2023年数据心得体会一句话 心得体会数据(优秀14篇)
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么我们写心得体会要注意的内容有什么呢?那么下面我就给大家讲一讲心得体会怎么写才比较好,我们一起来看一看吧。
数据心得体会一句话篇一
数据已成为当今社会中不可或缺的一环,它如同一座金矿,蕴藏着无数的宝藏和价值。在数字化时代的今天,我们每一个人都会产生大量的数据,如何从这些数据中提炼出价值,并应用于实践中,成为了我们需要面对和解决的问题。在这个过程中,我的成长与思考也在不断跟随着数据的发展不断演进。
第二段:个人成长的心得体会
在过去的一年中,我不断学习和实践数据处理的技能。在各种数据分析的项目中,我通过不断地尝试和实践,逐渐掌握了数据可视化、数据预处理、数据建模、数据分析和数据挖掘等多种技术和工具,同时也通过与业务人员的深入交流,更加理解了数据的背后所蕴含的价值。在这个过程中,我也意识到了这些技术的局限性和不足,需要不断地学习和进步。数据与技术是一对不可分割的双胞胎,只有不断地学习和实践,才能更好地资源利用。
第三段:社会实践的体验
除了自身成长,我也将所学技术运用到了社会实践中。在一次为学校和社会服务的公益活动中,我带领着团队进行了数据分析,从海量数据中提取对当地消费者最有价值的信息,并给出了建议。这次实践让我深刻体会到,在真实环境中应用数据,需要直面各种现实的情况,需要将数据分析和业务结合起来,才能才能更好的解决问题。只有随着新的技术和新的思路不断地学习和应用,才能在数据领域不断迈进一步。
第四段:领导力的体现
在数据分析的过程中,如何将数据应用到业务中,是一种与领导力相关的过程。作为一个领导者,我领导着团队,一边提高着数据分析的能力,一边帮助团队成员了解业务的背景和行业知识,共同将数据应用到业务场景中。在这个过程中,我也深刻体会到,领导力不仅仅是一种管理和指导的能力,也是一种响应时代变革的能力,是对未来趋势的深刻认识和洞察力。
第五段:总结
数据分析的知识和技术,是一种跨界的应用能力,在当今社会中越来越受到重视。因此,我们需要不断学习和实践,从数据中提取出有用的信息,为我们的生活和工作创造更多的价值。同时,我们也要充分认识到,技术是为业务服务的,只有将技术与业务结合起来,才能让数据发挥出更大的价值。在未来的发展中,我们需要不断提高自身的数据分析能力,同时也需要更好地理解并运用数据,为未来的发展铺平道路。
数据心得体会一句话篇二
一、平台搭建
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件
问题四:在此处的sql server的导入和导出向导,这个过程非常的长。
解决办法:在此处的sql server的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2 图一:
图二:
解决办法:解决办法: 图2步骤1:从图1到图2后,将目标下的“服务器” 成自己的sql server服务器名称行sql servermanagement studio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了
二、心得体会
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
理大数据的规模。大数据进修学习内容模板:
linux安装,文件系统,系统性能分析 hadoop学习原理
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。
总结,大数据时代是信息化社会发展必然趋势,在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。
三、结语
数据心得体会一句话篇三
云数据是当今信息科技中的重要一环,随着云计算技术的不断发展,对于个人用户和企业来说,云数据已经变得无处不在。云数据给我们的生活带来了很多便利和机遇,通过云数据的存储和处理,我们可以随时随地获取我们所需的信息,提高了我们的工作效率,也为企业的发展提供了无限可能。在使用云数据的过程中,我深深感受到了它所带来的种种好处,并得出了以下几点心得体会。
首先,云数据的存储和备份功能非常强大。传统的数据存储往往需要我们花费大量的人力和物力来进行维护和管理,同时还需要考虑到数据安全的问题。而云存储则解决了这些问题,只需要一个互联网连接就可以实现数据的存储和备份。无论是个人用户还是企业,只要有云数据的支持,数据的安全性就可以得到更好的保障。通过云数据的存储和备份,我们可以在任何时间、任何地点访问我们的数据,并且不会受到设备损坏、数据丢失等问题的困扰。
其次,云数据为我们提供了更多的合作和分享机会。云数据的特点之一就是可以实现多人同时编辑、共享文件和信息。这为个人用户和企业带来了更高效的合作和沟通方式。无论是开展团队项目还是远程办公,云数据都提供了便利的条件。通过云数据的支持,我们可以随时与团队成员进行信息交流和文件传送,避免了传统的邮件发送和文件传输的繁琐过程。同时,云数据还可以让我们轻松地与朋友、家人分享照片、视频等文件,增加了生活的乐趣。
