全国乙卷文科数学真题电子版(3篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
全国乙卷文科数学真题电子版篇一
1、圆柱体:
表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πr2+πr[(h2+r2)的平方根]体积:πr2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,s=6a2,v=a3
4、长方体
a-长,b-宽,c-高s=2(ab+ac+bc)v=abc
5、棱柱
s-底面积h-高v=sh
6、棱锥
s-底面积h-高v=sh/3
7、棱台
s1和s2-上、下底面积h-高v=h[s1+s2+(s1s2)^1/2]/3
8、拟柱体
s1-上底面积,s2-下底面积,s0-中截面积
h-高,v=h(s1+s2+4s0)/6
9、圆柱
r-底半径,h-高,c—底面周长
s底—底面积,s侧—侧面积,s表—表面积c=2πr
s底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h
10、空心圆柱
r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)
11、直圆锥
r-底半径h-高v=πr^2h/3
12、圆台
r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/3
13、球
r-半径d-直径v=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径v=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高v=πh[3(r12+r22)+h2]/6
16、圆环体
r-环体半径d-环体直径r-环体截面半径d-环体截面直径
v=2π2rr2=π2dd2/4
17、桶状体
d-桶腹直径d-桶底直径h-桶高
v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)
v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)
1、三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆c的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
不看后悔!清华名师揭秘学好高中数学的方法
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
(1)欣赏数学的美感
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的基本素养之一啊.
(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
<
★ 2021年高考全国乙卷文科数学题目及答案★ 2021年全国乙卷高考文科综合题目真题★ 2021全国乙卷数学试题及答案解析★ 2021年高考全国乙卷理科数学真题★ 2021年全国高考乙卷理科数学题目及参考答案★ 2021年全国乙卷语文真题及答案解析★ 2021年全国乙卷英语真题及答案解析★ 2021全国卷乙卷高考满分作文★ 2021年安徽高考理科数学真题题目★ 2021全国乙卷语文作文材料最新
全国乙卷文科数学真题电子版篇二
1、三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆c的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
不看后悔!清华名师揭秘学好高中数学的方法
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
(1)欣赏数学的美感
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的基本素养之一啊.
(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
<
全国乙卷文科数学真题电子版篇三
1、圆柱体:
表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πr2+πr[(h2+r2)的平方根]体积:πr2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,s=6a2,v=a3
4、长方体
a-长,b-宽,c-高s=2(ab+ac+bc)v=abc
5、棱柱
s-底面积h-高v=sh
6、棱锥
s-底面积h-高v=sh/3
7、棱台
s1和s2-上、下底面积h-高v=h[s1+s2+(s1s2)^1/2]/3
8、拟柱体
s1-上底面积,s2-下底面积,s0-中截面积
h-高,v=h(s1+s2+4s0)/6
9、圆柱
r-底半径,h-高,c—底面周长
s底—底面积,s侧—侧面积,s表—表面积c=2πr
s底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h
10、空心圆柱
r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)
11、直圆锥
r-底半径h-高v=πr^2h/3
12、圆台
r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/3
13、球
r-半径d-直径v=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径v=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高v=πh[3(r12+r22)+h2]/6
16、圆环体
r-环体半径d-环体直径r-环体截面半径d-环体截面直径
v=2π2rr2=π2dd2/4
17、桶状体
d-桶腹直径d-桶底直径h-桶高
v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)
v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)


