2023年高中数学抛物线知识点总结(模板9篇)
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,并把这些用文字表述出来,就叫做总结。什么样的总结才是有效的呢?下面是小编整理的个人今后的总结范文,欢迎阅读分享,希望对大家有所帮助。
高中数学抛物线知识点总结篇一
1、直接解题法(直接法)
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
2、特殊值解题
正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速地解。
3、数形结合法或者割补法(解析几何常用方法):
巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度。对于一些具有几何背景的数学问题,如能构造出与之相应的图形进行分析,往往能在数形结合、以形助数中获得形象直观的解法。
4、极限法
这是高中选修部分,不过用在解题会很快。极限思想是一种基本而重要的数学思想。当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限思想思考,则往往可使过程简单明快。用极限法是解选择题的一种有效方法。它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到答案。
高中数学抛物线知识点总结篇二
1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
3、向量——既有大小又有方向的量。在此规定下向量可以在平面(或空间)平行移动而不改变。
4、并线向量(平行向量)——方向相同或相反的向量。规定零向量与任意向量平行。
高中数学抛物线知识点总结篇三
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即()
1、数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于a,这就是数列极限的描述性定义。记作:()=a。
2、函数的极限:
当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是(),记作()
1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,
即k=(),相应的切线方程是()
注:函数的导函数在时的函数值,就是在处的导数。
例、若()=2,则()=()a—1b—2c1d
(一)曲线的切线
函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程()。具体求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
高中数学抛物线知识点总结篇四
1、平面的基本性质:
公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;
公理2过不在一条直线上的三点,有且只有一个平面;
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:
直线与直线—平行、相交、异面;
直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);
平面与平面—平行、相交。
3、异面直线:
平面外一点a与平面一点b的连线和平面内不经过点b的直线是异面直线(判定);
所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);
两条直线不是异面直线,则两条直线平行或相交(反证);
异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角
1、直线与平面平行(核心)
定义:直线和平面没有公共点
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)
2、平面与平面平行
定义:两个平面没有公共点
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线
1、直线与平面垂直
定义:直线与平面内任意一条直线都垂直
判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直
性质:垂直于同一直线的两平面平行
推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面
2、平面与平面垂直
定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)
判定:一个平面过另一个平面的垂线,则这两个平面垂直
性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
高中数学抛物线知识点总结篇五
高中数学知识点总结如下:
1.概率与统计:包括概率、统计、概率的意义、一维和二维正态分布、样本和抽样分布、参数估计、假设检验、方差分析、回归分析等。
2.微积分:包括极限、导数、微分、不定积分、定积分、常微分方程、偏微分方程、差分方程等。
3.线性代数:包括矩阵、向量、线性方程组、矩阵的相似对角化、二次型、线性空间、线性变换、矩阵的行列式、矩阵的逆矩阵、矩阵的秩、向量组的相关性、向量组的极大线性无关组等。
4.概率论与数理统计:包括随机事件与概率、概率的基本性质与运算法则、古典概型、条件概率、独立性、随机变量与分布函数、正态分布、二维随机变量与分布函数、条件概率与相互独立性、期望、方差、协方差与相关系数、矩、中心极限定理等。
5.平面几何:包括点和距离、平行和垂直、三角形、四边形、圆和扇形、平面图形和空间图形等。
6.平面解析几何:包括点与线的坐标、直线的方程与性质、圆的标准方程与性质、椭圆的标准方程与性质、双曲线的标准方程与性质、抛物线的标准方程与性质、参数方程与极坐标方程等。
7.集合与函数:包括集合与集合运算、函数与映射、函数图像与性质、指数与指数幂、对数与对数运算、函数图像变换等。
8.三角函数:包括三角函数的概念与图像、同角三角函数基本关系式、正弦函数和余弦函数的图像与性质、正切函数的图像与性质、两角和与差的正弦、余弦和正切函数、二倍角公式等。
9.数列:包括数列的概念与表示、等差数列与等比数列的概念与性质、数列的通项公式与通项公式求法、数列的求和公式、数列的极限等。
10.立体几何:包括多面体和旋转体的体积和表面积、平面基本性质、直线和平面、平面和平面、直线、平面之间的位置关系、平行和垂直的判定和性质、以及角度和平面角、距离等。
以上是高中数学知识点总结,具体的学习方法和应对考试技巧需要根据个人情况来制定。
高中数学抛物线知识点总结篇六
数学能力的提高离不开做题,但当处理的题目达到一定的量后,决定复习效果的关键因素就不再是题目的数量,而在于题目的质量和处理水平。解数学题要着重研究解 题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建 知识的横向联系又养成多角度思考问题的习惯。
一节课与其抓紧时间大汗淋淋地做三十道考查思路重复的题,不如深入透彻地掌握一道典型题。
要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断 积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。解法的差异,速度的差异,正体现了 学生不同层次的思维水平。
在复习过程中,难免会出现一些大大小小的失误,也会遇到一些拦路虎,这时候,可能要么束手无策,要么费了九牛二虎之力才能解决,要么是问题虽然解决了,但自我感觉不好———或是思路不清,东拼西凑才找到答案;或是解法繁琐,不尽人意。碰到这种情况不要紧张,这正是拓展思维、提高能力的契机,不要轻易放过。
“错误是最好的老师”,我们要认真的纠正错误,当然,更重要的是寻找错因,及时进行总结,三、五个字,一、两句话都行,言简意赅,切中要害,以利于吸取教训, 力求相同的错误不犯第二次;轻描淡写,文过饰非的查错因是没有实质性的意义的。只有认真的追根溯源的查找错因,教训才会深刻。
在复习过程中,要注意多学习,多更新,不要固守自己熟悉但落后的方法习惯,要向老师学,向其它同学学,取人之长,补己之短。要做好解题后的反思,清理解题思路,寻求最佳解答方法,以达到举一反三、融会贯通的目的。
好的习惯终生受益,不好的习惯终生后悔,吃亏。
一慢一快,稳中求快,立足一次成功:
解题时审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。这样做的后果一则容易先入为主,致使有时错误难以发现;二则一旦发现错误,尤其是起步就错,又要重复做一遍,既浪费时间,又造成心理负担。
注意书写规范,重要步骤不能丢,丢步骤=丢分。
考试中应统筹安排时间,先易后难,不要在一道题上花费太多时间,有时放弃可能是最佳选择。
无论是陈题新题,传统内容还是新增内容,要点在于训练学生的思维理解,分析问题、解决问题的能力。
坚持长期训练培养,注重算理,注意近似计算,估算,心算,以想代算。
高中数学抛物线知识点总结篇七
第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是2008年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有答案,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高中数学抛物线知识点总结篇八
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法复数推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.
高中数学基本知识点大全总结4
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高中数学基本知识点大全总结5
第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是2008年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有答案,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高中数学抛物线知识点总结篇九
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即
1、数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于a,这就是数列极限的描述性定义。记作:=a。如:
2、函数的极限:
1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,
即k=,相应的切线方程是
注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()a—1b—2c1d
(一)曲线的切线
函数y=f(x)在点处的`导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。