最新六年级上册分数应用题教案设计(优质七篇)
作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。既然教案这么重要,那到底该怎么写一篇优质的教案呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
六年级分数应用题教案设计篇一
这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的`解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。
1、认识求比一个数多(少)百分之几的应用题的结构特点。
2、理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。
教学难点:理解这类应用题的数量关系、解题思路和解题方法。
小黑板
教学设计补充(点评)
第一课时
活动(一)铺垫复习。
1、说出下面各题中表示单位1的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
(4)水稻播种的公顷数是小麦的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
活动(二)相互合作,探究问题:
2、讨论:
(2)根据线段图,这道题应该怎样思考、解答?
列式解答:
答:实际造林比原计划多16.7%。
3、学生阅读课本,对照例3的解答,质疑问难。
4、想一想,例3还有其他解法吗?
(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)
解答过程:
=2141-0.857
0.143=1-85.7%
=14.3%=14.3%
答:原计划造林比实际造林少14.3%。
活动(三)、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
(4)客车速度比货车慢百分之几?
(5)货车速度比客车快百分之几?
2、判断题。(对的在括号里打,错的打。)
(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。()
(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。()
六年级分数应用题教案设计篇二
新授课
要点提示
备课人
严正祥
备课时间
9月3日
教学目标:
1、使学生初步认识分数乘法应用题的特点,理解分数乘法应用题法应用题的解题思路和解题方法,认识分数分数乘法应用题的基本数量关系,分数应用题。
2、使学生分析推理和判断等思维能力得到进一步发展,并初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的应用题之间的联系。
教学重点:理解分数乘法应用题的解题思路和解题方法。
教学难点:初步认识求一个数的几分之几是多少的应用题和求一个数的几倍是多少的'应用题之间的联系。
教具准备:直尺、小黑板、投影片
教学过程:
一、复习引新
(1) 一块布料,用去3/5。
(2) 一块地3/7种西红柿。
2、 做15页复习题。
问:为什么要用乘法算?这里的一个数和分数相乘表示的是什么意义?
3、 引入新课。
根据一个数和分数相乘可以表示一个数的几分之几是多少,就需要用乘法计算。这节课就根据这样的道理,学习分数的应用题。(板书课题)
二、教学新课
1、教学例1。
(1)出示例1。
请大家找一找,这道题的条件有哪些,求什么问题?
(2)教学解法一。
(3)教学解法二。
请同学们看线段图,讨论可以怎样解答,把它试做一下。
组织学生交流自己的解法和思路。
师帮助学生理解解题思路和方法。
(4)解法比较。
这两种解法实际都是表示把20米平均分成5份,求其中的4份是多少。
2、练一练”第1题。
指名说一说是怎样想的,并强调为什么把全班学生人数看做单位“1”。
3、教学例2。
(1)出示例2。学生读题。
问:有哪几个条件,求什么问题?
指名说一说分析过程,
4、教学“想一想”。
(1)让学生找一找,谁是谁的几分之几。
问:用线段图表示题目的意思,要先画哪个数量的线段?为什么?
(2)大家讨论,哪个数量是单位“1”?怎样列式解答?
(3)3/2是什么分数?
条件里一个数量是另一个数量的几分之几,可以是真分数,也可以是假分数。
(1)做“练一练”第2题。
(2)小结。
师总结。
巩固练习
(3)说一说下面各题里的单位“1”的量。
看了一本书页数5/6。
杨树的棵数是杉数的3/8。
(4)做练习三第1题。
指名板演,其余学生在练习本上。
集体订正,让学生说一说是怎样想的,数量关系式是怎样的。
(5) 练习三第5题。
问:三道算式有什么相同的地方?为什么都用小乘法算?
