数学建模心得体会(优质12篇)
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。心得体会可以帮助我们更好地认识自己,了解自己的优点和不足,从而不断提升自己。那么下面我就给大家讲一讲心得体会怎么写才比较好,我们一起来看一看吧。
数学建模心得体会篇一
数学建模是一种将数学的理论与实际问题相结合的学科,通过运用数学的方法和技巧解决实际问题。作为学生,参与数学建模的活动不仅可以加深对数学理论的理解,还能培养我们的团队合作和问题解决能力。在过去的一段时间里,我参与了一个数学建模项目,下面将向大家分享我在这个过程中的体会与心得。
第二段:团队合作的重要性
在数学建模中,团队合作是至关重要的。团队合作可以促进成员之间的相互交流与合作,发挥每个成员的优势,更好地解决问题。在我们的团队中,每个成员都有自己的专长领域,相互之间的学习和合作让我们的解决方案更加完善。在合作的过程中,我们不仅共同分析问题,还共同讨论解决方案,并将其付诸实践。通过团队合作,我姐更加明确了自己的定位,也学会了倾听他人的建议和意见,这对我日后的个人发展有着重要的影响。
第三段:问题解决能力的提升
参与数学建模的活动让我意识到,作为学生,要想解决实际问题,需要具备扎实的数学知识和良好的逻辑思维能力。在解决问题的过程中,我们要学会分析问题,提出合理的假设,并通过数学方法进行求解。此外,我们还需要学会运用计算机和其他工具,对数据进行收集、整理和分析。通过这些实际操作,我对数学理论的应用能力以及问题解决能力得到了极大地提升。
第四段:实际应用的意义
数学建模实际应用的意义在于将数学理论与现实问题相结合,使得数学变得更加有趣、实用,并且能够直接对社会发展起到积极的推动作用。在我参与的数学建模项目中,我们选择了一个关于产品销售的问题进行研究与分析,通过对市场数据的分析,我们制定了相应的销售策略,并在实际中取得了良好的销售业绩。这不仅提高了我们团队的信心,还让我深刻体会到数学的魅力和丰富的实际应用领域。
第五段:个人收获与展望
通过参与数学建模的活动,我不仅提高了自己的数学水平和问题解决能力,还锻炼了自己的团队合作和沟通能力。在今后的学习和工作中,我将继续学习和探索数学建模的知识,不断提升自己,为社会的发展做出更大的贡献。
总结:
数学建模作为一种将数学理论与实际问题相结合的学科,对学生的发展具有重要影响。通过参与数学建模的活动,我们不仅能够提高自己的数学水平和问题解决能力,还能培养团队合作和沟通能力。数学建模的实际应用意义也使我们充分理解了数学的重要性和实用性。因此,我们应该积极参与数学建模活动,不断学习和探索,为社会的发展做出自己的贡献。
数学建模心得体会篇二
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
数学建模心得体会篇三
数学建模是现代计算机科学中一项重要且具有挑战性的技术,它将数学、计算机和实际问题相结合,在解决实际问题的过程中发挥着重要的作用。在上学期的数学建模课上,我收获了许多宝贵的经验和知识,并深刻体会到了数学建模的魅力所在。
首先,在数学建模课上,我学到了许多解决实际问题的方法和技巧。在课堂上,老师给我们介绍了各种数学模型和算法,如线性规划、整数规划、图论等。通过学习这些方法,我了解到了如何将实际问题抽象成数学模型,并运用数学工具进行求解。例如,在一次课堂讨论中,我们通过建立一个线性规划模型来解决工厂的生产调度问题。这个问题的目标是最大化产出并满足资源的限制条件。通过使用线性规划方法,我们不仅得到了最优生产计划,还大大提高了生产效率。这一经验让我认识到,在解决实际问题时,数学建模能够帮助我们找到最佳的解决方案。
其次,数学建模课上的小组合作项目让我意识到了团队合作的重要性。在数学建模中,一个人的能力和智慧是有限的,而一个团队能够集思广益,共同解决问题。在一个小组合作项目中,我和我的队友们一起合作,共同完成了一个复杂的数学建模任务。在这个过程中,每个人负责一部分工作,然后将各自的成果整合在一起。通过团队合作,我们不仅互相学习和借鉴,还可以共同攻克问题中的难点,取得更好的成果。这种团队合作的精神和方式使我深受启发,并在以后的学习和工作中,也会更加注重与他人的合作。
