财务大数据课程心得体会 大数据机器人课程心得体会(大全8篇)
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
财务大数据课程心得体会篇一
近年来,随着科技的发展和应用的广泛推广,大数据机器人成为了一个备受关注的热门话题。为了跟上时代的步伐,我报名参加了一门大数据机器人课程。通过几个月的学习,我获得了很多宝贵的经验和知识,这对我的学术和职业发展都有着重要的意义。在这篇文章中,我将分享我的心得体会,并对大数据机器人课程的未来发展提出一些建议。
在课程的第一部分,我们学习了大数据的基本概念和应用。大数据不仅仅是指数据量巨大,更重要的是如何利用这些数据去获取有价值的信息。通过学习,我了解了大数据分析的基本原理和常用的工具,如Hadoop和Spark。这些工具对于从庞大的数据集中提取有用信息非常重要。此外,我们还学习了数据预处理和数据清洗的方法。这些技术可以帮助我们处理不完整或错误的数据,从而保证分析的可靠性和准确性。通过这部分的学习,我深刻认识到在大数据分析中数据质量的重要性。
在第二部分的课程中,我们学习了机器学习和数据挖掘的基本概念和算法。机器学习和数据挖掘是大数据分析的关键技术,它们可以帮助我们从数据中发现隐藏的模式和规律。我们学习了监督学习和无监督学习的不同算法,如决策树、支持向量机和聚类算法等。通过这部分的学习,我不仅了解了这些算法的原理和应用领域,还在实践中掌握了它们的具体实现方法。我发现机器学习和数据挖掘的技术在各个领域都有广泛的应用,如金融、医疗和电商等。这一部分的学习让我深感机器学习和数据挖掘在大数据分析中的重要性。
在第三部分的课程中,我们学习了深度学习的基本概念和算法。深度学习是机器学习的一个重要分支,它可以通过模拟人脑的神经网络来进行复杂的模式识别和分类。我们学习了深度神经网络的原理和常用的算法,如卷积神经网络和循环神经网络。通过这部分的学习,我对深度学习的原理和应用有了更深入的了解。我认识到深度学习在图像识别、语音识别和自然语言处理等领域具有巨大的潜力。虽然深度学习算法的实现比较复杂,但它对于大数据分析来说是一种非常有价值的技术。
在最后一部分的课程中,我们进行了一个实践项目,来应用我们所学的知识和技能。我们组成了小组,共同完成了一个大数据分析的项目。在项目中,我们使用了Hadoop和Spark等工具进行数据处理和分析,并通过机器学习和深度学习的算法进行模式识别和分类。通过这个实践项目,我不仅巩固了在课程中所学的知识,还学到了如何合作与沟通,解决实际问题。这个项目不仅提高了我的实际操作能力,还提升了我的团队合作能力和解决问题的能力。
通过这门大数据机器人课程的学习,我对大数据分析的理论和实践有了更深入的了解。我学到了很多宝贵的经验和技能,这对于我的学术和职业发展非常有帮助。然而,我也意识到大数据机器人领域仍然存在一些挑战和问题。首先,随着数据量的不断增加,数据隐私和安全保护成为了一个重要的问题。在大数据分析过程中,如何保护用户的隐私和数据的安全是一个亟待解决的问题。其次,大数据机器人技术的应用领域和行业还需要更广泛的拓展。虽然大数据技术已经在金融和电商等领域取得了一些成功的应用,但我认为还需要更多的研究和实践来发掘其在其他领域的潜力。
综上所述,大数据机器人课程为我提供了一个全面了解大数据分析和机器学习的平台。通过课程的学习和实践,我不仅学到了很多有关大数据和机器学习的知识,还提高了自己的实际操作能力和团队合作能力。然而,我也认识到大数据机器人领域仍然存在一些挑战和问题,需要更广泛的研究和实践来推动其发展。希望未来的大数据机器人课程可以更加丰富和多样化,更好地满足不同学生的需求,为他们的学术和职业发展提供更多的机会和支持。
财务大数据课程心得体会篇二
大数据讲座学习心得
大数据时代已经悄然到来,如何应对大数据时代带来的挑战与机遇,是我们当代大学生特别是我们计算机类专业的大学生的一个必须面对的严峻课题。大数据时代是我们的一个黄金时代,对我们的意义可以说就像是另一个“80年代”。在讲座中秦永彬博士由一个电视剧《大太监》中情节来深入浅出的简单介绍了“大数据”的基本概念,并由“塔吉特”与“犯罪预测”两个案例让我们深切的体会到了“大数据”的对现今这样一个信息时代的不可替代的巨大作用。