此外,云数据的智能化分析功能为个人用户和企业的决策提供了有力的支持。云数据不仅可以存储和备份我们的数据,更重要的是它可以对这些数据进行智能化分析,提取出有价值的信息和规律。对于个人用户来说,云数据的智能化分析可以帮助我们更好地了解自己的行为习惯、健康状态等,从而更好地调整自己的生活方式。对于企业来说,云数据的智能化分析可以帮助我们预测市场需求、优化生产流程等,提升企业的竞争力。云数据的智能化分析功能极大地拓展了我们的信息处理和决策能力。
最后,云数据的发展也带来了一些挑战和问题。随着云数据的规模越来越大,数据隐私和安全性成为云数据发展的一个瓶颈。个人用户和企业需要对自己的数据进行更有效的管理和保护,以防止数据泄漏和滥用的风险。同时,云数据也需要提供更加友好和便捷的操作界面,让用户更加方便地使用和管理自己的数据。对于企业来说,云数据的数据分析和挖掘能力也需要不断提升,以满足企业更高级别的信息处理需求。
综上所述,云数据的兴起和发展给我们的生活带来了极大的变化,同时也为个人用户和企业提供了更多的机会和挑战。通过云数据的存储、备份、合作和智能化分析功能,我们可以更好地管理和利用自己的数据,提高生产力和决策能力。然而,我们也需要面对与云数据相关的一系列问题和挑战,不断探索和创新,使云数据更好地服务于个人用户和企业的需求。
数据心得体会一句话篇四
本次课程设计所用到的知识完全是上学期的知识,通过这次课程设计,我认识到了我对数据结构这门课的掌握程度。
首先我这个课程设计是关于二叉树的,由于是刚接触二叉树,所以我掌握的长度并不深。在编程之前我把有关于二叉树的知识有温习了一遍,还好并没有忘掉。二叉树这章节难度中上等,而且内容广泛,所以我只掌握了百分之六七十。
然后,在编程中我认识到了自己动手能力的不足,虽然相比较大二而言进步很大,但是我还是不满意,有的在编程中必须看书才能写出来,有的靠百度,很少是自己写的。还好,我自己组装程序的能力还行,要不这东拼西凑的程序根本组装不了。在编程中我还认识到了,编程不能停下,如果编程的时间少了,知识忘的会很快,而且动手也会很慢。同时,同学之间的合作也很重要,每个人掌握的知识都不一样,而且掌握程度也不一样,你不会的别的同学会,所以在大家的共同努力下,编程会变得很容易。在这次编程中,我了解到了自己某些方面的不足,比如说链表的知识,虽然我能做一些有关于链表的编程,但是很慢,没有别人编程的快,另外,二叉树和图的知识最不好掌握,这方面的知识广泛而复杂。以前,没动手编程的时候觉得这些知识很容易,现在编程了才发现自己错了,大错特错了,我们这个专业最重视的就是动手编程能力,如果我们纸上写作能力很强而动手编程能力很差,那我们就白上这个专业了。计算机这个专业就是锻炼动手编程能力的,一个人的理论知识再好,没有动手编程能力,那他只是一个计算机专业的“入门者”。在编程中我们能找到满足,如果我们自己编程了一个程序,我们会感到自豪,而且充实,因为如果我们专研一个难得程序,我们会达到忘我的境界,自己完全沉浸在编程的那种乐趣之中,完全会废寝忘食。编程虽然会乏味很无聊,但是只要我们沉浸其中,你就会发现里面的`乐趣,遇到难得,你会勇往直前,不写出来永不罢休;遇到容易的,你会找到乐趣。编程是很乏味,但是那是因为你没找到编程重的乐趣,你只看到了他的不好,而没有看到他的好。其实,只要你找到编程中得乐趣,你就会完全喜欢上他,不编程还好,一编程你就会变成一个两耳不闻窗外事的“植物人”。可以说只要你涉及到了计算机,你就的会编程,而且还要喜欢上他,永远和他打交道,我相信在某一天,我们一定会把他当作我们不可或缺的好朋友。
“数据结构与算法课程设计”是计算机科学与技术专业学生的集中实践性环节之一,是学习“数据结构与算法”理论和实验课程后进行的一次全面的综合练习。其目的是要达到理论与实际应用相结合,提高学生组织数据及编写程序的能力,使学生能够根据问题要求和数据对象的特性,学会数据组织的方法,把现实世界中的实际问题在计算机内部表示出来并用软件解决问题,培养良好的程序设计技能。
当初拿到这次课程设计题目时,似乎无从下手,但是经过分析可知,对于简单文本编辑器来说功能有限,不外乎创作文本、显示文本、统计文本中字母—数字—空格—特殊字符—文本总字数、查找、删除及插入这几项功能。于是,我进行分模块进行编写程序。虽然每个模块程序并不大,但是每个模块都要经过一番思考才能搞清其算法思想,只要有了算法思想,再加上c程序语言基础,基本完成功能,但是,每个模块不可能一次完成而没有一点错误,所以,我给自己定了一个初级目标:用c语言大体描述每个算法,然后经调试后改掉其中明显的错误,并且根据调试结果改正一些算法错误,当然,这一目标实现较难。最后,经过反复思考,看一下程序是否很完善,如果能够达到更完善当然最好。并非我们最初想到的算法就是最好的算法,所以,有事我们会而不得不在编写途中终止换用其他算法,但是,我认为这不是浪费时间,而是一种认识过程,在编写程序中遇到的问题会为我们以后编写程序积累经验,避免再犯同样的错误。但是,有的方法不适用于这个程序,或许会适用于另外一个程序。所以,探索的过程是成长的过程,是为成功做的铺垫。经过努力后获得成功,会更有成就感。
