2023年13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思(9篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇一
学生归纳和抽象的逻辑思维能力略显不足,归纳结论也没有方向性,我及时的对学生进行引导,翻折图形的过程三角形的两部分完全重合说明该三角形是一个轴对称图形。然后从轴对称图形所具有的一般性质出发,推导等腰三角形所具有的具体的性质。通过引导学生轴对称图形的对应线段相等,对应角相等从而在等腰三角形图形中找到相应的线段和角。
学生的观察图形,抽象归纳的能力有待提高,今后也要加强这方面的训练。例如我们从图中观察出线段bd=cd,那么线段ad是三角形的`什么线?有不少学生说是高线和角平分线,这也是学生一个不好的习惯导致的,做题不看清楚题目意思,不读懂题目,想当然的说出答案。当然还有一个原因:学生对概念定义的理解不够透彻,混淆了意思相近的概念,导致了解题的出错。
在结论一推出后我马上给出一例题,加强学生对结论一的理解和吸收,并能够简单的对结论一加以应用;同样在给出结论二后,为了让学生更深入的理解结论二(三线合一),在反复的强调结论二以后仍然给出了一个例子,也是为了追求思维的连贯性。
纵贯整堂课,在教学内容上,结合学生的理解程度,还是略显偏多。就结论二这个知识点学生理解起来相当吃力,等腰三角形的三线合一学生很容易把三条线弄混淆,什么时候该用等腰三角形的顶角平分线,什么时候用底边上的中线,什么时候用底边的高线学生不明白,再加上文字语言与数学语言之间的转换,学生学起来就更加的吃力。所以我在讲解这个知识点的时候反复强调强化他们的记忆,让学生把这个知识点弄通透。所以导致在讲第三个例题的时候时间略显不足。其实就这堂课的内容而言,不讲例三也是充足的。
在教学方法上,我采用了让学生自主探索,发现其规律的方法。通过让学生画等腰三角形并对折,探索、归纳一些有关轴对称图形的结论,那么多数学生在我的引导下还是能够找到正确的结论,当然还有部分学生不能理解。我还要继续探索用怎样的方式让更多的学生找出正确的结论。
在学生的学习上,学生能够按照老师的要求一步一步的进行学生,但对于动手的练习,仍有一些学生偷懒,不愿意动手。
当然这堂课也存在着不少的缺点。
1.板书不够严密,有图的地方应该在黑板上动手演示出来,然后学生参照黑板上的图再推出本节课的两个结论。
2.对学生的关注不够。有的学生上课工具准备的不够齐全,而我对他们缺乏有效的管理。让学生动手的环节,仍有个别学生没有动手。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇二
本节课的教学重点是认识等腰三角形和等边三角形以及它们的特征。我首先出示两块三角板,通过观察让学生发现有一块三角板边不同于另一块,有两条边相等的,从而引出等腰三角形,然后利用折纸这个活动,来进一步体会等腰三角形的特点。等边三角形与之类似,在教学中我把重点放在折纸上,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,在等腰三角形的操作中,学生做得还可以,但在做等边三角形时,有些学生看图不细,点的位置不正确导致做的效果不好。从这点也反映了学生看图能力有待加强。三角形剪出来以后,又让学生比一比,看一看,总结出等边三角形的特征。因为两次折纸用时较多,中间我又简单地补充了怎样画一个等腰三角形和一个等边三角形,所以后面练习的时间很紧张,有关习题没有当堂完成。
这一节知识点饱满,上课时根本来不及,又加上昨天中午英语考试,根本是一点时间也和不上,所以昨天留了个尾巴,今天才算上完。
本节课的教学重点是认识等腰三角形和等边三角形以及它们的特征。教材的安排是首先呈现几个不同类型的三角形,让学生通过测量边的长度,发现他们的共同特点是两条边相等,从而引出等腰三角形的概念。然后利用折纸这个活动,来进一步的体会等腰三角形的特点。等边三角形的编排与之类似。
在教学中我把重点放在活动上。先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,在等腰三角形的操作中,学生做得很好,在做等边三角形时,有些学生看图不细,点的位置不正确导致做的效果不好。从这点也反映了学生看图能力有待加强。三角形做出来之后,充分地让学生折一折、比一比、看一看,让学生在这个过程中,体会出等腰三角形和等边三角形的特征。因为我在这给学生留的时间较充裕,所以学生基本上都能自己总结出来。但也是因为这里用时较多,所以在练习时时间很紧张,没能当堂完成。
但是不可避免的,这一部分的练习内容肯定是较错的。因为等腰三形中涉及到底角和顶角,两腰相等,学生明白概念和实际动手运用概念是要有一个过程的。更何况对于一些抽象思维能力不太好的学生来说,还是很困难的。所以在讲练习时,我还是宁可讲慢些,也一定要逼一些学生把自己的思维过程交代清楚,以求得自己对学生学习情况的全局掌握性。只是,对于一些学生而言,到今天为止,我发现他们根本就不去思考什么顶角呀,什么底角的问题,拿到题目拿内角和瞎减一气,无奈呀!