在前几年本世纪初的时候,世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、pda、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。
现在,当数据的积累量足够大的时候到来时,量变引起了质变。“大数据”通过对海量数据有针对性的分析,赋予了互联网“智商”,这使得互联网的作用,从简单的数据交流和信息传递,上升到基于海量数据的分析,一句话“他开始思考了”。简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。这是继云计算、物联网之后it产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的竞争中摆脱受制于人的弱势境地,才能把握发展的方向。
首先,“大数据”究竟是什么?它有什么用?这是当下每个人初接触“大数据”都会有的疑问,而这些疑问在秦博士的讲座中我们都了解到了。“大数据”的“大”不仅是单单纯纯指数量上的“大”,而是在诸多方面上阐释了“大”的含义,是体现在数据信息是海量信息,且在动态变化和不断增长之上。同时“大数据”在:速度(velocity)、多样性(variety)、价值密度(value)、体量(volume)这四方面(4v)都有体现。其实“大数据”归根结底还是数据,其是一种泛化的数据描述形式,有别于以往对于数据信息的表达,大数据更多地倾向于表达网络用户信息、新闻信息、银行数据信息、社交媒体上的数据信息、购物网站上的用户数据信息、规模超过tb级的数据信息等。
一、学习总结
1. 大数据的定义
对企业未来运营的预测。
二、心得体会
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
一、什么是大数据?
百度百科中是这么解释的:大数据(big data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。我最开始了解大数据是从《大数据时代》了解到的。
大数据在几年特别火爆,不知道是不是以前没关注的原因,从各种渠道了解了大数据以后,就决定开始学习了。
二、开始学习之旅
在科多大数据学习这段时间,觉得时间过的很快,讲课的老师,是国家大数据标准制定专家组成员,也是一家企业的大数据架构师,老师上课忒耐心,上课方式也很好,经常给我们讲一些项目中的感受和经验,果然面对面上课效果好!
如果有问题,老师会一直讲到你懂,这点必须赞。上课时间有限,我在休息时间也利用他们的仿真实操系统不断的练习,刚开始确实有些迷糊,觉得很难学,到后来慢慢就入门了,学习起来就容易多了,坚持练习,最重要的就是坚持。
财务大数据课程心得体会篇三
第二段:
大数据财务管理的一个重要方面就是基于海量的数据来进行分析和挖掘价值信息,以促进业务决策的准确定位。传统财务报告往往只能反映过去的数据分析,而大数据则可以重新定义财务数据的价值。大数据技术的蓬勃发展,使得企业不仅能够深入了解客户的消费情况,还能够了解客户的行为趋势和喜好。 将大数据分析应用到企业的财务管理中,企业可以更好地了解市场趋势,发现采购成本方面的变化,了解生产和销售的情况,以便调整其运营策略。
第三段:
大数据应用的第二个重要方面是更有效的财务管理。与传统的手工处理财务数据相比,大数据方案更加高级和自动化,分析的数据更加深入详尽,对数据结果的判断责任更明确。例如,企业发现销售业绩较差时,大数据分析可以将购买和销售的趋势、客户对产品的反馈、产品属性和市场趋势等多方面进行分析,以发现销售不畅的原因,制定可靠的解决方案。此外,当企业需要进行财务决策时,大数据还可以通过分析企业的现金流和现有资产,以提出最佳的方案和执行策略。
第四段:
大数据与财务管理结合的另一个重要方面是增强风险管理。在企业运营中,面对来自市场、消费者和政策等各种风险挑战,利用大数据进行风险分析显得更加具有优势。大数据分析可以帮助企业识别潜在风险,提前制定有效的风险规避措施,保护企业利益,减小损失。譬如,大数据可以为信用卡发行商识别信用卡欺诈行为,以更好保护客户的资金和信用记录,也可以根据消费者的消费行为和偏好,分析出具有重要影响力和潜在风险的客户,以便进行针对性的调整和管理。
