应变协调方程的数学意义
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
应变协调方程的数学意义篇一
在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。
接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。
本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。
二次函数 中含有三个字母系数,因此确定其解析式要三个独立的条件,用待定系数法来解.学习确定二次函数的一般式,即 的形式,这方面,学生的学习情况还是比较理想的,但方法没有问题,计算能力还有待加强。
在学习了二次函数的知识后,我们尝试运用于解决三个实际问题.问题1是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。虽然有部分学生尚不能熟练解决相关应用问题,但在下面的学习中会得到补充和提高。
但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
应变协调方程的数学意义篇二
1、 借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。
2、 会用方程表示数量关系。
3、 培养学生观察、描述、分类、抽象、概括、应用等能力。
4、 感受方程与现实生活的密切联系,体验数学活动的探索性。
重点:理解方程是含有未知数的等式;
难点:方程的意义抽象的过程。
课前谈话:渗透平衡和等量(谈体验)
教学过程:
一、激情导入
出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。
二、探究新知
1.对不同的式子进行分类(不要有任何要求)
让学生先独立思考,然后小组合作交流自己的想法。
2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。
让小组的代表说说自己组是怎样分类的?为什么这样分类?
3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)
4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)
5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。
6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。
7.生举例。
8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。
9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?
10、判断两句话:所有的方程都是等式,所有的等式都是方程。
11、画图表示方程与等式之间的关系。
三、应用练习
1.判断下列式子是不是方程。
2.看图列方程。
3.根据题意列方程。
四、拓展延伸
1、谈谈自己在知识和情感上的收获。
2、送给同学们一个方程:天才+x=成功。
应变协调方程的数学意义篇三
一、对教学目标反思
1、对教学目标设计思想上不足够重视,目标设计流于形式。
2、教学目标设计关注的仍然只是认知目标,对“情感目标”、“潜质目标”有所忽视,重视的是知识的灌输、技巧的传递,严重忽视了教材的育人功能。
3、教学目标的设计含混,不够全面、开放。
教学目标的制定要贴合学生的认知程序与认知水平。制定的教学目标过高或过低都不利于学生发展,要让学生跳一跳摘到桃子。“这么简单的题都做不出来”、“这道题都讲过几遍了还不会做”,碰到这样状况,我们不应埋怨学生,而要深刻反思出现这样状况到底是什么原因,是学生不理解这样的讲解方式,还是认识上有差异;是学生不感兴趣,还是教师引导不到位等等;作为教师千万不能埋怨责怪学生,不反思自己,只会适得其反,以致把简单的问题都变成学生的难点,因此教学设计要能激发学生学习数学的热情与兴趣,要教给学生需要的数学。
二、对教学计划反思
在教学设计中,对教学资料的处理安排还存在以下缺乏:(1)缺乏对已学知识的分析、综合、比较、归纳和整体系统化;(2)缺乏对教学资料的教育功能的挖掘和利用。
三、对教学误区的反思
以前我认为教师讲得清,学生就听得懂。此刻觉得如果教师讲课只顾自己津津有味,不顾来自于学生一方的反馈信息,教师与学生的的思维不能同步,学生只是被动地理解,毫无思考明白的余地,这样不是听不懂,便是囫囵吞枣。在课堂的业余时刻段内让学生透过主动探索后发现知识,领悟所学。同时要及时反馈学生,加强效果回授,对未听清之处给学生以二次补授之机会,及时扫清障碍,将学习上的隐患消灭在萌芽状态。
作为没有经验的我常常埋怨学生,“这么简单的题都做不出来”!孰不知,教师与学生的知识水平与理解潜质往往存在很大反差,就学生而言,理解新知识需要一个过程,绝不能用教师的水平衡量学生的潜质。
因此,在教学时,务必全面明白学生的基础与潜质,低起点、多层次、高要求地施教,让学生一步一个脚印,扎扎实实学好基础知识,在学知识中提高潜质。
认清了问题,要解决问题并不是一朝一夕,一蹴而就的,我坚信只要我继续发奋,更新观念,深刻反思自己的教学行为,教学规范,就必须能够有所发展,有所进步!