此外,数学建模课程还增强了我解决问题的能力和分析思维。在数学建模中,我们需要将实际问题进行抽象,找到问题的核心,并设计相应的数学模型。这需要我们具备一定的分析和思维能力。通过课堂上的案例分析和实践项目,我逐渐掌握了分析问题的方法和技巧。例如,在一个实践项目中,我们需要设计一个交通信号灯系统,以解决交通拥堵问题。我们首先需要分析交通流量和拥堵现象的原因,然后将问题抽象成数学模型,并利用数学工具进行求解。通过这个项目,我不仅学会了如何解决实际问题,还培养了我的分析和思维能力。
最后,数学建模课上的实践项目让我领略到数学建模的魅力和实用性。在实践项目中,我们不再局限于纸上谈兵,而是要面对真实的问题和挑战。通过与实际问题的接触,我们能够更好地理解和应用所学的知识,提高解决问题的能力。例如,在一次实践项目中,我们需要设计一个电商平台的推荐算法,以提高用户的购物体验。通过运用数学建模的方法,我们成功地设计出了一个高效而准确的推荐算法,提高了用户的购买率和平台的收益。这个项目的成功让我深刻体会到数学建模的实际应用价值,并激发了我对数学建模的兴趣。
总之,数学建模课程为我打开了一扇全新的门窗,让我深入了解了数学建模的方法和技巧,并培养了解决实际问题的能力。通过课程的学习和实践项目的参与,我不仅获得了对数学建模的深入理解,还提高了自己的分析和思维能力。数学建模的魅力和实用性让我深感其重要性,也激发了我对数学建模相关领域的探索和研究的兴趣。我相信,在未来的学习和工作中,数学建模将继续发挥着重要的作用,而我会不断提升自己的数学建模能力,为解决实际问题做出更大的贡献。
数学建模心得体会篇四
近期,我参加了一场数学建模会议,此次会议不仅让我深入了解了数学建模的基本概念和方法,还加深了我对数学建模在实践中的作用的认识。在会议中,我通过与不同领域的专家和同行的交流,探讨了许多关于数学建模的话题,获得了宝贵的心得体会。在此,我将就本次数学建模会议给我带来的启发和感悟进行总结。
首先,会议使我意识到数学建模在实际问题解决中的核心作用。数学建模是将实际问题抽象为数学模型,并通过数学方法对模型进行求解和分析的过程。在会议中,我看到了许多案例研究,这些案例来自各个领域,包括物理学、经济学、环境科学等。通过数学建模,这些问题得以量化和形象化,进而可以应用各种数学算法进行分析和求解。例如,会议中有专家介绍了通过数学建模和优化算法来优化物流配送路径的案例。通过在数学模型中引入各项参数和约束条件,可以使得物流配送的效率得到最大化。这一案例使我深刻认识到数学建模在实际问题解决中的重要性,而数学建模会议则为我们提供了交流与学习的平台,让我们能够更好地发挥数学建模的作用。
其次,会议让我更加了解数学建模的具体流程和方法。数学建模过程中的几个关键步骤包括问题分析、模型建立、模型求解和结果验证。在会议中,不同领域的专家分享了他们解决实际问题时的数学建模流程和方法。通过他们的分享,我了解到了多种数学建模方法,比如微分方程建模、统计建模和优化建模等。这些方法在实际问题中有不同的应用场景,如流体力学中的微分方程建模,金融风险管理中的统计建模等。此外,会议还引导我们学习了一些常用的数学建模软件和工具,如MATLAB和Python等。通过这些工具的使用,我们可以更方便地进行数学模型的求解和分析。会议的这部分内容,让我对数学建模的方法和工具有了更全面的了解,也为我今后的数学建模实践提供了指导。
第三,会议也让我认识到数学建模需要与其他学科的交叉融合。在数学建模中,数学知识只是其中的一部分,还需要结合其他学科的知识和技巧来解决具体问题。在会议中,有专家分享了他们在数学建模中与其他学科合作的案例。例如,有一位生态学家与数学家合作,通过建立数学模型来研究生态系统的稳定性。他们将生态学中的生物种群动力学方程与数学方法相结合,成功地分析了生态系统中不同物种之间的相互作用和影响关系。这个案例让我认识到数学建模需要不同学科的交叉合作,通过多学科的知识和技巧,才能解决更复杂的实际问题。
最后,会议使我认识到数学建模需要不断学习和实践。数学建模是一个广阔而有深度的学科领域,它不断发展和演进。在会议中,许多专家都强调了数学建模的学习和实践的重要性。他们鼓励我们多读相关的书籍和论文,多参加数学建模竞赛和会议,提高我们的数学建模技能和素质。他们还分享了一些自己的数学建模实践经验,让我们受益匪浅。通过这次会议,我认识到数学建模需要多维度的学习和实践,只有不断提高自己的专业水平,才能更好地应用数学建模解决实际问题。
