快在大学中广泛推进,但要注意一些问题:第一,数学教学改革一定要基于学生的现实水平,数学建模思想融入要与时俱进。第二,教学目标要正确定位,融合过程一定要与教学研究相结合,要在加强交流的基础上不断改进。第三,大学生数学建模竞赛的举办和参入,要给予正确的理解和引导,形成良性循环。要根据个人兴趣爱好,注重个性,不应面面强求。第四,传统数学思想与现在数学建模思想必须互补,必修与选修课程的作用与角色要分清。数学主干课程的教学水平是大学教学质量的关键指标之一,具备数学建模思想是理工类大学生能否成为创新人才的重要条件之一。两者的融合必将促进我国教学水平和质量的提高,为社会输送更多的实用型、创新型人才。
大学生数学建模论文篇十五
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
关键词:小学数学;建模;运用
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。
一、培养学生数学建模意识
数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题
对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。
大学生数学建模论文篇十六
大量的应用型技能型人才,有效满足了社会各行各业的用工需求。随着国家对高职教育的重视和不断投入,提高教育的教学质量势在必行[1]。数学建模的核心是以数学模型为基础的实际运用,鉴于数学建模的这种特点,国内高职数学教育逐步把数学建模理念融入到课题教学中,提高学生的应用能力。以数学建模理念的告知书明确教学改革要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风[2]。笔者结合自身的教学工作经验,对基于数学建模理念的高职数学教学改革进行了探索,对教学实践中出现的问题进行了分析梳理,以期为高职数学教学改革提供新思路,推动高职数学教学水平的不断提高,培养出具有良好数学素养和专业技能的新型高职人才。
近年来,随着国内产业结构的不断调整,对于高等职业技术人才需求不断增大,社会对高等职业技术教育寄予厚望。但是传统的高职教育由于专业设置不合理,使用教材落后,实训实践场地不足,培养出的学生动手能力差、专业能力不足,面对社会发展的新形势,高职教育必须进行教学改革,提高学生的职业能力和就业竞争力。高职教育不同于普通本科教育,它有以下几方面的特点。
1人才培养目标不同
高职教育和本科教育人才培养目标不同,高职教育是以技术应用型高技能人才为培养目标,所有的教学课程设计和人才培养体系设计都是基于此目标展开的,高职教育主要是为了向产业发展提供生产、服务、管理等一线工作的高级技术应用型人才,专业能力培养和目标职业匹配度高,所以高职教育教学成果最直接的评价就是毕业生的就业竞争力和上岗后的适应能力。
2两者的教学内容不同
高职教育的教学重点是学生要掌握与实践工作关系较为密切的业务处理能力、动手能力与交流能力,把学生的职业能力建设列为教学重点,课程设计专业性强,一旦就业能为企业创造明显的效益,高职教育各专业课程差别较大。
3生源情况不同
在当前的教育教学体系下,高职教育的生源普遍较差,大多是没有希望考上大学,转而进入高职学习,希望通过掌握一定的技术来实现就业,所以高职学生的基础知识普遍较差,学习兴趣不高。数学建模给高职数学教学改革开辟了新思路,数学建模为数学理论学习和工程实践应用搭建了桥梁,在工学结合的基本原则下,采取数学建模教学理念,培养学生的数学素养及动手应用能力是一个非常有效的手段[3]。
1数学建模的概念数学建模是将数学理论和现实问题相结合的一门科学,它将实际问题抽象、归纳成为相应的数学模型,在此基础上应用数学概念、数学定理、数学方法等手段研究处理实际问题,从定性或者定理的角度给出科学的结果[4]。数学建模的发展为数学知识的应用提供了途径,对于现实中的特点问题,可以用数学语言来描述其内在规律和问题,运用数学研究的成果,结合计算机专业软件,通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,转化成为数学问题,借助数学思想建立起数学模型,从而解决实际问题。2基于数学建模思想的教学理念基于数学建模的这种学科特点,可以把数学知识应用化,因此,基于数学建模思想的教学理念可以概括为三个层次:首先,确立提高学生数学应用能力为目标,以提高学生数学学习兴趣为手段,以学习数学建模为途径;其次,结合教学内容,开发相应的数学建模案例,因地制宜、因生制宜,根据专业不同编写相应的校本教材;最后,改进教学方法,创新课堂教学模式,建立课外数学建模学习兴趣小组,带领学生进行数学应用实践活动,鼓励学生参加各种数学建模竞赛[5]。
传统的数学教学模式以教师课堂讲授为中心,学生只能被动的接受,由于学生的基础知识水平不同,掌握新知识的能力也不同,这种没有区分的教学模式教学效果差,往往带来的结果是造成基础差的学生跟不上,对数学感兴趣的学生失去兴趣。基于数学建模理念的高职数学教学改革,是以学生数学应用能力提高为目标,以数学学习兴趣培养为出发点,以数学建模为途径,以教学方式改革为保障,打造高职数学教学改革新模式,全面提高高职教育应用型人才培养水平。
1结合专业特色,突出数学教育的应用性
数学作为高职教育的基础性学科,理论性强,体系性强,对于基础知识薄弱、学习兴趣差的高职生来说感觉难学、枯燥,这是因为高职数学教育没有教会学生如何在专业学习中和以后的工作中如何去用学到的数学知识,学生感觉知识无用自然也就不会主动去学,之所以引入数学建模的思想就是为了让学生利用学到的数学知识去解决实际问题,让学生认识到数学不只是纸面上的写写算算,数学可以把实际问题抽象化,变成数学问题,利用数学的研究方法给实际问题进行科学的指导,这样高职数学教育就不再是课堂上的照本宣科,课下的演算作业,将基础数学教育和学生的专业教育相结合,带来学生用数学解决专业问题是大幅度提高学生专业能力的有效途径。