在课程设计过程中通过独立解决问题,首先分析设计题目中涉及到的数据类型,在我们学习的数据存储结构中不外乎线性存储结构及非线性存储结构,非线性存储结构中有树型,集合型,图型等存储结构,根据数据类型设计数据结点类型。然后根据设计题目的主要任务,设计出程序大体轮廓(包括子函数和主函数),然后对每个子函数进行大体设计,过程中错误在所难免,所以要经过仔细探索,对每个函数进行改进。
程序基本完成后,功能虽然齐全,但是程序是否完善(例如,输入数据时是否在其范围之内,所以加入判断语句是很有必要的)还需运行测试多次,如有发现应该对其进行改善,当然要在力所能及的前提下。
课程设计过程虽然短暂,但是使我深刻理解数据结构和算法课程对编程的重要作用,还有“数据结构与算法”还提供了一些常用的基本算法思想及算法的编写程序。通过独立完成设计题目,使我系统了解编程的基本步骤,提高分析和解决实际问题的能力。通过实践积累经验,才能有所创新。正所谓,良好的基础决定上层建筑。只有基本功做好了,才有可能做出更好的成果。
数据心得体会一句话篇五
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
大数据的心得体会篇4
数据心得体会一句话篇六
这学期开始两周时间是我们自己选题上机的时间,这学期开始两周时间是我们自己选题上机的时间,虽然上机时间只有短短两个星期但从中确实学到了不少知识。上机时间只有短短两个星期但从中确实学到了不少知识。数据结构可以说是计算机里一门基础课程,据结构可以说是计算机里一门基础课程,但我觉得我们一低计算机里一门基础课程定要把基础学扎实,定要把基础学扎实,然而这次短短的上机帮我又重新巩固了c语言知识,让我的水平又一部的提高。数据结构这是一门语言知识让我的水平又一部的提高。数据结构这是一门知识,纯属于设计的科目,它需用把理论变为上机调试。
纯属于设计的科目,它需用把理论变为上机调试。它对我们来说具有一定的难度。它是其它编程语言的一门基本学科。来说具有一定的难度。它是其它编程语言的一门基本学科。我选的.上机题目是交叉合并两个链表,对这个题目,我选的上机题目是交叉合并两个链表,对这个题目,我觉得很基础。刚开始调试代码的时候有时就是一个很小的错觉得很基础。刚开始调试代码的时候有时就是一个很小的错调试代码的时候误,导致整个程序不能运行,然而开始的我还没从暑假的状导致整个程序不能运行,态转到学习上,每当程序错误时我都非常焦躁,态转到学习上,每当程序错误时我都非常焦躁,甚至想到了放弃,但我最终找到了状态,一步一步慢慢来,放弃,但我最终找到了状态,一步一步慢慢来,经过无数次的检查程序错误的原因后慢慢懂得了耐心是一个人成功的必然具备的条件!
同时,通过此次课程设计使我了解到,必然具备的条件!同时,通过此次课程设计使我了解到,硬件语言必不可缺少,要想成为一个有能力的人,必须懂得件语言必不可缺少,要想成为一个有能力的人,硬件基础语言。在这次课程设计中,硬件基础语言。在这次课程设计中,虽然不会成功的编写一个完整的程序,但是在看程序的过程中,个完整的程序,但是在看程序的过程中,不断的上网查资料以及翻阅相关书籍,通过不断的模索,测试,发现问题,以及翻阅相关书籍,通过不断的模索,测试,发现问题,解决问题和在老师的帮助下一步一步慢慢的正确运行程序,决问题和在老师的帮助下一步一步慢慢的正确运行程序,终于完成了这次课程设计,于完成了这次课程设计,虽然这次课程设计结束了但是总觉得自已懂得的知识很是不足,学无止境,得自已懂得的知识很是不足,学无止境,以后还会更加的努力深入的学习。力深入的学习。
数据心得体会一句话篇七
云计算技术的快速发展和广泛应用,使得云数据成为企业信息化时代的重要组成部分。在云数据的运营和管理过程中,我深深地体会到了其带来的诸多好处和挑战。在以下的文章中,我将分享我的云数据心得体会。
第一段:云数据的概念和优势
云数据是指将数据存储在网络上的分布式服务器上,以供用户随时随地进行数据访问和处理的一种技术。云数据的优势主要体现在三个方面:一是高可用性和可靠性,云数据能够通过复制和备份机制,防止数据丢失和故障发生;二是灵活性和可扩展性,用户可以根据自身需求动态调整数据存储和处理的能力;三是成本效益,云数据使用按需付费模式,用户只需支付实际使用的资源,节约了硬件设备和维护成本。
第二段:云数据的管理和安全
云数据的管理是一个复杂而重要的任务。首先,需要对数据进行分类和标记,以便更好地进行存储和检索。其次,用户还需制定合适的数据保护策略,如加密、备份和灾备等,保障数据的安全性和可用性。此外,云数据的隐私和合规问题也需要引起足够的重视。为此,云服务提供商需要加强数据隐私保护和合规审核,以建立用户信任。
