公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思(8篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇一
1、我让学生依托动手操作,加强对比观察,沟通新旧知识的联系,优化概念引进的过程。在教学例3时,我分四步组织学生的活动。
第一步,让学生“分别用边长6厘米和4厘米的正方形纸片铺长18厘米、宽12厘米的长方形”,铺前先思考:边长是多少的正方形可以铺满这个长方形?通过操作,学生都知道边长6厘米的正方形可以铺满长18厘米、宽12厘米的长方形。引导学生具体感知公因数的含义。
第二步,组织讨论“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形”,通过思考,学生明白:“只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满”这个长方形。
第三步,可以先让学生说一说1、2、3和6的共同特征,再告诉学生1、2、3和6的共同特征,再告诉学生“1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。
第四步,让学生说一说4为什么不是12和18的公因数,使学生加深对公因数含义的理解,知道4是12的因数,但不是18的因数,所以4就不是12和18的公因数。通过正、反两方面的比较,优化概念的形成。
2、着眼于问题的解决,鼓励学生自主探索,逐步形成概念结构。教学例4是,我让学生先独立思考,用自己的方法找出8和12的公因数和最大的公因数。再通过交流,使学生在相互启发的过程中进一步打开思路,明确方法。由于学生已经积累了较为丰富的求两个数的最小公倍数的方法,因而这里的重点是让学生在自主探索的基础上合乎逻辑地表达自己的思考过程,并体会不同方法的内在一致性。
这时,我适时引导学生建立概念结构:因数——公因数——最大公因数,并且辨析这些概念的联系与区别。此外,考虑到学生也已经初步认识了用集合图表示两个相交的集合圈,所以我让学生根据对有关概念的理解,独立把8和12的因数分别填在集合图中的合适部分,然后再看图说说各自的想法,说说每一个区域内的数分别表示什么,把静态的集合图转化成动态的探索对象,让学生加深对集合图的理解,也使集合思想的渗透落到实处。
3、练习的重点是让学生通过操作和填空,进一步理解求公因数和最大公因数的方法。让学生在解决问题的过程中提炼解题策略,优化概念应用的过程。
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇二
《公因数和最大公因数》这部分内容是在学生理解因数与倍数的相互关系,会找1~100的自然数的因数,并且在学习面积概念时积累了“密铺”的活动经验开展教学的。对于《公因数和最大公因数》这样一节概念课的教学,其教学重、难点我认为就是对“公”字意义的理解,也就是如何体验这个数既是一个数的因数,又是另一个数的因数,才是两个数“公有”的因数。为了突出本节课的教学重点、突破教学难点,结合我们本学期的教研主题“如何设计有效的教学活动,达成教学目标”,我主要从以下几方面入手来尝试教学:
第一次猜想:一个长方形,长4厘米,宽2厘米。如果用同样大的边长是整厘米数的正方形来摆,刚好摆满没有剩余,可以选边长是几厘米的正方形?让学生带着自己的思考去操作验证,在操作中体会“同样大小的正方形”、“摆满没有剩余”,初步感知正方形既要把长方形的长摆满没有剩余,又要把长方形的宽摆满没有剩余。
第二次猜想:现在把长方形变大,长6厘米,宽4厘米,同样的要求,这次正方形的边长可以是几厘米?学生可以熟练地操作验证,在活动体验和交流中进一步感知选择正方形时既要保证长方形的长摆满没有剩余,又要保证长方形的宽摆满没有剩余。
第三次猜想:继续变大,长18厘米,宽12厘米长方形,还是同样的要求,用同样大的小正方形来摆,刚好摆满没有剩余,这次可以选边长是几厘米的正方形呢?学生继续操作验证。这时学生已经有了前两次的操作感知,积累了充分的活动经验,这些活动经验可以支撑他们去推理、想象,找到能“摆满没有剩余”的本质,从而从整体感知正方形边长的规律。
然后,发挥教师的主导作用:“我们前后共摆了三个长方形,得到了黑板上的这些数据。仔细想一想,这些正方形的边长和什么有关?有怎样的关系呢?”引导学生观察数据,发现规律,引出公因数和最大公因数的概念。
通过创设以上教学活动,让学生在活动中实实在在地经历了公因数产生的过程,积累丰富的活动经验,充分体验公因数的意义。
通过上面的操作体验和思考认知,学生认识了公因数和最大公因数,又经历了找公因数和最大公因数的过程,学生能感知“因数”、“公因数”、“最大公因数”这三个概念之间存在着一些联系。为了帮助学生深入地理解概念,提出问题:“对比这三个概念,现在你能说说它们之间的联系与区别吗?可以选其中两个说一说。”引导学生进一步地思考。这时学生交流:“‘因数’是一个数的,而‘公因数’是两个或两个以上的数公有的”、“‘最大公因数’首先它也是‘公因数’中的一个,而且是‘公因数’中最大的一个。”根据学生的交流,我通过课件,借助韦恩图形象直观地演示了“因数”与“公因数”、“公因数”与“最大公因数”之间的关系,增进了学生对概念意义的理解。
