2023年空调系统毕业论文(4篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
空调系统技术论文篇一
摘要针对地铁空调冷却水系统的特殊要求,提出了喷雾间接蒸发冷却器与喷雾间接蒸发冷却冷凝器两种方案,简要分析了两种方案的工作原理和节能效果,计算表明,采用喷雾冷却设备替代1台600m3/h机械通风冷却塔时,在不考虑冷却塔运行费用的基础上,仅冷却塔补水水费一项每年就可节约17万元。
关键词地铁喷雾冷却冷水机组喷雾间接蒸发冷却冷凝器
0引言
近年来,我国大力发展城市轨道交通,尤其鼓励地铁的发展,继北京、上海、广州、深圳多条地铁线开通运营后,很多大型城市正在或即将修建地铁,由于地铁站空调系统需要对冷却水进行降温,因此,在地铁建设中不可避免会涉及冷却塔的设置问题。由于地铁线路所经过的区域多是城市繁华地带,地面上设置冷却塔的空间有限或根本没有,将冷却塔安装在地面上不仅影响城市景观和规划,而且给周围环境带来噪声污染和卫生隐患。因此,研究地铁专用的冷却器替代目前设置在地面的冷却塔,对解决地铁冷却塔设置的问题具有现实意义。
目前地铁空调冷却水系统中所采用的冷却塔是针对设置在室外进行设计制造的,分为横流式和逆流式两种,冷却塔体积巨大,塑料填料间距很小,安装于地铁排风通道中必然影响地铁排风;为避免冷却水被外界空气污染,冷却水不宜与外界空气接触,因此,普通开式冷却塔不宜用于地铁空调系统,而封闭式冷却塔和蒸发式冷凝器由于换热效率等问题而不适合在地铁站中使用,本文提出新型闭式喷雾冷却器和新型喷雾冷凝器两种方案,并对其进行简要分析。
1喷雾冷却技术研究成果
自maclaine-cross和banks建立间接蒸发冷却计算模型以来,国内外专家学者以此为基础对喷雾间接蒸发冷却技术进行了大量的研究。杨强生等人基于merkel方程,实验研究了喷雾空气冷却器的传热传质过程,通过回归的方法得到容积散质系数的关联式[1]。梅国晖等人研究了高温表面喷雾冷却传热系数、气水雾化喷嘴最佳气水比和喷射方向对喷雾冷却换热的影响,研究表明,喷雾冷却过程存在最佳气水比,但最佳气水比不是固定不变的,它随着水压的增加而减小;在低水流密度下,喷射角90°处喷雾传热系数最大,其他喷射角度的传热系数大致以喷射角90°处对称,在高水流密度下,随喷射角度增加而显著增加[2-4]。刘振华通过数值计算方法讨论了液滴与空气速度比和喷雾条件之间的相互关系,认为在自由射流情况下,速度比的变化使流体形成在喷嘴附近的非稳定区和下游的稳定区,在均一流情况下则不存在非稳定区,在稳定区内速度比与模型类别、喷雾距离和初始速度无关;在喷雾距离大于后,可认为速度比进入稳定区,其大小取决于液滴直径和空气冲击速度,空气冲击速度越大,速度比越接近1,液滴直径越小;液滴直径小于100μm,可认为速度比等于1,对工程计算没有影响[5]。junghokim详尽研究了喷雾冷却的传热机理和目前喷雾冷却模型的优缺点,研究了物体表面形状、喷雾倾斜角度和重力对喷雾冷却的影响[6]。最近,美国国家航空航天局的等人研究了3种强化表面的喷雾冷却效果和喷射倾斜角度(喷射轴向与物体表面法向夹角)对喷雾冷却的影响,在喷雾温度为℃时,分析了冷却水管采用3种不同肋片表面对冷却效果的影响,研究表明,相对于平表面而言,直肋片表面热流密度最大,且喷射倾斜角度为30°时,热流密度可提高75%[7]。
2喷雾冷却与淋水冷却的比较
能耗比较