第三段:云数据的分析和挖掘
云数据能够存储和处理巨大的数据量,为用户提供了更多维度和深度的数据分析和挖掘功能。用户可以借助云数据的强大计算能力,从海量数据中发现潜在的商机和关联规律,优化业务决策和流程。此外,云数据还能够与人工智能和机器学习相结合,提供更智能化的数据处理和分析服务。
第四段:云数据的问题和挑战
尽管云数据具备许多优势,但在实际应用中仍然面临一些问题和挑战。首先,数据安全性和隐私保护始终是用户最为关注的问题。尽管云服务提供商加强了数据保护措施,但用户仍需对自身敏感信息进行风险评估和隐私保护。其次,云数据的速度和稳定性也是一个挑战,特别是在网络条件较差的环境下。为此,用户需要选择可靠的云服务提供商,并合理规划和管理数据传输和处理的时间。最后,云数据的规模和复杂性对管理和维护提出了更高的要求,用户需要具备相关技术和能力,才能更好地利用和管理云数据。
第五段:云数据的未来发展
随着人工智能、物联网和大数据技术的不断发展和融合,云数据的应用前景也更加广阔。未来,云数据的重点将是智能化和场景化。云数据将更加注重用户个性化需求,并将不断融入各行各业,为企业提供更高效和智能的数据服务。同时,云数据的安全性和隐私保护也将得到进一步加强,以满足用户对数据安全和隐私保护的需求。
综上所述,云数据作为一种新兴的数据存储和处理方式,具备多种优势和应用前景。在实际应用过程中,我们需要合理规划和管理云数据,提高数据安全性和利用价值。相信随着技术的不断进步和创新,云数据将为企业信息化带来更多便利和价值。
数据心得体会一句话篇八
通过这次课程设计使我进一步达到理论与实际相结合,提高了自己组织数据及编写程序的能力,使我们能够根据问题要求和数据对象的特性,学会数据组织的方法,把现实世界中的实际问题在计算机内部表示出来并用软件解决问题,培养良好的程序设计技能,掌握设计程序的思路,学会用计算机语言编写程序,以实现所需处理的任务,锻炼自己的动脑能力,学会用自己的思路解决现实中的实际问题,虽然一开始也走了一些弯路不过在同学和老师的'点拨下完成了该程序,这次课程设计中遇到了很多问题,一开始准备用二维数组存放的可考虑到同一个学校同一个项目有好几个人参加,就不能用二维数组了,如果每个学校都申请一个二维数组也非常不方便,还是用顺序表方便也不浪费空间,在这次课程设计的过程中虽然很多次都参照了课本及资料,不过这使我更加熟悉了顺序表以及结构体的定义及实现,调试过程中也遇到了一些问题也都是自己独立思考完成的,还有一个体会是,遇到不会的地方可以参考课本也可以去图书馆或网上查资料,当然主要思路有了也就简单点了。在老师的答辩指指导下,程序数组那块程序的书写老师问我为什么是那样的,当时写这块程序的时候是看书上数组那块程序再加上自己的主观想法觉得就是这样写的,虽然这块程序当时那种主观想法是写对了,但是经过老师的答辩提问才知道虽然是写对了,但是这种思考和想法是错误不科学的,真正的是因为第2次循环是因为第一次释放了一个。所以通过这次课程设计让我懂得了一个很重要的道理,就是以后如果哪地方有一点迷惑,有一点不懂的地方不能凭自己主观的思考和想法觉得应该是这样的,一定要找老师问清楚为什么是这样的,一定要把每步每个小程序都要搞的十分的清楚,这真是个很好的收获。还有就是这个程序的男女问题上,开始准备在结构体中加一个sex的点,大使那样对与男女项目还是有点麻烦,后来在同学的提醒下,通过参赛项目号就可以解决了,比m大就是女子项目,比m小或者等于m就是男子项目。这样就可以很完美地解决这个问题了。
其实,当你实验遇到问题时,自己会通过很多途径去解决它,没有解决时,心急如焚,解决之后的那种快感是前所未有的,这也许就是付出了行动之后的收获吧!
这也教会了我们以后在社会上,遇见了事情不可怕,只要不被困难击倒,解决了它,那样我们就是胜利的!
xxx
数据心得体会一句话篇九
在信息时代的今天,数据已经成为我们生活中不可缺少的一部分。而对于数据的准确性和可信度也成为人们越来越关注的问题。为了测试和验证系统的性能,人们经常需要使用一些假数据来模拟真实情况。而我在进行假数据处理的过程中,不仅学到了很多有关数据的知识,也深刻体会到了假数据的重要性。下面将以我在假数据处理过程中的体会为切入点,进行阐述。
首先,假数据的准备是至关重要的。在处理假数据时,准备工作不可忽视。首先需要明确假数据的用途和目的,然后确定所需的字段和数据类型。为了模拟真实情况,假数据应该具有一定的逻辑关系和合理性。例如,在模拟一个用户注册系统时,需要生成一些合法的用户名、密码和手机号码等信息。如果假数据的准备不充分,可能会导致测试结果与实际使用情况差异较大,进而影响系统的性能和稳定性。
其次,假数据的生成要考虑数据分布的特点。在大数据时代,数据的分布特点是非常重要的。假数据的生成应该符合实际数据的分布情况,以保持模拟效果的准确性。例如,对于一组身高数据,正常情况下应该呈现出一个正态分布的特点。在生成假数据时,我们可以使用一些数学方法和算法来模拟正态分布,以确保生成的假数据能够反映出真实数据的特点。另外,还需要考虑到异常数据的生成,以测试系统对异常情况的处理能力。