在学生充分理解区分了“因数”、“公因数”、“最大公因数”三个概念之后,提出问题:“一根彩带长16分米,如果要截成小段来装饰包装盒,要求每段一样长且剪完没有剩余,每段可以是几分米?(选整分米数)”学生想到:这是个用因数的知识解决的问题,求每段可以是几分米,也就是求16的因数。这时,引导学生改编成一个用公因数来解决的问题,学生首先想到了少需要两个数据,于是有的学生想到可以改编成:“两条彩带,一条16分米,一条12分米。把它们截成同样长的小段且没有剩余,每段可以是几分米?(选整分米数)”这样的问题。在学生思考的过程,既是在进一步理解概念的意义,又找到了“公因数”、“最大公因数”概念的现实意义,培养了学生的数学抽象能力。
一节课下来,我发现学生是最棒的!在不断地实践探索中,他们的认识不断提升,我仿佛听得到他们思维拔节的声音。
1、在三次操作之后,找正方形边长与长方形的长和宽有什么关系环节,有的孩子不能用数学的眼光去观察、去思考,还停留在操作上,这就说明作为老师,在这两个环节之间没有为孩子搭建起合适的桥梁,没有帮孩子找到一个好的思维支点。
2、因为操作感知时间较长,在本节课的第二个知识目标——找公因数和最大公因数的方法环节就没有充分的时间将孩子的各种方法展开交流,也是个小小的遗憾。
带着原有的思考我们做了如上尝试,然而一节课的时间是有限的,个人业务素养也有待提高,所以没有做到面面俱到。好在一节课的结束并不意味着思考的终止,我又带着实践中的新问题上路了。期待着思考的路上,能得到更多领导、同行们的指点与批评!
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇三
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的.思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?”
学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
“对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?
通过学生的猜测,我把学生的提出的问题进行了整理:
(1)什么是公因数与最大公因数?
(2)怎样找公因数与最大公因数?
(3)为什么是最大公因数而不是最小公因数?
(4)这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇四
公因数和最大公因数这一课应注重引导学生体验“概念形成”的过程,让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体。
在教学过程中,我们不仅要求学生掌握抽象的数学结论,更应注重学生概念形成的过程。应引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。通过创设生活情境,帮助王叔叔铺地装,将学生自然地带入求知的情境中去,在学生已有知识经验的基础上放手让学生去交流、探索。“哪一个正方形纸片能正好铺满长16厘米宽12厘米的长方形,为什么?”这样更利于培养学生自主探索、提出问题和解决问题的能力。接着进一步引导学生思考“还有哪些正方形纸片也能正好铺满长16厘米宽12厘米的长方形?”“为什么边长是1厘米、2厘米、4厘米的地砖可以正好铺满?而边长是3厘米的正方形地砖不能正好铺满?”让学生在反复地思考和交流中加深对公因数这一概念的理解。
教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,找出“16和12的公因数和最大公因数”。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识。
1、增强师生和生生之间的互动
在教学过程中各个环节的衔接不够紧凑,本课时的教学内容比较枯燥,在课堂上如何调动学生的积极性,活跃课堂气氛,使学生学的轻松、扎实。今后的教学中,在这一点上要都多下功夫。本课时的教学中,在组织学生交流找“16和12的公因数”的方法时,指名回答的形式过于单调,有的同学没有选着摆一摆的方法,而是直接用边长去除以小正方形边长来判断,我没有很好利用学生生成的资源,帮助学生理解,局限学生的思维发展。
2、方法多样化和方法优化
在组织学生进行交流时,应该注重引导学生有层次地介绍各种不同的方法。同时还要引导学生进行方法的比较和优化。
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇五
例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次:第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
反思:突出概念的内涵、外延,让学生准确理解概念。