第五段:
总体而言,大数据技术已经成为财务管理领域中不可或缺的一部分。除了上述方面的贡献外,大数据还可以帮助企业与客户建立更紧密的联系,甚至可以帮助企业在全球市场上占据领先地位。通过实现大数据的最大利用,企业可以根据实际情况参照客户需求、消费态势等多方面的标准来适当调整策略,同时还可以及时分析这些数据,以制定进一步的决策和预测。
财务大数据课程心得体会篇四
大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?下面是本站小编为大家收集整理的大数据时代心得体会,欢迎大家阅读。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
财务大数据课程心得体会篇五
近年来,大数据技术的发展应用迅速增长,成为促进信息社会发展和转型的一种关键信息技术。越来越多的人认识到了学习大数据技术的重要性。在这个背景下,“大数据大讲堂”课程就应运而生,该课程以深入浅出的方式,为学习者介绍了大数据的相关知识,提高了学习者的大数据技术能力,让我们更好地理解并运用大数据在各领域中的应用价值。在本篇文章中,我将分享关于“大数据大讲堂”课程的学习体验和心得,以便于更好地认识课程质量和为需要学习大数据技术的读者提供参考。
第二段:培训前的准备工作
在课程学习前,我对自己的大数据专业知识有一定的了解和掌握,但对此方面的技术应用及其引用的领域仍有许多困惑。因此,在课程学习前,我花费了不少时间自主学习,学习了一些先导技术或需要的知识技能。同时,在进行课程学习时,我也时时学习,有所思考,及时掌握和关注课程的具体实践和应用,以保证第一时间就能了解和掌握大数据技术应用知识。
第三段:课程学习和理解
“大数据大讲堂”课程中,讲师从基础知识入手,用通俗易懂的语言讲解了大数据相关技术,包括Hadoop、NoSQL、Spark等技术的基础应用及其实际操作,丰富了我们对大数据的理解。通过知识讲解、领域讲解、实例讲解等方式,讲师在课堂上相对错综复杂的知识点、技术应用等方面不断给予学生很大的帮助 ,先后就是为我们介绍了大数据技术能够解决的主要问题和细节,以及如何从不同的角度、不同的维度来考虑大数据问题,让我们感受到了大数据技术的强大和简洁,更好地理解了如何在实际应用中去运用。
第四段:课程特色和优点
“大数据大讲堂”课程的最大特色和优点在于其教学理念和教学方法,课程内容选取了许多实用的例子和问题,这些例子和问题与我们的工作及学习密切相关,通过认真地学习和思考,帮助我们更好地理解课程内容的实际应用价值和实际操作细节。教学效果显著,掌握了课程内容的人都能利用所学的知识来处理实际使用和场景下的问题,更加的提高了我们的实际工作和工作经验。
第五段:总结
通过“大数据大讲堂”课程的学习,我深深体会到:大数据是当下和未来互联网时代的重要基础技术,而系统的学习、掌握大数据技术,能够提高在各领域中工作和竞争的实力,在数据的处理和分析中能够更加得心应手,在日常实践、应用等方面起到了非常实际的作用。同时,通过学习这门课程,我进一步意识到学习技术还需要长期学习和持续不断的提高,需要不断地深化自己的技能和能力水平。因 此,希望更多的读者重视学习大数据技术,在不断累积和提高的基础上,进一步提高个人与企业在市场竞争和发展中的实力,为技术和人民监管建设作出更大的贡献。
财务大数据课程心得体会篇六
根据中国汽车流通协会公布的数据显示,在经销商销量和收入均同比增加的情况下,连续两年入围百强的84家汽车经销商2015年毛利与2014年相比大幅下滑至25.79%。2015年,汽车经销商盈利面继续缩小,据统计,48.5%的经销商盈利状况持平,只有21.8%的经销商盈利,剩余的经销商处于亏损状态。当前,汽车产品已远远超出市场能够消化的程度,库存在不断地增加,目前全国共有20000多家经销商,按照当前的产销规模和经销商数量,经销商的压力可想而知。大面积的亏损,严重打击了经销商的信心,很多经销商纷纷退出汽车行业,转而寻找新的盈利机会,这种局面对于厂家来说也是无能为力,以“4s”店为主的营销渠道遇到了前所未有的危机。