第三,假数据需要具备一定的随机性。随机是指数据生成的不可预测性和不重复性。为了模拟真实情况,假数据的生成应该具备一定的随机性。在现实世界中,很少有一成不变的数据,所以假数据也应该能够反映出这一特点。为了达到这个目的,我们可以使用随机数生成器来生成随机的数据。同时,还需要考虑到数据的相互依赖关系,以确保生成的假数据之间的关系具有一定的随机性。
第四,假数据的质量和准确性是评估数据模型的关键指标。在进行数据处理和模型验证时,数据的质量和准确性是非常重要的。无论是真实数据还是假数据,都应该保持数据的质量和准确性。在生成假数据的过程中,我们应该对数据进行合理性校验和数据去重。同时,还需要注意数据的完整性,避免生成不完整或重复的数据。只有保证了数据的质量和准确性,才能更好地评估和验证系统的性能和稳定性。
最后,假数据的使用应当谨慎和合理。假数据只是一个工具,它可以用来帮助我们测试和验证系统的性能,但并不代表现实情况。因此,在使用假数据时,应当谨慎对待。首先需要明确假数据的用途和限制,避免过度依赖假数据而忽视真实数据的特点。其次,在进行数据分析和决策时,应当将假数据与真实数据结合起来进行分析和判断。只有在合理的情况下使用假数据,才能更好地指导实际的决策和行动。
综上所述,假数据在测试和验证系统性能时发挥着非常重要的作用。通过对假数据的准备、生成、随机性、质量和使用等方面的探讨和思考,我深刻体会到了假数据的重要性。只有在合理的情况下使用假数据,并结合真实数据进行分析和决策,我们才能更加准确地了解和评估系统的性能和稳定性。因此,在进行假数据处理时,我们应当注重假数据的准备和生成,同时也要注意数据的质量和准确性,以确保得到可靠的测试和验证结果。
数据心得体会一句话篇十
完成了这次的二元多项式加减运算问题的课程设计后,我的心得体会很多,细细梳理一下,有以下几点:
因为我在解决二元多项式问题中,使用了链表的方式建立的二元多项式,所以程序的空间是动态的生成的,而且链表可以灵活地添加或删除结点,所以使得程序得到简化。但是出现的语法问题主要在于子函数和变量的定义,降序排序,关键字和函数名称的书写,以及一些库函数的规范使用,这些问题均可以根据编译器的警告提示,对应的将其解决。
我在设计程序的过程中遇到许多问题,首先在选择数据结构的时候选择了链表,但是链表的排序比较困难,特别是在多关键字的情况下,在一种关键字确定了顺序以后,在第一关键字相同的时候,按某种顺序对第二关键字进行排序。在此程序中共涉及到3个量数,即:系数,x的指数和y的指数,而关键字排是按x的指数和y的指数来看,由于要求是降幂排序且含有2个关键字,所以我先选择x的指数作为第一关键字,先按x的降序来排序,当x的指数相同时,再以y为关键字,按照y的指数大小来进行降序排列。
另外,我在加法函数的编写过程中也遇到了大量的问题,由于要同时比较多个关键字,而且设计中涉及了数组和链表的综合运用,导致反复修改了很长的时间才完成了一个加法的设计。但是,现在仍然有一个问题存在:若以0为系数的项是首项则显示含有此项,但是运算后则自动消除此项,这样是正确的。但是当其不是首项的时候,加法函数在显示的时候有0为系数的项时,0前边不显示符号,当然,这样也可以理解成当系数为0时,忽略这一项。这也是本程序中一个不完美的地方。
我在设计减法函数的时候由于考虑不够充分就直接编写程序,走了很多弯路,不得不停下来仔细研究算法,后来发现由于前边的加法函数完全适用于减法,只不过是将二元多项式b的所有项取负再用加法函数即可,可见算法的重要性不低于程序本身。
我在调试过程中,发生了许多小细节上的问题,它们提醒了自己在以后编程的时候要注意细节,即使是一个括号的遗漏或者一个字符的误写都会造成大量的错误,浪费许多时间去寻找并修改,总结的教训就是写程序的时候,一定要仔细、认真、专注。
我还有一个很深的体会就是格式和注释,由于平时不注意格式和注释这方面的要求,导致有的时候在检查和调试的时候很不方便。有的时候甚至刚刚完成一部分的编辑,结果一不注意,就忘记了这一部分程序的功能。修改的时候也有不小心误删的情况出现。如果注意格式风格,并且养成随手加注释的习惯,就能减少这些不必要的反复和波折。还有一点,就是在修改的时候,要注意修改前后的不同点在哪里,改后调试结果要在原有的基础上更加精确。
数据心得体会一句话篇十一
近年来,随着大数据和人工智能技术的迅猛发展,假数据的使用正逐渐成为一种常见的实践方法。假数据即使用虚构、人工生成或已有数据进行修改的数据,旨在模拟真实数据集。假数据在多个领域中都得到广泛应用,例如机器学习、数据挖掘、模拟实验等。在我使用假数据的过程中,我深刻体会到了假数据的重要性和其所带来的收益。
首先,假数据为实验研究提供了便利。在科学研究中,我们常常需要进行大量的实验来验证某些假说或推测。然而,真实数据往往难以获取,且获取成本高昂。此时,使用假数据可以大大提高实验研究的效率。通过生成符合实际场景的假数据集,我能够在短时间内完成大规模的实验。这不仅节省了成本,还使得实验结果更具可复现性和可比性。