我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括“1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。
由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。
运用数学概念,让学生探索找两个数的最大公因数的方法。
例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。
充分利用教育资源,自制课件,协助教学。
限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。
本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇六
分析基础知识:本单元是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。教材分两段安排教学内容:第一段,认识公倍数、最小公倍数,探索找两个数的最小公倍数的方法;第二段,认识公因数、最大公因数,探索找两个数的最大公因数的方法。此外,在本单元的最后还安排了实践与综合应用《数字与信息》。
以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。本单元教材注意以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在这节课上,让学生按要求自主操作,发现用边长6厘米的正方形正好铺满长18厘米,宽12厘米的长方形。在发现结果的同时,还引导学生联系除法算式进行思考,对直观操作活动的初步抽象。再把初步发现的结论进行类推,发现用边长1厘米、2厘米、3厘米6厘米的正方形都正好铺满长18厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、3、6这些数和18、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。
例3中,教师宣布游戏规则后,放手让学生动手操作,直观感知——思考原因——想象延伸——讨论思辨——明确意义。例4更是学生探究广阔的平台,教师抛出问题后,让学生独立探究。为了解决问题,学生充分调动了已有知识经验、方法、技能,八仙过海各显神通,找出了各种求“12和18的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。
课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。所以在教学找公倍数或公因数时,应提倡思考方法多样化。例4教学中,学生得出了三种方法来寻找12和18的公因数和最大公因数。(当然到底是三种还是两种有待商榷,不过在这里,为了便于比较我们姑且称之为三种吧)这就存在了一个方法优化的过程,哪一种方法会更简单?通过对比,大多数学生赞同方法二。通过讨论,引导学生以后解决此类问题时可以多运用较好的方法二。在这中间教师注意到了引导、小结、鼓励,师生共同得出结论。
复习题中回顾了四年级知识基础、列举法和标记法,在例3中,学生思考“还有哪些边长整厘米的正方形纸片也能正好铺满这个长方形?”时就有了基础。例4中,学生也知道用列举法和标记法来解决问题。
特别是用集合图来表示因数和公因数的教学值得一提。有趣的游戏,预料中的争执,恰到好处的体现了图的妙用,图的填法比一步步教学生如何填更有效,也更不易遗忘。练习五,第一题在填完集合图后对公有因数和独有因数意义的的提升,为下面的学习作了伏笔。体会初步的集合思想。
练一练,并没有局限于画画△、○,找找公因数和最大公因数,而是进一步指导学生观察,发现公因数都比小的数小(18和30中,18是小的数),在18的因数中找公因数的确更快、更好些。
所以请老师们在平时的教学中也去分析、思考,把握例题和练习中每个需要提升之处,在课堂中时时注意方法和策略的渗透,较好地用实这套教材。
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇七
1、出差两天,今日回来,与孩子们继续畅游《公倍数和公因数》单元。
思维一旦被激发,就有点一发不可收拾。
从第一课时开始,孩子们与我是完全浸润在了公倍数与公因数的欢乐中。我的态度也从一开始对教材安排的质疑,到现在极力拥护教材的安排。
只有放手给孩子们一个构建的机会,孩子们才能在构建过程中频频发起智慧的邀请。
在学习公倍数的时候,课上巧遇“思维定势”,孩子们以为两个数的公倍数就是它们的乘积;但是在解决书本上的6和9的公倍数是多少时,猛然发现,这个方法不能次次实施。孩子们提出了一系列猜想。其中小彧发现,如果将错就错,把6和9相乘,也可以,但是要除以它们的最大公因数。并且,小彧通过举例,把这个发现从特殊上升到了一般。
因为当时还未学习公因数,我就躲避了问题的内里。
小何在备学中说,我最大的问题是,我知道小彧的说法是对的,但是为何6和9两个数相乘,再除以最大公因数,得到的就是最小公倍数,其中的道理是什么?