开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。
2喷雾冷却与淋水冷却的比较
能耗比较
开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。
从表1可以看出,当冷却水量从75m3/h增加到700m3/h时,在没有考虑普通冷却塔配套设施能耗和运行费用的基础上,喷雾冷却塔与相应规格的机械通风冷却塔相比,综合节能效率在30%~50%之间,喷雾冷却效益显著。
喷雾冷却器设置在地铁排风通道内,水雾与冷却器表面的换热量最终必须由通道内排风带走,因此,空气的温湿度决定了冷却器的换热效果,而通道内空气的温湿度与室外空气温湿度差别很大,因此,实现相同排热量所需冷却器的体积相对会大一些,相应设备功率会增大,这样,不可避免地要增加部分能耗和初投资及运行费用。
由于冷却塔设置在地铁排风通道内,必然会造成通道的排风断面减小,排风阻力增大,由局部阻力计算公式可知,局部阻力与通道的局部阻力系数和速度的二次幂的乘积成正比,当通道排风断面减小一半时,则局部阻力将为原来的4倍,因此,要实现相同排风量,排风机的功率可能会增大。
费用比较
空调系统技术论文篇二
我国经济的持续高速发展,客观上对交通和运输提出了更高的要求。铁路作为交通运输市场的传统主导,近年来却面临着高速公路和民航运输的巨大挑战。近期国家不仅规划建设跨省铁路项目沿海铁路(上海—宁波—深圳—香港快速铁路),以实现全国范围“四横四纵”铁路快速客运通道构想,而且正在积极筹建中巴铁路,实现我国新疆与巴基斯坦的陆上交通,以及建设中缅铁路—西南出海铁路大通道,架设南亚大陆桥以加快我国西部大开发。中国铁路网将在全球战略定位的基础上,具有新的战略意义。对于铁路客运市场来说,实现客车的高速化、舒适化显得尤为迫切。面对新的更高的要求,我国列车客车空调通风系统一方面需要有条件的吸收引进世界最新科技成果,一方面需要加强自主创新。
变冷媒流量空调系统(vrf),自1982年日本dakin公司首先推出以来,二十几年中得到迅速发展和推广,已经在民用建筑上被广泛应用。vrf系统的特点可以有效解决现有列车单元式空调机组的不足。
(1)vrf系统根据系统负荷情况,通过变频控制器自动调整压缩机转速(变频范围50%~130%),使系统内冷媒的循环流量得以改变,进而对制冷量进行自动控制以符合使用要求,从而能保证在负荷变化范围内,压缩机以较高的效率运行。vrf空调系统在部分负荷时的能效比相当高,当部分负荷率在40%~60%之间变化时,vrf空调系统的能效比相对最高[4]。可见,列车在多变的气候条件下,大部分时间空调处于低负荷工况,vrf空调系统在低负荷状态下运行时能耗小,能效比更高,故可有效地节约能源。
(2)vrf空调系统拥有一套方便、专用的微电子系统,能提供控制、检测、管理包括能量消耗等项目的各项功能,可以实现优越的控制功能:a.成组控制,通过遥控器连接机组;b.区域控制,将几组作为一个区域,通过集中遥控器上的操作按钮对其进行控制;c.组块控制,用集中检测面板控制整个系统,监控数据通过数据站、主站传送到集中检测面板上。灵活的控制系统尤其适用于列车卧铺车厢,可以分别独立的对各包厢单元进行调温、除湿、控制风速多功能控制,从而保证各卧铺包厢的舒适性。