其次,假数据对于模型训练具有重要作用。在机器学习领域,模型的性能往往与其训练数据的多样性和复杂性有关。一个优质的训练数据集可以提高模型的泛化能力和准确率。在实际应用中,我们常常会遇到训练数据有限或不完整的情况,这时可以通过生成假数据来增强训练集,提高模型的性能。通过使用假数据,我成功训练出了一个性能更优的模型,进一步提升了我的工作效率和结果的可靠性。
第三,假数据能够填补真实数据的空白。在一些领域,真实数据往往存在缺失或不完整的情况,使得分析和建模难度增加。借助假数据,我能够补充真实数据中的缺失部分,使得数据更加完整和丰富。通过分析真实数据和假数据的综合结果,我得到了更准确和全面的结论,为业务决策提供了科学依据。
此外,假数据还能够应用于隐私保护和安全测试。在一些情况下,真实数据往往含有敏感信息或隐私内容,为了保护个人和机构的隐私,我们往往不能直接使用真实数据进行分析和测试。这时,使用生成的假数据可以有效替代真实数据,保护数据的隐私性。同时,假数据还可以在安全测试中模拟各种攻击场景,评估系统的抗攻击能力。通过这些安全测试,我能够及时发现并修复潜在的安全风险,保护系统的可靠性和稳定性。
综上所述,假数据在科学研究、模型训练、数据补充、隐私保护和安全测试等领域中发挥着重要作用。我通过实际操作深刻体会到了假数据的优势和价值。然而,我们也必须注意假数据的合理性和真实性,不能将假数据与真实数据混淆,以免对研究和业务决策带来误导。只有在正确的使用方法和合理的背景下,假数据才能发挥出最大的作用,为科学研究和实践工作带来真正的收益。
数据心得体会一句话篇十二
数据在当今社会中扮演着越来越重要的角色,无论是企业还是个人,都离不开数据的支持和应用。然而,数据的处理并非一件容易的事情,需要有一定的经验和技巧。在进行数据处理的过程中,我积累了一些经验和体会,下面我将分享一下我在做数据中得到的心得体会。
首先,数据的收集必须要精确。在进行数据处理之前,确保数据的准确性是至关重要的。任何一个数据点的错误或者遗漏都可能对整个数据的分析产生很大的负面影响。因此,在进行数据收集时,我们要尽可能地采用多种来源的数据,确保数据的准确性和完整性。
其次,在数据处理过程中,我们需要保持谨慎的态度。数据处理是一项非常细致和复杂的工作,需要耐心和细心。在对数据进行清洗和预处理时,我们要仔细地检查每一个数据点,排除异常值和错误数据,并进行合理的填充和修正。只有保持严谨和细致的态度,才能保证数据处理的准确性和可靠性。
另外,数据分析需要结合相关的领域知识和背景。单纯的熟悉数据的处理工具和技巧是不够的,还需要了解所处理的数据所涉及的领域知识。因为每个行业和领域都有其独特的特点和规律,只有结合相关领域的知识,才能更好地理解和解释数据的意义和价值。在进行数据分析时,我们要善于与专业人士进行沟通和交流,从他们那里获取更多的信息和见解。
此外,数据可视化是提高数据分析效果的重要手段。数据可视化可以通过图表、图形等形式展示数据的分布和变化趋势,帮助人们更好地理解和解释数据。通过数据可视化,我们可以直观地看出数据的规律和特点,从而更好地为决策提供参考和依据。因此,在进行数据分析时,我们要学会使用各种数据可视化工具和技巧,将数据呈现得更加直观和易懂。
最后,数据处理不应只重视结果,还要关注数据的背后故事。数据只是一个工具,我们不能只看到表面的数字和结果,更要关注背后的数据背景和故事。每个数据背后都有其自身的意义和价值,我们要善于从数据中发现问题和机会,探索数据背后的深层含义。数据分析不仅仅是对数据的处理和分析,更是对问题本质的思考和洞察。
总结来说,做数据处理需要保持精确、谨慎和综合运用相关知识的态度。数据处理是一个漫长而复杂的过程,需要耐心和细致。只有从更广的角度去思考和分析数据,才能得到更准确和有价值的结论,为决策提供更好的支持和指导。
数据心得体会一句话篇十三
数据结构是一门纯属于设计的科目,它需用把理论变为上机调试。在学习科目的第一节课起,鲁老师就为我们阐述了它的重要性。它对我们来说具有一定的难度。它是其它编程语言的一门基本学科。很多同学都说,数据结构不好学,这我深有体会。刚开始学的时候确实有很多地方我很不理解,每次上课时老师都会给我们出不同的设计题目,对于我们一个初学者来说,无疑是一个具大的挑战。