呵呵,好家伙,知道了是什么,自觉追问了为什么?
明天我们要对本章节的内容做个整体梳理,我准备结合短除法,让孩子们意识到小何追问思想的可贵,以及这个方法可行之处究竟是什么。
2、孩子们很爱思考,从第一课时的下课时间开始,就发现两个数若有倍数关系,它们的最小公倍数很奇妙,就是较大的数。
第二课时,我们通过教材上的习题,一起说了这个规律,即诉说了看到的表面现象。
孩子们还不甘心,提出了问题,为什么两个数是倍数关系,最小公倍数就是大的那个数呢?
一时安静后,好几个孩子举高手,并说清了原因:大数本身是小数的倍数,大数又是自己最小的倍数,理所应当是两数的最小公倍数。
3、公倍数的种种猜想,在学习公因数的时候,思想方法得到了迁移。
第一课时,孩子们提出各种猜想,求最大公因数,会不会也像公倍数中两个数有特殊关系,就能轻松的求出结果?
要做找公倍数的上本子作业了,我板书给孩子们看书写格式,他们拉着脸。
我说,我小时候,就是写这么多字的。不过,我可以介绍你们写一种简单的,用“【】”包住两个数,中间用逗号隔开,这样就能代替写这么多字。孩子们一看,多方便呀!居然都“啪啪啪”鼓起掌来,哈!
我满怀惬意的说,你们的掌声与微笑中包含着对数学简洁美的追求啊!
不过事后,一个资深老师告诉我,这个环节,如果让孩子们创造一下,如何追求简洁。也许,这样对于孩子们的思维发展更有效。一想,我也同意这般。
一节课,只要知识目标达成,那么,过程方法与情意目标是不可分割的。学生在达成过程方法目标的旅程中,岂有不快乐,不感受到丰富体验的?
公因数和最大公因数教学反思简短 公倍数和最小公倍数教学反思篇八
《两三位数除以一位数》商是两位数是在学生学习了商是三位数和有余数除法的基础上进行的,它是学习除数是多位数除法的基础。因此要在引导学生解决具体问题的过程中,切实理解算理,掌握计算方法。
本节课我有意识的在一开始设计了抢答环节,让学生判断大屏幕上几道题目的商的位数,进而发现不同,激发兴趣,引入本节课的学习。从效果上看,学生在判断的过程中比较感兴趣,并能初步感受与旧知的联系与不同,达到了预期的目的。
本节课我在这方面做的不好。在摆小棒理解算理环节,我领的比较多,学生和老师一问一答,比如:“先分什么?再分什么?每份是多少”等,虽然学生最后也弄明白了该如何分小棒,但学生的能力没有得到提高。在于老师的建议下,在重建设计中,我会注意放手,设置大问题。比如:“请同学们看着大屏幕上的小棒,想一想应该怎样分呢?先自己想一想,然后同桌交流一下。”让学生带着问题思考,在思考中考虑摆小棒的全过程,而不是想一开始那样,思路被割裂开了。之后再全班交流,教师也可适当引领点拨,但这和我之前的设计感觉就不一样了,后者更能体现学生主体地位。在这方面,我今后还应提高意识,不断实践。
计算教学,单纯的让学生计算势必会使学生产生厌倦。我联系学生实际和生活实际,设计出多种多样的练习题,比如:计算之后让学生思考问题“想一想:三位数除以一位数,什么时候商是三位数,什么时候商是两位数?”或让学生“火眼金睛”辨别对错,或让学生在解决实际问题中说一说先算什么再算什么,感受解决实际问题的一般环节,将思路渗透到日常教学中,或在最后让学生根据所学再来一组比赛等,结合学生不同的计算阶段提出不同的要求和练习形式,使单调枯燥的计算练习变得生动有趣,达到了较好的教学效果。
我将以本次讲课为契机,在今后的教学中应用本次活动学到的知识,加以实践,不断提高自身的教学水平。