总之,数学建模会议给了我极大的启发。通过参与会议,我认识到了数学建模在实际问题解决中的核心作用,了解了数学建模的具体流程和方法,认识到数学建模需要与其他学科的交叉融合,并意识到数学建模需要不断学习和实践。这次会议为我今后的学习和实践提供了很好的指导,也让我更加热爱和坚定了从事数学建模的信心和决心。
数学建模心得体会篇五
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。下面是小编精心整理的数学建模学习心得体会 ,供大家学习和参阅。
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
一、数学建模推广月活动。
为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。
二、组织学生参加每年高教社杯全国大学生数学建模竞赛。
一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。
三、年度会员招收工作。
在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。
四、干事招聘会。
在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。
五、数学建模专题讲座。
邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。
六、会员大会。
拟于每年10月下旬和12月上旬,召开两次西安电力高等专科学校数学建模协会会员大会;会间将有请协会的辅导老师:廖虎教授、余庆红、吴文 海等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。
七、西安电力高等专科学校第二届大学生数学建模竞赛。
为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。
八、数学建模经验交流会。
为加深我校学生对数学建模知识的了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。
九、大学生数学建模协会网站的建设与信息服务。
在有关领导的关心帮助下,本协会的网站本着服务会员、交流心得、学习经验、传播知识的原则,对各种数学建模相关知识(论文、软件)进行发布,对校园内各种相关新闻信息进行报道,对各种同学们关心的数学问题进行讨论。本学期,我们将利用网站这一优势,我们将充分利用网络信息传递速度快的特点,在发挥网站宣传平台这一作用的基础上,着手举办一些时代性强、参与性强、灵活生动的网络活动。
数学建模心得体会篇六
一、数学建模推广月活动。
为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。
二、组织学生参加每年高教社杯全国大学生数学建模竞赛。
一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。
三、年度会员招收工作。
在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。
四、干事招聘会。
在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。
五、数学建模专题讲座。
邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。
六、会员大会。
数学建模学习体会(2) 海等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。
七、西安电力高等专科学校第二届大学生数学建模竞赛。
为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。
八、数学建模经验交流会。
为加深我校学生对数学建模知识的了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。