我记得有节课上遍历二叉树的内容,先序遍历、中序遍历、后序遍历。鲁老师说:这节课的内容很重要,不管你以前听懂没有,现在认真听。说实在的,以前上的内容确实没大听懂,不过听了老师的话,我听得很认真。先序遍历很简单,是三个遍历中,最简单的。而中序遍历听得有点模糊,后序遍历也半懂半懂,我心想如果老师再讲一遍,我肯定能听懂。后来老师画了一个二叉树,抽了同学到黑板上去排序,这个二叉树看似复杂,不过用先序遍历来排,并不难。于是我在下面排好了先序,先序遍历很简单,我有点得意,老师到位置上点了我上去排中序,上去之后排得一塌糊涂。后来老师又讲了一遍,我这才听懂了,鲁老师又安慰我们说,这个二叉树有点难,中序和后序都不好排,要学懂的确要花点功夫才行。我听了老师的话,认真做了笔记,回去再看了当天学的内容。第二堂课,老师还是先讲的先前的内容,画了一个简单的二叉树,让我们排序,又叫同学上去分别排出来,老师又点了我的名,叫我起来辨别排中序那两个同学的答案哪个排正确了,我毫不犹豫的答对了。因为这次的内容,先序遍历二叉树、中序遍历二叉树、后序遍历二叉树,我的确真的懂了,第一次上这个课这么有成就感。渐渐的对这门课有了兴趣。我以为永远都听不懂这个课,现在,我明白了,只要认真听,肯下功夫,这个课也没有什么难的。而数据结构学习的难易程度很大程度上决定于个人的兴趣,把一件事情当做任务去做会很痛苦,当做兴趣去做会很快乐。也希望老师能看到我的改变,在此也感谢老师的辛勤教导。老师没有放弃我,几次点我的名上去,老师一定看得到我的进步。
后来,我每节课都认真听课,老师虽然没有点名,但我还是很认真的听。双亲表示法孩子表示法和孩子兄弟表示法,这些内容我都听得很明白,差不多每节课都认真听课。有时我也会在上课空余时间看看以前的内容,所以,第一遍看课本的时候要将概念熟记于心,然后构建知识框架。数据结构包括线性结构、树形结构、图状结构或网状结构。线性结构包括线性表、栈、队列、串、数组、广义表等,栈和队列是操作受限的线性表,串的数据对象约束为字符集,数组和广义表是对线性表的扩展:表中的数据元素本身也是一个数据结构。除了线性表以外,栈是重点,因为栈和递归紧密相连,递归是程序设计中很重要的一种工具。
其中我了解到:栈(stack)是只能在某一端插入和删除的特殊线性表。它按照后进先出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据;队列一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入的操作端称为队尾,进行删除的操作端称为队头。队列中没有元素时,称为空队列;链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。
想着自己报考自考的专业,也会考数据结构这门,这学期就结束了,或多或少都收获了一些知识。尽管学得还不是很透彻,我相信这对自己的自考会有很大的帮助,所以,即使是结束了这科的内容,我也不会放弃去学习它。
数据心得体会一句话篇十四
“大数据”概念早在1980年就有国外的学者提出,可是最近几年才广泛受到大家的关注。当“大数据”这个概念传到中国的时候,瞬间引起了轰动。随即,各种有关“大数据”的资料和书籍充斥的我们的视野。随意打开某个电子商务平台图书类页面,在搜索框中搜索“大数据”三个字,就会出现好多本有关“大数据”的书籍。可是,有一个很有趣的现象就是:几乎所有的平台上,出现的第一本关于“大数据”的书籍一定是《大数据时代》。一点进去,这本书推荐栏里的第一句话就是:迄今为止全世界最好的一本大数据专著。同时,为这本书做推荐的都是各行业的精英领袖。所有“大数据”方面的书籍也是这本书销量最高,评价最好。
我从来不会因为哪本书畅销和很多人推荐就盲目跟风的去看一本书。因为我知道通常在这种情况下选择一本书,整个阅读的体会和感受是无法遵从自己的内心的,整个过程都很容易夹杂着别人对这本书的感受。所以通常我读书的节奏大多都是跟不上“潮流”的,但往往经过风雨洗礼之后沉淀下来的都是精华。坦白讲,阅读这本书的初衷并不是因为我想从书中获取到多少大数据方面的精华,只是很想知道对于这么一个很直白的名词,作者是怎么写出这么厚的一本书的。这种初衷或许很无知和幼稚,可就是这种“愚蠢”的好奇心,让我更透彻的看到书中的精华。
在看《大数据时代》这本书之前,我的所有读后感都是集中在书籍给了我什么思考。对于这本书的读后感,除了观点碰撞之外,我还会加上大部分个人看这本书的体会。因为这本书,已经完全让我模糊了大多数人口中的“全世界最好的书”是一种什么标准。也许《大数据时代》真的无法承载那么高的赞美!
大数据时代的入门书
看完这本书,我随意调查了一些阅读过这本书并且给这本书绝对好评的朋友。询问他们这本书好在哪里?大多数的回答是说《大数据时代》这本书让对大数据一无所知的他们了解了大数据这个概念,同时通过很多案例说明原来大数据能有这么大的用处,影响会有这么大!仅此而已。我看完这本书最大的感受是这本书分为上、下两部分。前120多页为上部分,后120多页为下部分。之所以说《大数据时代》是一本关于大数据的入门书,是因为这本书用了前面120多页的篇幅反复的强调大数据的出现对社会发展影响很大,并且要人们转变小数据时代惯有的思想。所以整本书的前半部分就强调大数据时代的三个转变:1、大数据利用所有的数据,而不再仅仅依靠一小部分数据,不再依赖于随机采样。2、大数据数据多,不再热衷于追求精确性,也不再期待精确性。3、大数据时代不再热衷于寻找因果关系,而是追求相关关系。所以整个上半部分没什么可详说的。我们重点聊聊本书的后半部分。
