高考的数学方法(3篇)
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
高考的数学方法篇一
1、难度适当。现在复习资料多,题多,复习时应按老师的要求。且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失。因此,练习时应从自已的实际情况出发,循序渐进。应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质
2、题贵在精。在可能的情况下多练习一些是好的,但贵在精。首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”。其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程。第三对重点问题要舍得划费时间,多做一些题。第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一。
3、重视改错。有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意。只有经过不断的改正错误,日积月累,才能提高。
4、注意总结。不仅包括题型、方法、规律的总结,还要掌握一些基本题。如立体几何中有这样一道:ac和平面所成的角是,ac平面内ac和ab的射影ab成角,设∠bac=,求证:coscos=cos。这个等式为立体几何中某此题的计算带来了方便。
如对函数f(x)=x+的奇偶性、单调性、极值和图象应熟悉,利用它给求某些解析式的最值带来了方便。
高考的数学方法篇二
1、回归课本,巩固基础:高考倒计时是回归课本的时候了,不要把课本丢下,着重看课本上的公式、理论、定理,学会变换,把基础打牢了自然能举一反三,灵活运用。
2、避免题海战术:对于一看就会的题型直接pass掉,做精题,精做题。不要什么都做没有选择,没有计划,如果每一题都做不仅会浪费时间而且也提高不了多少。
3、不专注于难题:不会的题不要一个人在那死扣,如果一道题你看了20分钟都没有思路,无从下手,要么请教高手要么放弃,不要专注于难题。尽量做一些看起来会但是不能全面做出来的题,克服会而做不对,对而做不全,这样提升空间比较大。
4、各类题的解题方法:不同的题型有不同的解题方法,要善于归纳和整理。要选择填空题可以选择排除法、带进去验证、直觉、数形结合的方法。简单的题答得时候尽量要全面。压轴题,选择、填空、答题都各自的压轴题,会做就做不会做就暂时放弃,先把会的题做出来后再回过头看。
5、训练考试意境:把每次训练都当做高考,数学的复习离不开做题,但是做题量不能太大,做题的时候更应该模拟高考的时间和场景,下午三点到五点考数学,所以在复习的时候也在这个时间做题,适应高考模式。
6、关于大题:简单的大体要尽量的把步骤写详细,尽量不要遗漏步骤,检查的.时候比较方便。也能让改卷老师无话可说。难一点的大题,在题中你能得到什么信息就写上,做不全的题把自己会的写出来也会有步骤分的。解题过程中发现自己做错了先把正确的步骤写下,然后把错误的划掉。如果第一步做不出来可以用第二步的结论做第一步的题。
高考的数学方法篇三
陆金中表示,以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。
概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。
高考数学复习七大知识点:
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。