应变协调方程的数学意义篇四
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
教学重点:
教学难点:
会列方程表示数量关系。
教学过程:
一、教学例1
1.出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
2.引导
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
二、教学例2
1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
三、完成练一练
1.下面的式子哪些是等式?哪些是方程?
2.将每个算式中用图形表示的未知数改写成字母。
四、巩固练习
1.完成练习一第1题
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
2.完成练习一第2题
五、小结
六、作业
完成补充习题
板书设计:
x+50=100
x+x=100
像x+50=150、2x=200这样含有未知数的等式叫做方程
应变协调方程的数学意义篇五
在教学实践中我觉得要提高教学效果,达到教学目的,必须在引导学生参与教学活动的全过程上做好文章:加强学生的参与意识;增加学生的参与机会;提高学生的参与质量;培养学生的参与能力。
一、重视学习动机在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识从教育心理学的角度来说,教师应操纵或控制教学过程中影响学生学习的各有关变量。在许许多多的变量中,学习动机是对学生的学习起着关键作用的一个,它是有意义学习活动的催化剂,是具有情感性的因素。只有具备良好的学习动机,学生才能对学习积极准备,集中精力,认真思考,主动地探索未知的领域。在实际教学中,向学生介绍富有教育意义的数学发展史、数学家故事、趣味数学等,通过兴趣的诱导、激发、升华使学生形成学好数学的动机。
教学中,激发学生参与热情的方法很多。用贴近学生生活的实例引入新知,既能化难为易,又使学生倍感亲切;提出问题,设置悬念,能激励学生积极投入探求新知识的活动;对学生的学习效果及时肯定;组织竞赛;设置愉快情景等,使学生充分展示自己的才华,不断体验解决问题的愉悦。坚持这佯做,可以逐步强化学生的参与热情。
二、重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。
在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一 系列思维活动,进而真正参与到知识形成和发展的全过程中来。
1.让学生多观察
数学虽不同于一些实验性较强的学科,能让学生直接观察实验情况,得出结论,但数学概念的概括抽象,数学公式的发现推导,数学题目的解答论证,都可以让学生多观察。
2.让学生多思考
课堂教学中概念的提出与抽象,公式的提出与概括,题目解答的思路与方法的寻找,问题的辨析,知识的联系与结构,都需要学生多思考。
3.让学生多讨论
课堂教学中,教师的质疑、讨论、设问可讨论,问题怎样解决可讨论。通过讨论,学生间可充分发表自己的见解,达到交流进而共同提高的效果。
此外,教学中让学生多练习、多提问、多板演等都可增加学生参与的机会。
三、重视学习环境在教学过程中的作用,通过创设良好的人场关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量和谐的师生关系便于发挥学生学习的主动性、积极性。
现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。因此,教师只有以自身的积极进娶朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。
交往沟通、求知进娶和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。
四、重视学习方法在教学过程中的推动作用,通过方法指导,积极组织学生的思维活动,不断提高学生的参与能力教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。教学过程是一个师生双边统一的活动过程。在这个过程中,教与学的矛盾决定了教需有法,教必得法,学才有路,学才有效,否则学生只会效仿例题,只会一招一式,不能举一反三。在教学中,教师不但要教知识,还要教学生如何“学”。教学中教师不能忽视,更不能代替学生的思维,而是要尽可能地使教学内容的设计贴近学生的“最近发展区”。通过设计适当的教学程序,引导学生从中悟出一定的方法。例如:学生学会一个内容后,教师就组织学生进行小结,让学生相互交流,鼓励并指导学生结合自己的实际情况。总结出个人行之有效的学习方法,对自己的学习过程进行反思,学生可以适当调整自己的学习行为,进而提高学生的参与能力。
总之,在数学课堂教学中,教师要时时刻刻注意给学生提供参与的机会,体现学生的主体地位,充分发挥学生的主观能动作用。只有这样才能收到良好的教学效果。