(3)vrf系统由一台室外机和数台室内机组成,因而又称为多联机空调系统。多台不同种类的室内机由一个冷媒管路连接,每一台室内机可以根据控制单元的要求,进行独立的制冷或制热的运转。目前变制冷剂流量最先进的空调技术,室内机数量可多达16台,并可进行独立的控制;由于vrf技术解决了回油运转问题,使室外机与室内机之间的'冷媒管长度延至l00m,室内机与室外机之间的高低差增加至50m,各室内机之间高差可允许15m。
(4)车厢内温度冬季应不低于22℃,夏季不高于26℃,应保持空气新鲜;(“铁标”规定)
软卧车厢相对硬座、硬卧车厢车内人员少,新风负荷和新风量较小;包厢内舒适性要求高,各铺位空间温度场和微风速场应尽可能均匀稳定。根据软卧车厢的立面特点和负荷特点,vrf空调系统的多联机方式符合列车软卧紧凑包厢分隔的立面形式,适用于软卧车厢狭长空间的冷量输送。本文提出采用变冷媒流量空调通风系统替代单元式空调机组的新思路,对列车软卧车厢使用vrf空调系统做管路设计。
3.1新风管路
列车软卧车厢采用vrf空调送风系统,外部空气通过车体一侧新风口、新风吸入箱,经过滤网过滤后进入全热交换器,与车厢内排风热湿交换后,新风由新风管道送至每个卧铺包厢吊顶内的静压箱。新风与室内机处理后的回风在其中充分混合后送至各个软卧包厢中。
3.2回风管路
软卧包厢顶部送风在室内循环后,沿包厢底部的出风格栅排出到包厢外的行人走廊。如图2,在每个卧铺间吊顶上分别安装一台室内机组,室内机连接回风口设置在卧铺间对面车窗以上,回风经由走廊侧壁吸入回风口,再由回风管引入室内机处理。这种送回风方式,不同于列车单元空调机组仅在车厢走道门外吊顶处设置一个的集中回风口,防止集中回风混杂的烟气在负压作用下又诱引入车厢卧铺间,从而有效避免空气二次污染。
3.3排风系统
vrf空调系统的排风一部分由全热交换器与新风热量交换后排出。设计时,室内排风可以从车厢内卧铺包厢吊顶上接小段风管直接吸入,经过换热机热交换后连接由排风管引至车厢底部排出。另外部分废排气由废排风机通过车底的横向风道与软卧车厢包厢外走廊侧壁的风道相连,吸入废排气至车体外,为保证车厢内正压,废排风机与压力保护阀连接。
3.4冷凝水管管路设计
vrf空调系统的每台室内机都引出一条冷凝水管,并由一条总冷凝管道顺次的按照1%的坡度连接,一起排到列车洗漱间或卫生间。冷凝水管直接从室内机的凝水盘底部引出,凝水盘不存水,可以减少滋生细菌现象发生。
3.5冷媒管路设计
vrf空调系统室外机与室内机冷媒配管连接方式有三种:线性分流方式、端管分流方式和组合方式。制冷压缩机吸气管路过长会引起制冷系统的制冷能力降低和单位制冷量耗电量的增加,所以必须综合考虑配管与节能两方面的因素。软卧车厢上选用的是线性分流方式,如图3所示。通过冷媒分歧管和管道接头将各室内机顺次连接在一起,这种配管方式特别适用于列车车厢这种纵深较长的空间。因每间包厢外形尺寸相当,空调负荷也相当,室内机选择同一型号,并且安装在各包厢吊顶同一标高上,所以冷媒管路设计简单,不需要分区。目前冷媒配管采用同径化管道系统技术,只需冷媒主管道管径相同就可以应用。由于采用统一管径,管道施工和管径选择大量简化,系统运行稳定并且易于维护。
变制冷剂通风空调系统既能体现车厢内各包厢的立面和负荷一致性,又可以满足各包厢空调的独立性控制和舒适性调节要求,同时实现列车低负荷条件下的节能。通过管路设计,说明软卧车厢使用vrf空调系统的可行性。列车采用vrf空调系统的舒适性和安全性需要进一步研究和实验分析。
空调系统技术论文篇三