一直以来,以“4s”店为主体的汽车品牌专营模式一直是汽车营销渠道的主流模式。不过随着互联网技术的发展,网络购物成为时下流行的生活方式,网络购物的商品也从小件商品延伸到了汽车产品领域。据j.d.power调查,有80%的经销商认为在线购车将成为未来趋势,并且认为这将影响到传统汽车销售业务。这样一来,传统“4s”店作为目前较大的营销渠道而言就遇到了前所未有的挑战。相比新兴互联网汽车业务来说,传统“4s”店营销模式的“短板”很突出。
(一)消费者满意度差
“4s”店的背后是相对独立的经销商,作为经销商而言,追逐利润是第一位的。在市场火爆的情况下,会出现某款车型“加价提车”的现象,消费者甚至加价都提不到车的现象也时有发生,消费者对这种违背市场规律的行为已见怪不怪。虽心有怨言却也是无奈接受。在市场遇冷的情况下,经销商常常会以低于厂家指导价很多的促销价来博得销量,以得到厂家的年终返点,但是在这个促销价格中,包含着强制购买店内装饰和强制购买保险的捆绑销售行为,很让消费者反感。
(二)售后维修价格虚高
“4s”店总是着眼于销售业绩,对售后服务的管理和如何提高客户满意度、怎样加强售后服务、提高技术水平的动力不足,“前店后厂”式的售后服务体系并未健全。在具体的售后服务中,由于技术水平高低不一、人员素质参差不齐、经济利益诱导等现实因素,“4s”店习惯在工时费、零配件价格上做手脚,售后维修价格虚高。这也是“4s”店遭到消费者普遍诟病的重要原因之一。
(三)运营成本过高一家
“4s”店要达到标准化
经营需要经历选址、征地(租地)、建店、招聘店员、培训、试运营等诸多环节,期间发生的征地或租地费用、建店工程款、各种税费、人员工资等所有费用都要摊薄到利润里面,这样一来,“4s”店的初始经营就要面临巨大的压力。小规模的“4s”店一般占地几千平方米,大规模的则达到上万平方米,每年的租地成本就要几百万元。如果土地不是租用的,“4s”店第一年购买土地的成本投入还会高出更多。一家“4s”店平均有大约100名员工,每年的人工支出通常要400万至500万元。仅就人员工资来说,对“4s”店而言就是一笔不小的负担。如果再加上其他开销,一家“4s”店的年运营成本往往接近千万元人民币。
据统计,目前全国近40家汽车经销商已签署了汽车经销商电商平台战略合作协议,依托现有的经销商线下渠道与线上资源相结合运营,40家经销商几乎涉及中国过半数经销商集团,规模可覆盖全国成千上万家汽车“4s”店及上亿汽车用户。同时,二手车业务以及汽车租赁业务的扩大,都将成为经销商利润提升的主要途径。在这种趋势下,传统“4s”店必须要做出变革。
(一)提升自身竞争力
商务部于2016年1月发布了《汽车销售管理办法(征求意见稿)》,并将在今年内正式实施。新《办法》鼓励汽车销售模式多样化。新《办法》明确提到推动汽车流通模式创新,积极发展电子商务。这意味着“4s”店模式作为唯一授权销售渠道的时代彻底结束,新兴销售渠道和传统销售体系的共生融合成为趋势。在这种情况下,“4s”店一方面要做好接受市场的冲击,不能再固步自封,必须提升服务水平,注重差异化服务,降低运营成本,从自身挖掘盈利点,另一方面,要及时跟上市场步伐,要提高对市场的信息灵敏度,在实体店的基础上大力发展互联网业务。只有逐步提高自身竞争力,才能在互联网时代下生存。
(二)注重“线上线下”业务融合
对于未来的互联网汽车营销,将不再是“4s”店来全部承担满足客户需求的重任,配套的有大量的城市展厅、体验中心甚至提供定制化服务的互联网平台。我们要建立一个在线上有智能终端,在线下以“4s”店为载体,能够实现线上和线下服务一体化的互联网销售体系,让用户能够在线上和线下之间自由选择。最终呈现给客户的是以汽车消费为主的“一站式”服务体验场景。汽车销售渠道的互联网化,一开始就是一个整体性的变化,不仅仅是新车、二手车,还包括后汽车市场,都在互联网化。未来有可能汽车电商和线下营销渠道是平行的,来让用户选择。目前来说,消费者最担心的是线上产品的质量和线下服务的承接能力,这就涉及到线上线下业务的融合。可以说,只有实现线上营销与实体经济的深度业务融合,汽车营销渠道“互联网+”的时代才算真正来临。
(三)重点打造智能终端app软件