应变协调方程的数学意义篇六
《方程的意义》这是一块崭新的知识点,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。数学教学过程,首先应该是一个让学生获得丰富情感体验的过程。要让学生乐学、好学,让学生在教学过程中获得积极的情感体验,下面就结合我所执教的方程的意义这节课,谈谈我在教学中的.做法和看法。
回顾我的教学,我认为有如下几个特点。
在执教,《方程的意义》一课时通过天平的演示: 认识天平,同学们说天平的作用、用法。在这个环节要充分发挥低视的动手能力,但要注意对学困生的引导,在这个方面应该给学困生更多的机会去接触天平,起码让他们对天平建立起一个初步的认识。
通过对天平的观察得出等式的概念,接着应让学生自己独立思考。通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力,而不应该替学生很快的说出答案,在将出方程的概念后,应该让学生通过变式训练明白不仅x可以表示未知数,其他的字母都可表示未知数。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生已有的解决数学问题的算术法解题思路对列方程会造成一定的干扰。对于利用天平解决实际问题较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言、用关系时表示时可能存在困难,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。
应变协调方程的数学意义篇七
《方程的意义》这是一块崭新的知识点,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。数学教学过程,首先应该是一个让学生获得丰富情感体验的过程。要让学生乐学、好学,让学生在教学过程中获得积极的情感体验,下面就结合我所执教的方程的意义这节课,谈谈我在教学中的做法和看法。
回顾我的教学,我认为有如下几个特点。
一、设置情景引导,促进学生的自主学习
在执教《方程的意义》一课时通过天平的演示: 认识天平,同学们说天平的作用、用法。在这个环节要充分发挥低视的动手能力,但要注意对学困生的引导,在这个方面应该给学困生更多的机会去接触天平,起码让他们对天平建立起一个初步的认识。
二、合作交流,总结概括
通过对天平的观察得出等式的概念,接着应让学生自己独立思考。通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力,而不应该替学生很快的说出答案,在将出方程的概念后,应该让学生通过变式训练明白不仅x可以表示未知数,其他的字母都可表示未知数。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
三、回归生活,体会方程
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
应变协调方程的数学意义篇八
1.活用教材,创设情境,激发学生的参与热情。
教师充分利用学生的好奇、好胜、好动的心理特征,课一开始就通过“游玩”激发兴趣,设置“吹泡泡”“森林运动会”“小明乘车”这些具有现实性和趣味性的活动,使学生主动参与学习的积极性被充分激活,始终精神饱满地参与到教学的全过程。
2.小组合作,求异探索,培养学生的创新能力。
教学中注重对学生创新思维的培养和保护,时刻把学生作为数学活动的主体。教师在各环节穿针引线,关键处讨论,难点处交流合作,鼓励学生大胆汇报多种解决问题的方法,保护学生的好奇心、求知欲,使他们树立自信心。两个有层次的合作学习,使学生在求异探索、同思共想、互说互议的过程中,获得了展示自己的机会,体验了成功的喜悦。
3.适当评价,关注学生情感的体验。
在教学活动中,使知识的获得与情感的体验同步进行。教师灵活地运用体态、称号等评价方式,对学生所表现出的参与热情与灵活的思维进行激励,使他们获得了一种积极向上的情感体验,树立起良好的数学学习的自信心。
不足之处:在课堂中教师的激励语教少,学生之间的相互评价没能跟上,小组活动给的时间不够充分,需在今后教学中引起一定注意。
应变协调方程的数学意义篇九
1.以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
2.分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
1.提供丰富的素材,经历“数学化”过程。
分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。
2.问题寓于方法,内容承载思想。
数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。
就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。