;摘要:保护生态环境是我国的重要发展战略之一,环境保护和节能是本世纪世界的共同义务和责任,也是人类实现可持续发展的必要条件。建筑行业中的暖通空调系统消耗大量能量,并且容易受到空气污染。本文简述了暖通空调系统节能环保技术的内涵,阐述了应用节能环保技术的必要性,探讨了暖通空调系统中的几种节能环保技术,供工程技术人员参考。
关键词:建筑节能;暖通空调;环保技术
1 概述暖通空调
暖通空调主要的应用意义是为空调使用者们在室内提供舒适的环境,其基本本质就是起到改善调节作用,主要是对室内空气、室内湿度、室内的温度、室内气流的速度,与人体和周围环境之间进行辐射换热。通常应用要求就是空调要具备可以维持人体热平衡的能力,我们在研究空调系统的时候,通风问题是首先要考虑的,经过试验证明,在室内要是通风量增加的话,室内空气的质量也会有所提高。所以,我们在进行空调设计时,排风机是首先要考虑到的,还要尽量改进创新排风机,进而提高室内的空气质量,然而,我们在使用排风机来提高室内空气质量时,能源的消耗也会增加,空调设计不是一个简单的工作,是一项系统工程。
2 暖通空调系统运用节能环保技术的重要性
随着建筑业的飞速壮大,建筑能耗越来越大,其中暖通空调的能耗占据了30%-50%,并且呈现出逐年上升的趋势。在城市化进程的加快与人们生活水平提高的背景下,暖通空调系统的广泛运用使得其能耗进一步增加,激化了能源供求之间的矛盾。另外,当下的暖通空调系统当中所使用到的能源大多为电能等不可再生能源,导致了地球资源逐渐匮乏,也带来了严重的环境问题,例如二氧化碳、硫化物、氮氧化物等排放量的增加,酸雨情况的频发等。在暖通空调系统当中加入节能减排技术,能够有效地实现对能源的节约、对环境的保护。
3 暖通空调系统中应用的节能环保技术
3.1 风系统节能技术
采用低温送风空调方式,低温送风系统由于送风量和供水量的减少,可以有效的减少风机和水泵能耗,从而降低运行费用。采用变风量空调节能技术,由集中式空调器提供某一设定温度的送风给所有空调空间,而各自的送风量是按其负荷大小自动调节,来达到室温的平衡。采用多分区空调节能技术,利用定风量组合式空调器,根据各分区负荷变化自动调节送风参数,没有冷热抵消现象。采用分层空调节能技术,高达空间建筑中,空气的密度随垂直方向的温度变化而呈自然分层现象,利用合理的气流组织,仅对下部工作区进行空调,上部通风排热。
3.2 地源热泵技术
建筑暖通空调系统中运用的可再生能源较多,地源热泵技术主要是利用土壤热能资源,结合运用空气处理技术,在达到节能环保的目的,实现室内环境智能调节。运用地源热泵技术,借助土壤层热源,将其作为空调系统冷热源,实现温度转移。在夏季可以把大地,作为热排放点,完成室内散热,发挥土壤导热作用,实现热量压缩与散热。冬季可以从大地中进行热量提取,作为空调热源,节能效果较好,可以节能50%。利用空气处理技术。对空气进行冷却处理,将外部空气做过滤处理,进行空气加湿处理,实现室内湿度调节。利用空气处理技术,能够对细菌与病毒等。进行过滤处理,能够确保用户的健康。
4 环保节能技术在暖通空调系统中的应用
4.1 变频节能技术的运用
