2023年数学中考知识点 数学中考知识点思维导图通用(九篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学知识点占比数学知识点归纳公式篇一
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解与整式乘法的关系:m(a+b+c)
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
①确定公因式。②确定商式③公因式与商式写成积的形式。
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
数学知识点占比数学知识点归纳公式篇二
1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。
通过上面对数学中实数的运算知识的讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得理想的成绩哦。
数学知识点占比数学知识点归纳公式篇三
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
三角形的外心定义:
外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
三角形的外心的性质:
3.锐角三角形的外心在三角形内;
钝角三角形的外心在三角形外;
直角三角形的外心与斜边的中点重合。
在△abc中
=ob=oc=r
数学知识点占比数学知识点归纳公式篇四
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(五)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则
1、从高位起,一级一级往下读;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(十三)小数大小的比较
比较两个小数的'大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用x表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(二十)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(二十七)把分数化成百分数和把百分数化成分数的方法
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和—另一个加数
4、减法各部分的关系:
减数=被减数—差被减数=减数+差
5、乘法各部分之间的关系:
一个因数=积÷另一个因数
6、除法各部分之间的关系:
除数=被除数÷商被除数=商×除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角是锐角。
(7)什么是钝角?
大于90°而小于180°的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°。
8、(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形内角和是180°。
10、四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平等四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、什么是四舍五入法?
求一个数的近似数时,看被省略的尾数位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
13、加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、什么是被减数?什么是减数?什么叫差?
在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、加法各部分间的关系:
和=加数+加数加数=和—另一加数
17、减法各部分间的关系:
差=被减数—减数减数=被减数—差被减数=减数+差
18、乘法
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、除法
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中,已知的一个因数叫除数。
(4)什么是商?
在除法中,求出的未知因数叫商。
20、乘法各部分的关系:
积=因数×因数一个因数=积÷另一个因数
21、(1)除法各部分间的关系:
商=被除数÷除数除数=被除数÷商
(2)有余数的除法各部分间的关系:
被除数=商×除数+余数
22、什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、什么是单名数?
只带有一个单位名称的数叫单名数。
24、什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、什么是有限小数?
小数部分的位数是有限的小数叫有限小数。
28、什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、什么是方程?
含有未知数的等式叫方程。
34、什么是解方程?
求方程解的过程叫解方程。
35、什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。
36、什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、什么是偶数?
能被2整除的数叫偶数。
38、什么是奇数?
不能被2整除的数叫奇数。
39、什么样的数能被5整除?
个位上是0或5的数能被5整除。
40、什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、什么是公约数?什么叫公约数?
几个数公有的约数叫公约数。其中的一个叫公约数。
46、什么是互质数?
公约数只有1的两个数叫互质数。
47、什么是公倍数?什么是最小公倍数?
几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、怎么比较分数大小?
(1)分母相同的两个分数,分子大的分数比较大。
(2)分子相同的两个分数,分母小的分子比较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整分数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、比
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、长方体和正方体
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(或立方体)。
(5)什么是长方体的表面积?
长方体个面的总面积叫长方体的表面积。
(6)什么是物体体积?
物体所占空间的大小叫做物体的体积。
52、圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心、并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(8)什么是弧?
在圆上两点之间的部分叫弧。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
数学知识点占比数学知识点归纳公式篇五
(2)两个平面的位置关系:
两个平面平行——没有公共点;两个平面相交——有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(cantor,g、f、p、,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。
数学知识点占比数学知识点归纳公式篇六
易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!
易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带x公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解
易错点6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。
易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。
易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。
易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。
易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。
易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。
易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。
易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。
易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。
易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。
数学知识点占比数学知识点归纳公式篇七
1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
相信上面对数学中实数与数轴知识点的内容总结学习,可以很好的帮助同学们对此知识点的巩固学习吧,希望同学们会学习的更好。
下面是对数学的学习中,关于实数大小的比较知识学习,希望同学们很好的掌握。
1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
相信上面对数学中实数大小的比较知识点的讲解学习之后,同学们对上面的知识已经能很好的掌握了吧,希望同学们都能考试成功。
关于数学中队友实数中的几个概念知识,我们做下面的讲解学习,相信可以很好的帮助同学们的学习。
3、绝对值:(1)一个数a 的绝对值有以下三种情况: (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根(1)平方根,算术平方根:设a≥0,称 叫a的平方根, 叫a的算术平方根。(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。(3)立方根: 叫实数a的立方根。(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
通过上面对实数中的几个概念知识点的内容总结学习,希望同学们都能很好的掌握上面的知识点,相信同学们会从中学习的更好的。
下面是对数学中实数的分类知识点的内容讲解学习,希望同学们对下面的知识点都能很好的掌握。
1、有理数:任何一个有理数总可以写成 的形式,其中p、q是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如 、 ;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、 °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
以上对数学中实数的分类知识点的内容总结学习,相信同学们已经能很好的掌握了吧,希望同学们考试成功。
初中数学三角形内角定理知识点讲解
以下是对数学中三角形内角定理知识的内容讲解学习,相信可以很好的帮助同学们对此知识点的`巩固学习吧。
定理:三角形两边的和大于第三边
推论:三角形两边的差小于第三边
三角形内角和定理:三角形三个内角的和等于180°
推论1:直角三角形的两个锐角互余
推论2:三角形的一个外角等于和它不相邻的两个内角的和
推论3:三角形的一个外角大于任何一个和它不相邻的内角
通过上面对数学中三角形内角定理知识点的讲解学习,相信可以很好的帮助同学们对此知识的学习了吧,希望同学们都能考试成功。
如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行推论:
两直线平行,同位角相等
数学知识点占比数学知识点归纳公式篇八
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
y的取值范围是y0;
②当k0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x 的增大而减小。
①x的取值范围是x0,
y的取值范围是y0;
②当k0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x 的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数的几何意义
设是反比例函数图象上任一点,过点p作轴、轴的垂线,垂足为a,则
(1)△opa的面积.
(2)矩形oapb的面积。这就是系数的几何意义.并且无论p怎样移动,△opa的面积和矩形oapb的面积都保持不变。
矩形pcef面积=,平行四边形pdea面积=
数学知识点占比数学知识点归纳公式篇九
1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。
最小的质数是2,最小的合数是4
1~20以内的质数有:2、3、5、7、11、13、17、19
6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。
7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。