九、大学生数学建模协会网站的建设与信息服务。
数学建模心得体会篇七
在我参加数学建模竞赛的过程中,我深受启发和感动。通过这次经历,我对数学建模有了更深刻的理解,并积累了一些使用心得。以下是我对数学建模的使用心得的总结。
首先,我意识到了数学在现实问题中的重要性。数学建模是将数学方法与实际问题相结合,利用数学模型解决实际问题的过程。在这个过程中,数学扮演着重要的角色。通过数学建模,我们能够分析问题、理清思路、建立模型、进行推导和验证。数学作为一门科学,给予了我们解决问题的思维工具和方法,使得我们能够更加系统和有序地思考和解决问题。
其次,数学建模需要全面的知识储备和综合能力。在实际问题中,我们往往需要运用到多个学科的知识。比如,解决一个流量问题,我们需要运用到数学、物理、统计学等多个学科的知识。因此,我们需要在平时的学习中全面积累各个学科的知识,这样在解决实际问题时才能够游刃有余。除了知识储备外,数学建模还需要综合运用各种方法和技巧。例如,建立模型时,我们可以运用到微积分、代数、概率统计等多种数学方法。同时,通过数学模型的求解,我们还需要运用到计算机编程、数据分析等技术手段。因此,数学建模需要我们具备全面的知识储备和综合能力。
再者,数学建模需要团队协作和沟通能力。在竞赛中,我们组成了一个小组共同完成一个数学建模问题的解决。在这个过程中,大家需要相互协作,共同完成各自的任务。有些问题需要多个小组成员相互协作才能解决。此外,每一个小组成员的意见和建议也都是很重要的,在完成任务的过程中,我们要积极倾听和沟通。通过团队协作和沟通,我们能够更好地发挥各自的长处,共同完善和提高解决问题的方案和方法。
最后,数学建模是一个不断学习和提高的过程。通过数学建模竞赛,我对数学建模有了更深入的了解。但同时,我也发现自己的不足之处。比如,建立模型的能力还需要提高,对于一些复杂问题的求解还存在一定的困难。因此,我决定在之后的学习中加强这方面的训练和提高,提高自己的数学建模能力。此外,我还计划参加更多的数学建模竞赛,通过不断实践和参与,不断学习和提高。
总之,在数学建模竞赛中,我收获了很多。通过这次经历,我对数学建模有了更深刻的理解,并积累了一些使用心得。我意识到数学在现实问题中的重要性,了解到数学建模需要全面的知识储备和综合能力,认识到数学建模需要团队协作和沟通能力,同时,我也意识到数学建模是一个不断学习和提高的过程。我相信,在今后的学习和实践中,我会不断学习和提高自己的数学建模能力,为解决实际问题贡献自己的力量。
数学建模心得体会篇八
计算机学院、软件学院2004级学生张可(保送为南京航天航空大学研究生)
若能将痛苦变成快乐,这世上便不再有痛苦。
人们都羡慕象牙塔里的生活丰富多彩,其实置身其中的我们自己知道,终日为学业奔波并不是那么令人快乐,特别是一边翻看着古旧的被虫蛀过的书籍,一边为自己的所学能否用于日后的工作而忧虑的时候。
时下流行空虚和郁闷,是日无聊,我也空虚和郁闷一把。不经意间在网上发现了数学建模竞赛正在报名中,我想反正也不会影响学业,或许还会有促进,就决定试一试。也许就是这不经意的一次尝试,改变了我的一生。
我曾怀着对数学巨大的热情在知识的海洋遨游,但枯燥冗繁的计算令我心灰意冷,这些计算能有什么作用?令我耗费巨大精力的学习,究竟能给我带来什么?同学们有的做社会实践、有的参加学生会,而我为了学习每天往返于自习室和宿舍,难道就为学成一个百无一用的书呆子?不!我要抓住这次竞赛的机会,在自己的大学生活中有所展现。
直到暑期培训,我才对数学建模有了深入的了解。我被其中蕴含的丰富知识倾倒,从不曾想到小小的数字竟然能将纷繁的各种事物演绎的如此精彩,真是太奇妙了!这一次我是真正的投入了,不再有对未来的忧虑,不再有对枯燥计算的厌恶,不再有迷茫时的踌躇,我像一只看到灯塔的船,飞速驶向目的地。
暑期培训的是一些基础知识,我又自己学习了一个暑假,感觉脑子里像个杂货铺,乱乱的理不出头绪。开学后我们在老师的带领下开始了实战训练,渐渐的,我脑中的知识被“应用”这条主线项链般的穿了起来,我对自己所学的知识有了更系统的了解,有的知识联系起来想一想,还会有更多的收获,我对这种学习有了更深的兴趣,虽然即将参加保送生的复试,但现在我是欲罢不能了。每天我都忙忙碌碌,上课、自习、图书馆、微机室,虽然没空去逛街、买衣服,但我心里依然很高兴、很充实。