变频节能技术拥有多方面优势,因此在各领域当中受到了广泛的欢迎与运用。由于暖通空调系统通常都存在着或多或少的设计冗余,设备很难在满负荷状态下进行工作,在实际运行过程当中,其负荷受到以气候条件为主的外部环境、建筑物本身使用情况、室内人员的实际需求等多方面因素的影响会出现相应的变化,使得变频节能技术的运用成为了暖通空调系统的必然发展驱使。一方面,变频节能技术的应用,使暖通空调系统的能耗水平得到了大大的降低,同时能够依据具体需求灵活地选择不同的运行模式,促进了运行成本的有效节约;另一方面,变频节能技术很大程度地弥补了暖通空调系统的不足,实现了系统的优化与完善,满足了实际的需求。
4.2 暖通空调系统中能源技术应用
(1)地下水的应用。我们知道地下水具有隔热作用,它的温度不会受到气温影响,会一直保持着热量。暖通空调的使用中,可以借助地下水作为能源供应主体,让热泵的热源输送到地面上进行供暖。水源热泵技术它主要是借助地球表面的温度形成温度聚集区,例如一些湖泊、河流、地下水等等,它们不断的吸收地热能,累计到一定程度之后。在热泵设备中,只要通过高位电能输入,就可以实现能源的转化。然而,在利用过程中需要明确每项技术效果,例如:回灌技术它的回收可靠性知否强,一些地下水的使用需要考虑到水质,如果水质不达标,那么将不能实现转化。我国的科技水平不断进步,人们看到了未来的发展趋势,可持续能源在逐渐的被开发,这值得可喜可贺。然而,因为这是一个新的挑战,没有实际的应用例子提供参照。因此,开发工作一直属于摸索阶段,这些可再生能源对社会的发展固然重要,但是开发技术更显得有风量。
(2)自然风能应用。可再生能源在暖通空调应用中的另一个重要内容就是自然风供冷的应用。供冷期内,如果室内空气温度和焓值高于室外空气,那么暖通空调系统就可以借助室外自然风实现室内冷负荷部分或者全部的需求。这个过程普遍采用的方法有夜间通风蓄冷和新风直接供冷。与传统常规空調系统相比,自然风能向建筑物室内提供冷气,不要耗用或者很少耗用电能,实现了能源节约,改善了室内空气质量,又可以避免了环境污染。
5 结语
总而言之,随着我国社会经济的飞速发展,大大提高了我国人民工作生活水平,暖通空调的应用已经越来越普遍,而暖通空调消耗了大量的能源,因此,我们在使用暖通空调时,节能环保问题是必须要考虑的,近年来我国科学技术水平不断提高,各种先进的节能环保技术被应用在暖通空调系统中,有效促进了我国暖通空调节能环保技术健康稳定的发展。
参考文献:
(身份证号:522221198110151217)
相关热词搜索:;空调系统技术论文篇四
地下水水源热泵空调系统是以地下水作为热泵空调的热源,具有中央空调合理利用能源、运行成本低和安全、环保、节能、灵活等优点。本文以昌邑市东隅小区水源热泵空调工程水资源论证为例,通过对区域取用水、退水合理性和供水水源的可行性、可靠性及取水、回灌对周围水资源生态环境影响等方面进行了分析,提出切合实际的结论和建议,为水行政主管部门审批取水许可提供技术支撑。
随着昌邑市经济社会的快速发展,人民生活水平的改善和城市化进程的加快,人们对保障供暖提出了更高的要求,对高品质、低能耗、环保型的供暖需求越来越高[1]。地下水源热泵是一种采用水中的热源,制取热水的高效节能空调设备。具有中央空调合理利用能源、运行成本低、安全、灵活、方便、便于管理等优点,更重要的是地下水源热泵技术有环保、节能、节资的特点,在我国许多地区得到了广泛应用,取得了良好的经济效益和社会效益。本文以昌邑市东隅小区水源热泵空调工程水资源论证为例,在地下水源热泵取用水、退水合理性和供水水源的可行性、可靠性及取水、回灌对周围水资源生态环境影响等方面进行了分析,提出了切合实际的结论和建议,为水行政主管部门审批取水许可提供技术支撑。