既然一直都在强调大数据对我们的意义,总要有具体体现。整本书中,我感触最大的一个案例就是某公司通过分析大数据发现:新品发布的时候,旧一代的产品可能会出现短暂的价格上涨。因为人们在心理上就认为新产品的推出,旧产品就会便宜,从而就会提高购买量。这个发现和我们平常的心理是完全违背的,而且如果不用数据来证明,直接讲道理给大家可能还是无法相信。这就是大数据对我们很多传统思维的颠覆。一旦涉及到思维的改变,往往就会引起整个社会的大变动。
大数据这个概念的出现,让大数据逐渐发展形成一条价值链。在这条价值链上,数据本身、技能和思维是最重要的环节。随着互联网技术的发展,越来越多的公司都能收集到大量的数据,这些数据也会越来越公开。可是在这些公司中,不是所有的公司都有从数据中提取价值或者用数据催生创新思想的技能。于是就会出现以下两种公司,一种是掌握了专业技能但不一定拥有数据或者提出数据创新性用途才能的公司,另一种就是拥有超前思维,懂得怎样挖掘数据的新价值的创新公司。短时间内,我们可能会感觉拥有创新思维,懂得挖掘出数据新价值的大数据思维是最重要的。可是等到产业成熟之后,所有人都知晓了大数据的意义,所有人便开始挖掘自己的大数据思维。同时,随着科技的进步,掌握大数据技术的也将成为常态。所以到后来,整个价值链的核心环节还是回到了数据本身。而到那时候,大数据的公开性也就越来越小。
在大谈完大数据对人类发展的积极意义之后,作者也考虑到大数据时代的风险。这一部分是作者脑洞大开的精彩之处,同时也是最荒谬的一部分。书中说大数据时代将要惩罚未来犯罪,这样可以在嫌疑人在可能犯罪之前就把犯罪行为给防止。这样的社会,大数据俨然已经延伸到了我们每个人生活的点滴。几乎我们在生活中所做的一切都在大数据的“监控”之下,我想到那时候,别说我们每个人的隐私已经没有的了,严重一点可以说是我们可能连人都不算了。在我们人的社会属性中,自由权利是一项很重要的指标。通过大数据惩罚人的未来犯罪已经否定了人的自由选择能力和人的行为责任自负。同时,由于数据是永久保存,大数据预测也是通过每个人之前的数据来判断,所以大数据同样也否定了人的求善心理。还有,从现在各种大数据预测的结果来看,很多发言人都说大数据不是百分百的准确。所以利用大数据来判断人的行为发展已经违背了大数据不追求精确性的特征,这也是书中自相矛盾的地方。
对于一个新事物,如果能让大家了解这个事物并且对此产生兴趣,这已经算是一本不错的入门书了。
大数据时代的心灵鸡汤
从小到大,鸡汤对于我们来说一直都挺珍贵的。身体虚弱了,喝点鸡汤能够补充营养。心灵受伤了,看点心灵鸡汤可以鼓舞人心。可是近几年,人们生活水平提高了,营养富余,鸡汤已经不是人们补营养的期待了。同样,心灵鸡汤也是如此。
心灵鸡汤其实是一个很虚伪的东西。很多人都被心灵鸡汤诱人的外表给迷惑。在我看来,心灵鸡汤很大的一个特征就是:立人的志,但是就不告诉你实现志的方法。很多人每次在失意的时候就喜欢看心灵鸡汤,希望能得到慰藉。看完后也觉得醍醐灌顶,感觉整个世界都亮了。但又有几个人想过喝完这些鸡汤之后你除了看似重拾梦想,你还获得了什么?你知道怎么去做吗?《大数据时代》就是这样一本书。整本书从头到尾都在向读者讲述大数据的意义,当然期间也会用相应的案例来证明大数据确实有这样的能力。但是,整本书从没有涉及到技术层面的问题。或许对于大数据这种依靠互联网技术的新事物,即使向读者讲技术,也没有几个人看得懂,可是整本书没有一点关于大数据思维的技能引导。给出的案例中只有少数案例向读者讲述了这个公司为什么要利用大数据来解决这种问题,大多数都只是告诉读者国外某家公司运用大数据得出了某种结论。同时,在本书中文译作者写的序里,强调自己翻译这本著作的一大优点是可以结合国内的案例来分析书中的理论,结果,看到最后一页都没有看到一个国内企业关于大数据运用的案例。
之所以我称之为“心灵鸡汤”,还有一个原因就是作者在书中大讲特讲的大数据的作用,事实上按照现在的经济发展水平和社会文明发展程度是很难实现的。书中很多时候的理论都是要建立在社会各项文明都发展健全的基础上才能实现。
大数据的“传销手册”
看到这个标题,大家可能会觉得我夸大其词,受到如此多人好评的书怎么是“传销手册”呢?对于这个表达,我只想说两点:1、此说法仅代表我个人观点,是否认同是个人问题。2、此说法主要针对本书的上部分。
我们都知道传销组织在发展下线的前期是要花大力气去培训的,也就是洗脑。而对于一个陌生又很难以理解的事物,最好的“洗脑”方式就是重复。《大数据时代》这本书就是运用这种方式,前半部分为了让读者能够接受“大数据”这个概念,作者反反复复提醒读者大数据不是随机采样、不追求精确和不寻找因果关系。同时用很多看似很通俗易懂其实看完后还是不知道说了什么的案例来让人信服大数据的作用。书中的后半部分虽然也是用这种方式来感染读者,可后半部分中作者的畅想和对大数据的威胁分析还是对读者有一些实质意义的,所以后半部分的“传销”影响就不是很重要。
大数据时代是未来的趋势,这谁都不会否认。大数据改造了我们的生活,改变着我们的世界。不管它是以一种什么样的姿态面向世界,它都没有错,因为大数据只是一种工具。但当人类开始质疑甚至恐惧大数据的时候,人类就该思考自己是否利用好这个好工具了。
大数据的心得体会篇3