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇三
1、 本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、 等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、 新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
1、 授课班级为平行班,学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、 该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、 本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
等腰三角形的相关概念,两个定理的理解及应用。
理解对称思想的`使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
体会数学的对称美,体验团队精神,培养合作精神。
1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、 教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇四
1、根据本节课内容特点和八年级学生思维活动的特点,采用了探究教学法,通过实验操作、设疑思考、巩固掌握等腰三角形的性质,等腰三角形“等边对等角”、“等腰三线合一”特征,等腰三角形的判定方法。
2、巩固运用等腰三角形的性质,判定方法,思考解决问题的方法和策略.在教学中应注重训练学生的正确表达数学文字语言和符号语言的转化。
3、教学中应自然地渗透数学思想方法,如:分类讨论等,学生初步形成有分类讨论的意识,巩固运用———熟识基本图形“角平分线——平行线——等腰三角形”使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的'
4、通过对问题的分析及实际问题的解决,注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。进一步提高学生说理和逻辑思维的能力,逐步培养用数学的意识。主动探求新知的动机。获得研究的乐趣,久而久之甚至发展为志趣。
5、存在的问题:
(1)对腰三角形性质,判定应用及知识的拓展方面较薄弱,显得深度不够。
(2)课堂中虽有学生自主探索活动。但放得还不够,仅局限于教材中的一些知识探索显得平淡无奇。
(3)在时间安排上,过于注重了学生知识形成过程,而对知识应用及拓展部分时间仓促,未能达到理想效果。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇五
本节课主要是让学生了解等腰三角形的概念,掌握等腰三角形的性质,以及运用等腰三角形的概念及性质解决相关问题。在教学方面,主要按以下步骤进行教学,教学效果比较好。
1、课前先复习等腰三角形的概念,等腰三角形各部分的名称。这样做对后面学习等腰三角形性质的时候,才能使学生非常容易的知道:哪个角是底角,哪个角是顶角,哪条边是底边,能使教师的教学做到事半功倍的效果。
2、在学习等腰三角形的性质的时候,一定要使学生自己剪出等腰三角形,自己来折贴,通过分组讨论,从而得出等腰三角形的2条性质。这样做培养了学生的动手能力,团结合作的能力,以及探究的能力,动口的能力。这样的课堂比单纯教师说出来的'效果要好很多,也使学生对等腰三角形性质的掌握更深刻得多。另外,在得出等腰三角形的2条性质以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,教师和学生先一起来分析解题思路,再让学生做,或者先让学生讨论,再让学生上来板书,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习的积极性和创造性,从而使数学课堂充满活力。
1.充分利用教材,在练习题与例题的编排上打破常规,让学生学生自己来折贴剪出等腰三角形,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的2条性质,再让学生用等腰三角形的2条性质来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。
2.在授课过程中,教师给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是等腰三角形性质的推导,还是等腰三角形性质的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇六
今天和学生们继续学习了三角形的知识——《等腰三角形和等边三角形》,因为昨天刚听了华应龙老师的研讨会,今天有点心血来潮,也来摸摸我们学生的底,他们的自学能力到底有多高?
课前我把全班三十五人分为七个组,每个组指派正副组长两名。上课伊始,我让学生先自学课本,我不给任何指导意见,这样做基于不干扰学生探究知识的思路。
十分钟后,小组自学活动结束,每组汇报探究的成果,孩子们零零碎碎地把本节课所要学的知识一个个抖落出来。课前我也将这些知识点作了一个预设,罗列了如下:等腰三角形、腰、底、底角、顶角、等边三角形……接着我引导学生对这些概念结合图形进行深入理解,最终学完了本节课,学生饶有兴趣地学习了一节课。
课后我反思了这节课,颇有收获:
一、每个学生都有自学能力
我以为学生没办法自学,很茫然,其实不然,他们在自学课本时,有自己的认识、收获和想法,尽管有点不够准确或不完善的想法,但相比较往日习惯等待灌输的做法的确有些触动。学生能够揭示本课的知识点,可能基于他们语文学习的课前预习,尽管能力不强,但值得肯定的。