昌邑市东隅小区位于奎聚路以东,新昌路以西,新兴街以北,利民街以南,总建筑面积为145527m2。本项目拟采用地下水源热泵技术,通过抽取地下水利用水源热泵空调系统实现冬季供热。选用水源热泵sm-200li型1台、sm-400li型2台作为项目主机,机组设计满负荷运转时其最大循环水量为350m3/h,设计总热负荷为4500kw,年取用水量为50.4万m3,用水采用“抽灌分离”的方式,用潜水泵抽取第四系孔隙地下水作为系统供水水源见图1。取水井工程打6眼取水井、18眼回灌井并配备潜水泵及输水管道等,设计井深60m左右;单井涌水量在1500m3/d左右,部分地段大于1500m3/d。年地下水温在15℃~18℃之间,供水水源为第四系孔隙水。
昌邑市在大地构造上属华北台地,处在鲁西隆起、沂沭断裂带、鲁东隆起三个次级构造的交汇处。本项目位于潍河冲积平原区的富水地段,根据区内地质勘探资料,地层结构自上而下主要为粘土、亚粘土、细砂、中细砂、中粗砂、粗砂砾石层等。地形较平坦,地下水补给条件较好,含水层厚度较大,调蓄能力较强,单井涌水量在1500m3/d左右,部分地段大于1500m3/d。年地下水温在15℃~18℃之间,水温变化较小。地下水各项指标达到国家地下水质量标准ⅲ类水标准,水质良好,且该地段地下水位埋藏较深,地下水回灌条件较好,是水源热泵空调系统供水理想的水源地区域。
3.1取水合理性
此项目地下水源热泵空调系统用水采用“抽灌分离”的方式,系统通过抽水井抽取地下水,提取完水中的热能后,再利用附近的回灌井等量回灌到地下含水层中,系统在用水过程中全封闭、全回灌,基本不消耗水量,也不会增加用水量指标。建成运行后不会增加昌邑市的实际用水量指标,全市用水总量和地下水开采量仍在区域用水总量控制指标和地下水分类控制指标范围内;不产生污水,对区域水环境和水功能区影响较小。取水符合《山东省用水总量控制管理办法》和昌邑市城市发展总体规划要求。该项目建设弥补了昌邑城区热力管网供热能力的不足,解决了小区集中供热的问题。根据供热负荷和系统主机的性能确定需水量,并结合区域水文地质条件确定抽水井数量,取水方案是合理的。
3.2用水合理性
潍坊地区冬季供暖期为11月15日至翌年3月15日,期间最冷时段(1~2月)为冬季空调使用的高峰负荷日,大约30d,其余90d较为暖和,项目每天用水量为机组运行循环水量。根据《昌邑市东隅小区水源热泵空调系统工程项目设计方案》,东隅小区水源热泵空调系统冬季供热,设计总热负荷为4500kw,设计最大循环水量为350m3/h,设计机组平均每天运行时间为12h。按照潍坊地区气候变化状况,供暖时间为每年的11月15日至翌年的3月15日,共计120天,其中30d为冬季空调使用的高峰负荷日,90d较为暖和,每天平均运行12h,全年需水量4200m3×120d=50.4万m3,设计年总需水量基本合理。
4.1地下水储存量计算
根据抽水试验资料分析,并参照《潍坊市水资源综合调查与评价》成果,本区地下水总补给量小于总排泄量,地下水处于超采状态,此情况下含水层的调蓄能力就成为水源地能否正常连续开采的关键,而含水层的'调蓄能力则取决于地下水储存量的大小[2]。地下水储存量的计算公式为:v=100μfm(1)式中:v为地下水储存量(万m3);μ为潜水含水层给水度;f为含水层分布面积(km2);m为含水层砂层平均厚度(m)含水层给水度μ:采用《潍坊市水资源综合调查与评价》成果,确定为0.17[3]。计算区面积f为22.1km2。根据地质勘探资料和已有的研究成果综合分析,确定论证区内含水层平均厚度为17.4m。经计算,地下水储存量为6537.2万m3,可满足空调系统用水。