三、全课总结。
四、课堂作业:
练习三的1、2、3、4。
板书设计:
分数应用题
先确定单位“1”,接着再想要求的数量是单位“1”这
个数量的几分之几,根据一个数和分数相乘可以表示求一个
数的几分之几是多少,用单位“1”的量乘几分之几。
单位“1”的量×几分之几=对应的量
教学后记:
要点提示
分数应用题
六年级分数应用题教案设计篇三
1.使学生理解成数和折扣的含义,以及成数和折扣与分数、百分数之间的关系;会解答有关成数和折扣的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
理解成数和折扣的含义;理解成数和折扣与分数、百分数的含义。
1.把下列各数化成百分数。
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数和折扣的应用题。
板书:分数应用题
1.成数的含义。
师述:什么是成数呢?“几成”就是十分之几,如“一成”就是十分之一,也就是10%。
(1)填空:
“三成”是十分之( ),改写成百分数是( )。
“三成五”是十分之( ),改写成百分数是( )。
(2)把下面的“成数”改写成百分数。
七成 二成五 五成 九成九
十成 二成八 七成四 八成二
2.出示例1。
(1)学生默读。
(2)这道题和复习中的第三题有什么不同之处?
(3)指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书:
=416×(1+25%)
=52(吨)
答:今年收白菜52吨。
3.练习。
4.折扣的含义。
师述:工厂和商店为了推销商品,有时将商品减价百分之几销售,这就是平常说的打“折扣”销售。
某种商品打“八折”出售,就是按原价的80%出售,也就是减价20%。打五折出售,就是按原价的( )%出售,也就是减价( )%。
5.出示例2。
(1)学生读题。
(2)问:打九折出售是什么意思?
(3)求比原价便宜了多少元?你想怎样解答?
(4)指名说解题思路。
板书:方法(一) 330-330×90%
=330-297
=33(元)
方法(二) 330×(1-90%)
=330×10%
=33(元)
答:比原价便宜了33元。
6.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关“成数”和“折扣”的知识,知道了“成数”和“折扣”的含义,以及“成数”和“折扣”与分数和百分数之间的关系,并且学习了有关“成数”和“折扣”的一些实际的、简单的应用题。
1.填空:
(1)某县今年棉花产量比去年增产三成。这句话的意思是( )是( )的30%。
(2)一块麦地,改用新品种后,产量增加了四成五。这句话的意思是改用新品种后产量是( )的( )%。
(3)一种皮茄克打九折出售。这句话的意思是( )是( )的90%。
(4)一批旧书打五五折出售。这句话的意思是现价比( )便宜了( )%。
2.把下面的折扣数改写成百分数。
七折 九折 六五折 八五折 六八折
3.把下面的百分数改写成“成数”。
75% 60% 42% 100% 95%
本节课从概念入手,并和原来学习的百分数应用题进行比较,学生易于找到突破口,便于学生理解、掌握本节课的重点和难点。通过和百分数应用题的比较,加深了学生对百分数应用题的理解和掌握,培养了学生分析能力。另外,课本上出现了大量生活中的实例,使学生体会到百分数就在我们身边,学好百分数应用题,能解决大量实际问题,从而提高了学生学习百分数应用题的兴趣。
六年级分数应用题教案设计篇四
:人教版六年制教材第十一册p83例4。
:1、掌握解题思路。 2、会正确解答稍复杂的分数应用题。 3、培养探索精神与分析解决问题的能力。
稍复杂的分数应用题的解题思路。
寻找新旧知识之间的联系。
教学软件(逐步演示的线段图及学生提供的知识)、贴纸(出示例4)、 投影片(提供练习题)、纸条(收集不同算法)
一、谈话引入师:同学们,上新课前老师先提一个问题,大家先思考,然后抢答。如果要你们查找广州市市长热线电话,有什么办法呢?师:(汇报完)同学们想到了查114,找报纸等不少的办法,不管什么方法,我们都是通过联系一些能找到市长热线电话的有关资料去查找,同样,解决数学问题也要联系我们学过的有关知识。
二、教学
5、主动探索,尝试解决。
(1)经过一段时间的学习,同学们现在都学会了准确去寻找解决问题的有关知识,根据这些知识你们能解答例题了吗?如果能的就直接解答;不能的再重温这些有关知识,然后尝试解答,(如果确实有困难的可以和老师交流一下怎样解,做完的想一想还能有其他方法吗?有的就写出来)
(2)小组内互相说自己怎样想?怎样算?(组长组织,已经完成的先说,没做完的先听其他人说。交流过程中指名不同的同学出来板算两种不同的方法)
6、归纳思路,提炼方法。