参加竞赛是一个很大的考验,我是个从来都按时作息的人,熬一夜下来还真是很难受。除了身体的不适,我还得应付心理的压力。随着复试的日益临近,我却无法复习,这可是很危险的,万一…我不敢想,但我知道:自古华山一条路!
呵呵,功夫不负有心人!有投入就有回报。回想以前与枯燥计算打的交道,此次不知复杂多少倍,然而我却毫不以为苦。是数学建模充实了我的生活,是数学建模帮我把痛苦变成了快乐,是数学建模让我的大学生活焕发光彩!真心感谢带我进入数学建模神圣殿堂的老师,是您让我发现了如此精彩的世界;感谢共同奋战的队友们,你们的友谊让我充满力量;感谢数学建模,你是我生活中新的起点,相信我会有更美好的明天!
数学建模心得体会篇九
数学建模是现代应用数学中的一项重要技术,它可以将实际问题抽象为数学模型,并运用数学方法进行求解和分析。随着数学建模的应用场景不断扩大,越来越多的人开始了解和使用这一技术。我也通过参与数学建模比赛和实践项目,有了一些使用数学建模的心得体会。
首先,在实际问题中理解数学模型的意义是非常重要的。数学模型作为抽象工具,能够将复杂的实际问题简化为数学公式和方程。通过建立数学模型,我们可以从更高的角度来理解问题的本质,并用数学的方法进行求解。比如,在一次汽车行驶的过程中,我们可以建立关于汽车速度、油耗等因素的数学模型,从而帮助我们预测汽车的油耗量并优化驾驶策略。因此,理解数学模型的意义对于正确应用数学建模技术非常重要。
其次,选择适当的求解方法对于数学建模的成功至关重要。在解决实际问题时,我们常常面临多种求解方法的选择,如常规的代数求解方法、迭代方法、数值逼近方法等。不同的问题需要不同的求解方法,选择合适的方法能够提高解题效率和准确性。比如,在优化问题中,我们可以运用拉格朗日乘子法或者线性规划等方法,从而找到问题的最优解。因此,熟悉各种求解方法,并能够灵活运用,是使用数学建模技术的关键所在。
此外,合理的问题假设和精确的数据采集对于数学建模的成功也至关重要。在建立数学模型时,我们常常需要根据问题的实际情况进行合理的简化和假设。合理的问题假设可以使得模型更加简洁和易于求解,但也需注意假设不能过于简单化导致模型失去实用性。同时,精确的数据采集对于数学模型的准确性和可靠性也非常重要。在数据采集过程中,我们应尽量避免误差和主观因素的干扰,保证数据的真实性和准确性。因此,合理的问题假设和精确的数据采集是数学建模过程中必要的环节。
最后,在实际问题中多思考并与他人交流,能够有效提高数学建模的质量和效果。在数学建模过程中,我们常常遇到问题的复杂性和多样性,这时候多角度思考和与他人交流可以拓宽思维的空间,并能够发现问题的更多解决办法。通过与他人交流,可以借鉴他人的思路和经验,提高建模的质量和创新性。比如,在参加数学建模比赛中,我们常常需要与队友合作,共同思考问题并交流解决方法,这不仅能够加强团队的凝聚力,还能够从中获得宝贵的学习经验。因此,多思考并与他人交流是数学建模过程中的重要环节。
总之,使用数学建模技术需要正确理解模型的意义,选择合适的求解方法,进行合理的问题假设和精确的数据采集,同时多思考并与他人交流。通过不断的实践和学习,我深刻认识到数学建模的重要性和应用价值。今后,我期待在更多的实践项目中应用数学建模技术,为解决实际问题做出更大的贡献。
数学建模心得体会篇十
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学建模心得体会篇十一
- 数学建模心得体会
- 数学建模学习心得体会
- 数学建模心得体会
通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。
知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。
实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。
探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。
同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。