二、每个学生都能发表自己的'想法
往日的课堂,我抛出的问题无人问津的情况经常有,而今天围绕学生挖掘的知识点展开提问或让学生相互提问,学生很乐意说自己的想法,没有拘束,真切地感受到学生的课堂学生做主。当然这节课中我也意识到一个好的和一个不好的个人素养,当一个孩子发言胆怯时,同伴的掌声鼓励了他们的勇气,说得不好的地方,请本组同伴帮忙,让学生切实感受小组合作的力量;当一个孩子发言错误时,总会引来其他孩子一些不怀好意的笑声,我及时制止并教育学生要懂得尊重别人、倾听别人的意见,谁没有犯错的时候,讽刺的笑声应该从课堂中消失。
三、每个学生都想发表自己的想法
学生在学习的过程中卡壳时,启发后还有困难,只能由老师揭示答案。一些学生情不自禁地说:“我也是这样想的。”我笑着说:“机不可失,时不再来,给你机会时为什么不讲?下次要大胆发表你的意见,哪怕就是错的,至少你思考了。”孩子们调皮地说:“我怕说错。”他们道出了自己的想法,也是我在以往教学中做得不够的地方。孩子们需要鼓励和赏识,才乐意说出自己的想法。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇七
本节课是九年级第一轮复习中为巩固学生对等腰三角形知识的灵活运用而精心设计的一堂几何复习课,结合本节课谈几点感悟:
1 、起点的教学设计,有利于调动学生的学习积极性,让学生全面参与,符合让学生发展为本的课改理念,今后应多在课堂教学中使用。
2、学习数学离不开解题,但如果陷入茫茫的题海中,解题千万道,解后抛九霄,是难以达到提高解题能力、发展思维的目的的。初三学生单纯的做、练激不起求知的欲望,在学生掌握课本基础知识和技能的前提下,对先前习题进行适当的挖掘、拓展、整合,是提高学生思维能力和解题能力,较好掌握课本知识与技能的重要方法。既来源于教材,又高于教材,较有新意,又能提高综合应用知识的能力,这才是高层次的复习课。
3、复习课既不像新授课那样有新鲜感,又不像练习课那样有成功感。如何上好一节行之有效的复习课,一直是我关注的教学问题,在教学中要将已学过的知识一一再现在学生面前,同时还要做到在更深的层面系统的处理前后知识的关联,我决定大胆尝试,不按以往传统复习法一章一章的复习,而是以一类问题的解决方法探索来涵盖我要复习的知识点。
4、这堂课涉及的`几何基础知识非常广泛,它既能充分的考察学生基础知识的掌握的熟练程度,又能较好的考察学生的观察,分析,比较,概括的能力及发散思维能力。
在本节复习课教学中我注意到避开以下问题:
(1)以教师思维代替学生思维,忽视学生学习的能动性;
(2)重习题的机械**练,轻认知策略的教学;
(3)复习方法呆板,缺少生动性和趣味性;
(4)为追求应试效果、强化训练和解题技巧指导过多,学生独立自主的探究知识学习太少。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇八
在新的课程标准中十分强调过程一词,既要重视学生的参与过程,又要重视知识的在先过程。有了学生的参与,课堂教学才显得生机勃勃,学生才会变成课堂学习的主人。知识的再现过程有助于让学生了解所学知识从何而来,解决何种问题,在有限的时间内探究知识,主动获取知识。
在教学中我们常常回遇到这样一种现象,学生年龄在增长,他们的学习困难也在增多,学生一年一年在升级,而求知的兴趣却在逐渐减弱,不少数学学得不错的学生在长大以后却远离数学,甚至讨厌数学,原因是什么呢?
从学生的方面来讲,这主要是部分学生在他们的整个学习过程中对一些概念,结论,判断不是在研究事实的过程后形成的,而是听教师讲解后知道的。因此,学生在学习中缺少主动的参与,更缺少积极的思考,确实依靠自己的实践去获取知识的过程。从教师的方面将,可能已经将教材将明白,难点,重点归纳清楚,课堂上尽量减少学习的困难,让学生走一条平坦的路,但这样学生就的不到积极的思考。所以教师要全面的积极准备教学过程,让学生参与到教学果实中来,主动思考教师为他们准备的.问题,让学生体会发现的乐趣,依靠自己的分析,独立思考获取知识,这中知识才是最宝贵的。例如在等腰三角形三线合一的教学中,两个班级出现了截然相反的效果。其中我是这样设计的:
1画出等腰三角形底边上的高;
2观察图中的全等三角形;
3证明得出的全等三角形;
4证出垂足就是底边上的中点、角平分线上的焦点;
5归纳结论
通过此过程学生也了解了等腰三角形的三线合一。但是学生的迁移、运用能力不是很强;于是在三年六班上课时,考虑到学生的参与热情、理解能力,改变了教学方法,注重强调过程,于是设计:
(1)出示不等式三角形(可用几何画板)。
(2)画出同一边上高线、中线、角平分线、观察三线位置。
(3)慢慢拖动三角形一顶角将不等边三角形转化为等腰三角形,同时观察三线位置的变化过程,让学生自己去发现,展示汇报,可相互质疑。为此学生的积极性一下子被调动起来了,在相互交流中掌握了知识。
教师如何去做“过程”?这是新课程改革时期我们每位教师必须思考的首要问题,在课堂教师应设计一定情景下的数学问题,设计一些结论开放适合学生实际的问题,让学生参与到问题的探究中去,给学生思考,动手的时间和空间,变教师“主讲”为“主学”,真正让探究过程成为课堂教学的主旋律。
13.3.1等腰三角形教学反思 等腰三角形分类讨论教学反思篇九
今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:
《等腰三角形的'性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果
这节课,也有不足的地方:
(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
(二)上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。