教师的数学解方程教学设计(热门20篇)
总结是一种对个人或团队工作的全面梳理和总结,以便今后改进和提升。在总结中可以适当运用举例和比喻,增强表达的效果。以下是小编为大家收集的总结范文,仅供参考,希望对大家有所启发和借鉴。
教师的数学解方程教学设计篇一
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。
整堂课上下来,学生对算理的理解比较清晰。目前还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。我在介绍这种办法的时候还特意把要约分的分数改写成分母和分子分别由几个数相乘的形式,帮助学生理解。可能这样做,还做得不够吧?再由于上学期的约分知识很多学生就不熟练,有不少学生仍不断出现约分错误和忘记约分的情况。
教师的数学解方程教学设计篇二
今学期由于学校工作调整,我担任了一年级的数学教学工作。与以往不同的是我终于可以专心教一门学科了,因为以前总是兼任别其他科目的教学,总是感觉力不从心(无法顾及所教学科),希望能有一天只上一门课,今年终于如愿以偿了。虽然对此充满希望,但我也知道一年级的教学工作不好教(以前我曾教过一年级的语文):一年级的孩子由于年龄小,自控能力差,在课堂上教学时要采取更多的活动来吸引他们的注意力,激发学习的好奇心和兴趣,而在课下也有许多事情需要老师有耐心的去指导和帮助他。
今年我所教的两个班总共有106人,学生多,而我又是从第二学期接手这两个班,,对孩子的性格和知识水平不了解,这是我目前首先要解决的问题。本周我的主要任务便是要首先熟悉学生,了解情况。从上课的情况来看,学生的情况不是很好,我深知一年级的学习好坏不能决定学生以后的学习,但是一年级是打基础的时候,必须让学生养成良好的学习习惯。因此,每天上课前我都利用各种活动来培养学生良好的学习习惯。虽然事先有所准备,但到了实际的教学中,还是出现了很多问题,希望通过自己的不断努力,教学工作能尽快进入正轨。
教师的数学解方程教学设计篇三
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程——初步感悟它的妙用。
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
1、从教材的编排上,整体难度下降,有意避开了,形如:45—x=2324÷x=6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现x前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出x在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答x在后面这类方程的解答方法,就是等号二边同时加上x,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充x前面是除号或减号的方程的解法。要教他们列方程时怎么避免x前面是除号或减号的方程的出现等等。
教师的数学解方程教学设计篇四
教学目标:
1、知识与技能目标让学生在模拟旅游情境中运用所学的数学知识和方法解决一系列“春游中的数学”问题。让学生感受生活中处处有数学,处处需要用数学。体验数学来源于生活,增强应用数学的意识。
2、过程与方法目标引导学生根据实际情况选择解决问题的方案,初步培养学生的优化意识。使学生体会解决问题的策略,并能在解决问题的过程中丰富自己的经验,提高自己的能力。
3、情感态度价值观目标在活动中感悟数学的价值,体会数学与生活的联系,激发学生学习数学的兴趣。通过学生的独立、合作探究,培养学生的独立思考,勇于探究的精神和合作交流的意识。培养学生养成勤俭节约的好习惯和热爱大自然的情感。体会“尊老爱幼,关爱他人”的美德。
教学重点:
学会解决旅游中的一些数学问题。培养学生应用数学知识解决问题的能力。
教学难点:
在解决问题时,学生能选择较合理的策略。感悟优化解决问题的方法。
教学媒体:
多媒体课件、活动表格。
教学过程:
一、创设情境,激趣导入,引出春游的课题。
1、诗歌欣赏:《春天来了》,这是一首学生在语文考试中自己创作的诗。这么优美的诗,让我们感受到春天的美好,在这美好的春天里,同学们最想做的是什么?到大自然中去找春天。引出“春游”的课题。
2、你喜欢旅游吗?在旅游中要注意什么?今天,老师就带同学们一起去感受旅游的快乐,但在旅行的过程中我们会遇到一些问题,要同学们一起解决。让我们出发吧!
二、合作探究春游中的数学问题。
1、选择合适的租车方案。
(2)先让学生估估、猜猜。与小组同学讨论后把租车方案填在课本上。
(3)租车方案怎样租车最省钱?