4.2水源水温分析
根据历年地下水温监测资料,地下水年内最高水温为18℃,最低水温为15℃,平均水温为16.5℃,水温相对稳定,符合该项目空调系统要求。
4.3水源水质分析
根据项目热源井地下水质监测资料和《地下水质量标准》(gb/t14848—93)[4],本区地下水的水化学类型主要为hco3-ca—mg—na型水。总硬度598mg/l(以caco3计),ph值7.54。地下水无色无味,物理性状良好,总硬度、氯化物、锰及硝酸盐氮超标,经单项组分评价为ⅴ类水,f值为7.13,综合评价为水质较差,不适合做饮用水源,但水质符合水源热泵空调系统的要求见表1。
5.1退水对水资源的影响
本项目水源热泵空调系统用水采用“抽灌”封闭循环用水系统,系统封闭式循环,自成体系,通过抽水井抽取地下水,系统提取完水中的热能后,退水通过回灌井再回灌到地下含水层中,用水工艺为抽灌平衡,基本不消耗水资源量,不会对区域地下水资源产生影响[5]。水源热泵空调系统在运行过程中水是在封闭的循环系统中进行能量交换,不与外界接触,水不易受到污染,只是水温有一定变化,退水对区域生态环境基本没有影响。
5.2水资源保护措施
水源热泵空调系统用水采用“抽灌分离”循环用水,整个系统不消耗地下水资源,因此,水资源保护重点应该为保证项目退水100%完全回灌和水质保护。针对项目用水过程,为保护地下水资源,提出如下工程保护措施和非工程保护措施。5.2.1工程措施1)在抽水井中安装变频装置,严格控制抽水井的出水量。2)制定详细的水井运行管理程序,包括运行时数,单井开采量和回灌量统计、水井运行维护方法和计划等。3)安装水表,严格记录抽、灌水量,确保回灌水量达到100%回灌。4)根据以往的水质监测资料,回灌井周围的温度场变化对水质没有明显的变化。但由于水质变化是慢长过程,因此,建议系统建成后仍需要建立长期的水质、水温监测。5.2.2非工程措施1)成井深度要严格控制在60m以内,遇60m左右粘土隔水层即可停止,防止穿透咸水层污染浅层淡水,以保护昌邑市自来水公司水源地安全。2)洗井应采用拉活塞、空压机等物理方法,严禁用含有污染元素的化学洗井。3)严格控制抽水井和回灌井的成井工艺,尤其控制止水层的位置和厚度,严格控制滤水管和滤料的使用,确保成井质量。4)水源井井口要封闭,井周围禁止有污水管道和明渠通过以防地下水体污染。5)严格控制回灌水的温度,冬季大于7℃,避免大温差回灌对地下水水质造成影响。6)以水源井为中心设置保护区,井口周围设置围档,严禁闲杂人员随意进入。
(1)根据供热负荷和空调系统主机性能确定用水量,并结合区域水文地质条件确定打水井24眼,有6眼抽水井和18眼回灌井,采用竖井式自然回灌,采用1抽3回灌的布井方案,大于试验1抽2回灌的试验结果,依据试验结果和实际运行结果,退水方案可行。设计最大循环水量为350m3/h,年取用水量为50.4万m3。(2)加强回灌水水质监测,监测项目运行期间,区内地下水水质变化情况。每个供暖期结束后,对抽水井进行捞砂洗井,对回灌井进行回扬、拉活塞和捞砂等洗井。为了防止单向堵塞,建议抽水井和回灌井定期交换使用,并对抽水井中的含砂量进行沉砂过滤处理后再回灌。
[3]潍坊市水资源综合调查与评价[m].潍坊市水利局.2004.