一年一度的全国数学建模大赛在今年的9 月21 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1. 团队精神:
团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2. 有影响力的leader:
在比赛中,leader 是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader 不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a 题,有人想做b 题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader 应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3. 合理的时间安排:
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4. 正确的论文格式:
论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6 要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5. 论文的写作:
我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6. 算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple, mathcad,lindo,lingo,sas 等),这里提供十种数学建模常用算法,仅供参考:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)
以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,也希望广大同学能够积极参与到这项活动当中来。
数学建模心得体会篇十二
数学建模是一门应用数学的学科,通过对实际问题的建模与求解,可以帮助人们更好地理解、分析和解决各种实际问题。作为一门新兴的学科,我在学习数学建模的过程中有了很多心得体会。
首先,数学建模是一个全新的学科,需要掌握一定的数学知识。在学习数学建模前,我首先需要掌握一定的数学基础知识,包括高等数学、概率论与数理统计等。这些数学基础知识是建立数学模型的基础,只有掌握了这些知识,才能更好地理解和应用数学建模的方法和技巧。
其次,数学建模需要具备一定的实际问题解决能力。在学习数学建模的过程中,我发现数学建模的关键在于解决实际问题。解决实际问题需要具备一定的实践能力和创新思维,只有将数学方法与实际问题相结合,才能得到切实可行的解决方案。因此,我通过参加实际建模竞赛和实践活动,提升自己的实际问题解决能力。
另外,数学建模需要不断的学习和实践。数学建模是一个不断学习和实践的过程,我深刻体会到了这一点。在学习数学建模的过程中,我不仅需要学习数学知识,还需要不断研究和了解各种实际问题,并应用数学方法进行建模与求解。通过不断的学习和实践,我能够不断地提高自己的数学建模能力,并取得更好的成果。
此外,数学建模需要团队合作。在实际建模过程中,我发现数学建模需要团队合作。解决实际问题需要不同领域的知识和专业技能,一个人很难完成所有的工作。团队合作可以发挥每个人的优势,将各种专业知识和技能有机地结合起来,提高工作效率和解决问题的质量。因此,我通过参加团队建模和合作项目,锻炼自己的团队合作能力。
最后,数学建模需要不断开拓思维和提高创新能力。在学习数学建模的过程中,我发现数学建模需要不断开拓思维和提高创新能力。解决实际问题需要灵活运用各种数学方法和技巧,并能够提出新颖的解决方案。因此,我通过自主学习、交流和思维训练,不断开拓思维和提高自己的创新能力。
总之,数学建模是一门应用数学的学科,通过对实际问题的建模与求解,可以帮助人们更好地理解、分析和解决各种实际问题。在学习数学建模的过程中,我不仅需要掌握一定的数学基础知识,还需要具备一定的实际问题解决能力,并进行不断的学习和实践。同时,数学建模也需要团队合作和开拓思维,提高创新能力。通过这些经历,我对数学建模有了更深刻的理解和认识。