2结合学生能力,因材施教、因地制宜
高职学校的生源不如普通高校,一般学习基础较差,对于专业实训课并不明显,但是在基础学科教学过程特别突出,很多基础知识掌握不牢,甚至一点印象都没有,教师在上课时要充分考虑到这种情况,在课堂授课时给予实时的补充,以助于知识的过渡。因材施教是我国传统的教育思想,在掌握学生知识水平的基础上,教师要根据不同学习层次学生的具体情况,安排教学内容和设置教学目标,对于基础知识水平不高、学习兴趣较差、学习能力较弱的学生要进行课外辅导。高职基础课教育是专业课学习的基础,授课教师要根据学生的专业学习情况和专业特点,把迁移知识运用能力在课堂上结合学生的专业背景进行辅导,高职数学教育不仅仅是为了学习数学,更多的是发挥数学知识在其专业能力培养中的作用。
3培养学生学习兴趣,促进整体教学质量提高
高职学校的学生学习兴趣普遍不高,尤其是对于学了十几年都感觉头痛的数学,要想提高数学的教学质量,首先必须要培养学生的学习兴趣,长期以来学生在数学学习上已经有了根深蒂固的认识,培养数学学习兴趣很难,但是如果学生没有学习兴趣,教师授课内容、授课方式改革都起不了太大的作用,学生对于数学学习兴趣低由于低年级学习时受到的挫败感,因此要让学生建立学习数学的自信心,让他们体验学会数学的成就感,这样才能逐步培养他们的学习兴趣。教师可以采取以点带面的方式,先选择有一定基础的学生,再从全部课程学习中发现表现优秀的个体,组织参加建模竞赛,进行单独赛前加强指导,用这些榜样的力量提高全体同学的学习积极性。数学建模作为提高高职数学教育教学水平的“点”,能够以其趣味性强,带动学生的学习兴趣,促进高职数学教育教学水平的全面提高。
4改革教学及评价方式,建立面向应用的数学教育体系
由于基于数学建模思想的高职数学教学改革打破了以往的课堂教学方式和考核方式,学生面对的不再是期末的一张试卷,而是一个个数学建模案例,需要学生运用本学期学到的数学知识解决实际问题,教师根据学生对案例的理解程度,数学模型运用能力,实际过程分析和解题技巧等多方面给出评价,同时积极评价、鼓励学生的创新思维,并将其纳入到考核体系当中。通过以上各个方面评价的加权作为最后的评价指标。这种以数学知识应用为基础,直接面向应用的高职数学教育模式能极大的激发学生的学习积极性和知识应用能力,符合高职应用型人才培养理念,对提高高职学生的专业能力也打下了坚实的基础。基于数学建模理念的高职数学教学改革是推动高职应用型人才培养体系建设的新举措,也是推动高职基础课教学水平的重要内容,能有效解决学生学习兴趣低,基础知识掌握不牢,数学知识应用能力低等问题,通过“案例驱动法+讨论法”,引导学生再次对课本知识进行思考和应用,有利于培养学生的创新思维和应用能力。引入数学建模理念教学,把课堂学习的主动权交回给学生,既保证了高等数学原有的知识体系的完整,也可以提高教学效率。通过教学方式和评价方式改革,学生的学习主动性增强,也改变了以往对于数学学习的学习态度。高等数学作为高职教育学生必修的基础课,在培养学生基本数学素养上具有重要作用,是理工类专业课程体系的重要组成部分,基于数学建模理念的高职数学教学改革也为同类基础理论课改革提供了新思路和范例。
[1]孙丽.在高职数学教学改革中应注重数学建模思想的渗透[j].科技资讯,20xx(22):188.
大学生数学建模论文篇十七
数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.
一、影响数学建模教学的成因探析
一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.
二、数学建模教学的有效原则
1.自主探索原则.
学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的`能力.
2.因材施教原则.
教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。
3.可接受性原则.
数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.
大学生数学建模论文篇十八
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从初中数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
关键词:数学;建模;运用
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高初中数学课堂效率及课堂质量的有效手段。初中数学是初中学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,初中数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于初中数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让初中数学教学质量也得到大幅度的提升。初中数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的.将数学建模运用在初中数学教学过程中,是每个初中数学教师都值得思考的问题。
一、培养学生数学建模意识
数学建模是为了解决数学中遇到的问题,数学本身特别是初中数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题
对于初中生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据初中生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到初中数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于初中数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。