(1)汇报:(指着算法)要求还剩多少吨,就要用原有的吨数减去用去的吨数,因为用去的吨数题目中没有直接告诉我们,所以要先用原有的2500吨乘以用去3/5求出用去的吨数,再求还剩的吨数;要求还剩多少吨,就是求2500吨的2/5是多少,因为题目没有直接告诉我们还剩2/5,所以要先用1-3/5求出还剩几分之几,再求还剩多少吨。(先由板算的同学说,再看其他同学有什么补充或象他们那样根据自己的算法说说自己是怎样想的。边汇报边计算机闪动线段图,如下图) 订正:你们认为他们算得怎样? 2500吨 (用去?吨) 还剩?吨 用去3/5 (还剩几分之几) 解法一:2500-2500×3/5 解法二:2500×(1-3/5) =2500-1500 =2500×2/5 =1000(吨) =1000(吨)
(2)还有其他不同的算法吗?(对可能的错误如2500×3/5要指出其错误的原因。对如这样的解法χ+2500×3/5=2500要加以肯定,但说明体现不了解题的优越性)
7、小结。
(1)(指着两种解法)比较一下:两种解法有什么区别?有什么联系?先别急,下面先由同学们带着问题看书p83例4,把例4补充完整后,先想一想,用自己的语言归纳出来。(稍后)下面大家把自己的想法在组内交流一下。汇报。 区别:两种方法解题思路不同,第一种主要用总量减去用去量得到还剩量,第二种用总量乘以还剩的占总量的几分之几得到还剩量。 联系:都把原有的吨数看作单位“1”,都要用到求一个数的几分之几是多少用乘法计算。(边听边观察计算机)(2)回忆一下,我们刚才是怎样解答例4的?(理解题意,联想学过的知识帮助解决问题)师:所以以后遇到新的问题,我们要充分理解题意,然后联系有关知识去帮助解决。三、练习巩固,适当扩展。 下面我们就用这种解决问题的方法来做一些练习。1、p84:做一做1。(先说说自己是怎样想的,汇报。再用两种方法只列式不计算。订正:做的怎样?有什么评价?)2、一条公路全长240米,修路队第一天修了全长的1/4,还剩多少米没有修完?(先自己想一想,再用两种方法列式解答,全班订正) 师:我们说解决问题要联系学过的有关知识,那么刚才两道练习你用到了什么知识呢?(例4的知识)问题解决了,新的问题又来了,(出示第3(1)题练习)遇到新问题又怎么办呢?联系什么知识?下面就交给你们自己去想一想、做一做,只列式不计算。3、一条公路全长240米,修路队第一天修了全长的1/4,第二天修了全长的1/3。
(1)还剩多少米没有修完?
(2)两天一共修了多少米?
(3)第二天比第一天多修了多少米? (用纸条收集不同的算法对答案并重点汇报240×(1―1/4―1/3)怎样想。第二、三问独立完成,小组评价,全班订正)四、教学评价。这节课学习了什么?(分数应用题)有什么收获?(解决问题要联系学过的有关知识或方法)所以当我们日常生活中遇到问题时,要善于查找有关知识或方法来解决。
三、布置作业。1、机动练习或作业。已经知道朝天小学六年级学生人数占全校学生总数的4/25,问1—5年级一共有多少人?(请大家想办法解决)(时间允许让学生汇报想到的一些办法)p86:9。
六年级分数应用题教案设计篇五
1、结合具体的情景,体会理解分数加减法的意义。
2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。
3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。
教学重点:
理解并掌握异分母加减法的计算方法与法则。
教学难点:
掌握异分母分数加减法的算理与算法。
教学过程:
一、复习引入
(一)复习有关分数单位的知识。
1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫 做这个分数的单位。 )
(二)复习通分
二、创设情境、提出问题
1、同分母分数加减法 出示例 1(展示课件)
师: 你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学 问题,并解答。(四人小组合作学习)
抽学生口头汇报,同时老师根据学生的回答课件出示。
引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。
生 1:今天一共铺了这个广场的几分之几? 列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的 1/2。
生 2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?) 列式为:7/16—1/16=6/16=3/8。答:下午比上午多铺了这个广场的 3/8。
师:你们真能干,不仅提出了问题,还正确的解答出来了。
师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。
师:有谁能用自己的话说一说分母相同的分数怎样加减呢?
生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。
生举出类似的算式计算(全班练习)
2、异分母分数加减法
生:1/2+1/4=3/4 ,1/2-1/4=1/4 师:这两个算式与前边的算式的区别?(分母不同)
学生说出自己的意见
师:同学们在计算过程中,最关键的步骤是什么?