目前来看,在国内只有两种app营销方式,一是利用现有社交媒体app,比如微信、qq等,另一种是自己开发app。利用现有的社交媒体app的好处是能够迅速将营销内容推广给客户,传播效率高;缺点是目标客户群不明确,客户体验感差,缺乏互动。而企业自己开发的app的优势是能够独立掌控app资源,拥有自主运营权,内容灵活,客户体验感强;缺点是开发成本高,推广率低,下载安装注册认证程序繁琐,一般需要从企业官方的网站下载,而且无附加功能,客户粘性差。如果我们将社交媒体app和企业自己开发的app的优点相结合,打造基于社交媒体app的,这样一来用户的体验感更强,互动效果更好,客户粘度会更高。
互联网正悄悄改变着人们的消费习惯。在汽车消费领域,用户对整车电商的接受程度也变得越来越高。据尼尔森近期数据显示,有92%的客户在购买汽车时,都希望通过互联网来了解产品及相关信息。该机构数据显示,在中国,有86%的客户愿意通过互联网来购买汽车。互联网已经成为用户获取信息的重要渠道和购买终端。与以往不同,如今的消费者对决定购买的车型已越来越熟悉,汽车销售顾问已不用费劲介绍车型信息。此外,消费者在购车之前都会在汽车网站上对各款车的配置、优缺点、和各地区的成交价格进行反复对比。现阶段,越来越多的企业已开展了对互联网汽车业务的探索,无论是汽车企业、综合类传统电商还是汽车媒体,都纷纷开始布局汽车电商平台。总之,对于传统的汽车经销商而言,互联网时代危险与机遇并存。现阶段传统“4s”店只有加快用互联网的思维武装自己、改造自己,才能在互联网时代的渠道竞争中立于不败之地,真正成为“渠道之王”。
财务大数据课程心得体会篇七
第一段:引言
随着信息技术的飞速发展,大数据已经成为当前社会的热门话题。作为一名大学生,我很幸运能够在大学期间学习大数据课程。通过学习这门课程,我不仅了解了大数据的基本概念和应用场景,还深刻体会到了大数据对于社会发展和个人能力培养的重要作用。
第二段:对大数据课程的认识和了解
大数据课程是以互联网、信息技术和数据分析为基础,旨在给学生提供大数据相关的知识,包括数据获取、存储和处理等方面。通过这门课程,我了解到,大数据是指规模巨大且多种多样的数据集合,可以通过分析这些数据来揭示出隐藏在其中的模式和趋势,从而为决策提供依据。大数据的应用场景非常广泛,涵盖了金融、医疗、教育、交通等行业。在这门课程中,我还学习了大数据处理工具,如Hadoop和Spark,以及数据分析技术,如机器学习和深度学习。
第三段:大数据课程的实践体验和收获
大数据课程注重实践环节的设计,通过实际操作来帮助学生理解和掌握数据分析的方法和技巧。在课程的实践项目中,我有机会运用所学的知识和工具,对真实的大数据进行分析和处理。通过这些实践项目,我不仅提高了自己的数据分析能力,还学会了如何识别和解决在处理大数据过程中遇到的问题。在完成这些项目的过程中,我深刻体会到了大数据对于决策和问题解决的重要性,也更加了解了相关的工作流程和职业要求。
第四段:大数据课程对个人能力培养的重要影响
大数据课程不仅帮助我掌握了数据分析的技能,还培养了我的团队合作和沟通能力。在实践项目中,我需要与同学们共同合作,协调各自的工作,解决数据分析过程中的问题。通过与团队的合作,我不仅积累了宝贵的团队合作经验,还提高了解决问题的能力。此外,大数据课程还培养了我的数据思维和创新思维。在分析大数据的过程中,我需要思考如何从海量的数据中找到有用的信息,并提出创新的解决方案。这些能力对于未来的职业发展非常有帮助。
第五段:对大数据课程的展望和总结
大数据作为一门热门课程,具有广阔的前景和发展空间。通过学习这门课程,我深刻认识到大数据对于社会发展和个人能力培养的重要意义。随着互联网和信息技术的不断发展,大数据的应用将会越来越广泛。希望自己能够继续深入学习和探索大数据领域,不断提升自己的专业能力。同时,也希望大学能够进一步深化大数据课程的教学内容和实践环节,为学生提供更好的学习平台和资源,培养更多的大数据人才。
总结起来,大数据课程的学习给我带来了很多的收获和启发。通过这门课程,我不仅学到了关于大数据的基本知识和技能,还培养了团队合作和创新思维能力。在大数据时代,掌握数据分析的能力对于个人发展和职业成功至关重要。因此,我将继续努力学习和实践,在大数据领域取得更大的成就。
财务大数据课程心得体会篇八
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。