生:最关键的步骤是先通分,再计算。
师:说一说,异分母分数的计算方法?
生:异分母分数相加减,先通分,再按同分母分数加减法计算。
三、学生练习
1、基础练习 填一填:(出示课件)
①同分母的分数相加减,(分母 )不变,( 分子 )直接相加减,计算的结果 要化为( 最简分数 )。
3、接龙游戏
1/2+1/3 3/4-1/2
四、课堂小结
1/2-1/3 2/3+1/6 1/2+3/4 2/3-1/6 1/a-1/b=(b-a)/ab 1/3-1/4= 1/2-1/5= 17/18-13/18=4/18=2/9 7/9-2/3=7/9—6/9=1/9 通分),再按( 同分母分数加减法 )计算。 (每组 6 个同学,一个接一个地计算,看哪组又对又快)
六年级分数应用题教案设计篇六
教学内容:课本练习四的第6~10题。
教学目的:
1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。
2.培养分析能力,发展学生思维。
教学重点:正确分析数量关系,找准单位1
教学难点:依题意正确画图教学过程:
1.先说出下列各算式表示的意义,再口算出得数。
2.指出下面每组中的两个量,应把谁看作单位1。
(1)梨的筐数是苹果的。
(2)梨的筐数的和苹果的筐数相等。
(3)白羊只数的等于黑羊的只数。
(4)白羊的只数相当于黑羊的。
3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。
(1)有40筐苹果,梨的筐数是苹果的。()?
(2)梨的筐数是和苹果的筐数相等,有40筐。()?
(3)有40只白羊,白羊的只数的等于黑羊的只数。()?
(4)白羊的只数相当于黑羊的,有40只黑羊。()?
1.出示例3。
(1)指名读题,说也已知条件和问题。
(2)怎样用线段图表示已知条件和问题。
先画一条线段,表示谁储蓄的钱数?为什么?
学生回答后,教师画线段图。
再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:
根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。
然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:
根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。
教师画:
(2)分析数量关系。
引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。
(3)确定每一步的算法,列式计算。
①求小华储蓄的钱数怎样想?
引导学生回答:根据小华储蓄的钱数是小亮的
把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:
(元)
②求小新储蓄的钱数怎样想?
(元)
把上面的分上步算式列成综合算式,该怎样列?
(元)
(4)检验,写答语。答:小新储蓄了10元。
2.做一做。
让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。
3.小结。
学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。
完成练习四的第6、7题。
这节课我们共同研究了什么?
解答这类分数乘法两步应用题关键是什么?
完成练习四的第8~10题。
教学反馈:
六年级分数应用题教案设计篇七
教科书15页,例2及做一做 ,练习四8─10题。
(1)、会画线段图分析分数乘法两步应用题的数量关系。
(2)、掌握分数两步连乘应用题解答方法,并能正确解答。
(3)、进一步培养学生初步的逻辑思维能力。
抓住知识关键,正确、灵活判断单位1。
1、先说说各式的意义,再口算出得数。
╳ ╳
2、指出下面含有分数的句子中,把谁看作单位1。
(1)乙数是甲数的 。(甲数)
(2)乙数的 相当于甲数。(乙数)
(3)大鸡只数的 等于小鸡的只数。(大鸡)
(4)大鸡的只数相当于小鸡的 。(小鸡)
(1)审题:
全体默读,再指名读,说出已知条件和问题。
师生边讨论边画出线段图。
(根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)
然后画一条线段表示谁储蓄的钱数?画多长?根据什么?
(又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。
小亮
18元
?元
?元
小华
小新
(2)分析数量关系:
(3)确定每一步的算法,列出算式。
怎么求小华的钱数?
根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。
板书:18╳ =15(元)
怎么求小华的钱数?
根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。
板书:15╳ =10(元)
把上面的分步算式列成综合算式:
板书:18╳ ╳ =10(元)
(4)检验写答:
答:小新储蓄了10元。
2、做一做。
学生独立画出线段图,教师巡视指导。
3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。
独立完成练习四的第8、9、10题。
板书设计:
小亮
18元
?元
?元
小华
小新
18╳ =15(元)
15╳ =10(元)
18╳ ╳ =10(元)
答:小新储蓄了10元。