(4)汇报结果后总结方法:最省钱的策略是,车的座位如果不能坐满,空位必须尽可能少一些。因此,租1辆大车和2辆小车的方案最合适。
2、快餐店用餐。
师:到达目的地,同学们玩得真开心,转眼到了吃中饭的时间了。导游把大家带到一家快餐店用餐,这里的食品真丰富,有凉菜、热菜、主食、饮料等。同学们可以自由选择你最喜欢的食品。
(1)与小组同学交流自己的观点,再把自己的选择填在课本的表格里,算出你的午餐一共花了多少钱?(提醒学生别浪费。)(2)汇报结果,看看大家都选了哪些营养又美味的食品。
3、买纪念品回家。
师:在快乐的游玩中时间过得真快,到了该返回的时间了。导游把大家带到一家纪念品商店,让同学们买些纪念品带回家。
(2)根据图中的信息回答问题。并提两个不同的数学问题,再解答出来。
(3)如果你有20元钱,你准备带什么纪念品回家?说说理由。
师:同学们,愉快的一天结束了,你一定玩得非常开心吧?而且用你所学过的数学知识解决了很多生活中的问题,你是最棒的!你是不是希望把你的快乐与大家一起分享呢?那就请你把它记下来吧。你这一天是怎么过的,在游玩的过程中解决了哪些数学问题?有什么感受?请按下面的格式写一篇数学日记。
四、课堂小结。
1、通过这节课你有什么收获?
2、课后延伸:清明节到了,如果学校要带六年级的同学们去茅家岭烈士陵园扫墓,你能不能设计一个旅游计划?(填在课本第38页),下节课在班上和同学们一起讨论。请你试试吧。
教师的数学解方程教学设计篇五
变式教学法的核心是利用构造一系列变式的方法,来展示知识的发生、发展过程,数学问题的结构和演变过程,解决问题的思维过程,以及创设暴露思维障碍的情境,从而形成一种思维训练的有效模式。它的主要作用在于凝聚学生的注意力,培养学生在相同条件下迁移、发散知识的能力。它能做到结构清晰、层次分明,使各层次的学生各有所得,尝试到成功的乐趣,并激发学生的学习热情,达到举一反三、触类旁通的效果,使他们的应变能力得以提高,进而提高教学质量。
一、变式教学的功效。
1.克服思维的惰性状态,培养思维深刻性。
教师通过不断变换命题的形式,引申拓展,产生一个个既类似又有区别的问题,使学生产生浓厚的兴趣,在挑战中寻找乐趣,培养了思维的深刻性。
2.克服思维的封闭状态,培养思维的广阔性。
教师在数学变式教学过程中,不仅只重视问题解决的结果,而且针对教学和重难点,精心调设有层次、有坡度的,要求明确、题型多变的例(习)题。学生在讨论归纳中,启迪思维、开拓思路,在此基础上通过多次训练,既增长了知识,又培养了思思维能力。学生通过多次的渐进式的拓展训练,在不断探索解题捷径的过程中,使思维主广阔性得到不断发展,并渐入佳境。
3.克服思维的保守状态,培养思维的灵活性。
变式教学通过一题多变、一题多解的训练,使学生从不同角度和侧面去思考问题,用多种方法解决问题,深化所学知识,帮助学生克服了思维保守性,培养学生灵活运用知识解决实际问题的能力,从而达到培养学生思维的灵活性的目的。
4.运用变式教学,培养学生参与教学活动的持续的热情。
变式教学教学是对数学知识进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质,揭示不同知识点的内在联系的一种教学方式。通过变式教学,使一题多用,多题重组,常给人以新鲜感,能够唤起学生好奇心和求知欲,因而能够产生主动参与的动力,保持其参与教学活动的兴趣和热情。
1.适度适量的原则。
适度,即是变式设计不能过繁荣适量,即是变式内容设计不宜过多。要求过繁,学生思维往往会出现“卡壳”,使学生产生畏难情绪,影响问题我解决,降低学习效率,长期还会使学生产生逆反心理,对解题产生厌烦情绪,不利于学生主动探索精神的培养;内空过多,不但会再次造成是题海,还会增加无效劳动,加重学生的负担,使学生持续的兴奋强度降低。过繁过多的变式设计不仅对学生学习课内知识没有帮助,而且超出了学生的接受能力,教学效果也就自然大打折扣了。为此变式题要精选,要以不太难、不太繁但要学生动脑筋思考为度,使学生肯于思考,乐于思考,善于思考,从中发现规律。
2.充分有效的原则。
抽象的知识不仅要通过熟悉的、广泛的、众多的事物才得以形成,而且在感性向理性的抽象思维活动中,教师除了提供常态的标准材料,还要变换材料的非本质属性,即提供充分的事物变式让学生感知、比较。否则,学生对事物进行抽象概括是容易造成知识内涵增加,外延缩小。
三、变式教学的方式。
1.概念课中的变式教学。
概念,在数学课中的比例较大,初中数学教学往往是从新概念入手。正确理解概念,是学生学好数学的关键。概念教学有其特殊性,它要求不仅学生识记其内容,明确与它相关知识的内在联系,而且要能灵活运用它来解决相关的实际问题。概念往往比较抽象,从初中生心理发展程度来看,他们对这些枯燥的东西学习起来往往是索然无味,对抽象的概念的理解很困难。而采取变式教学却能有效地解决这一难题,使学生度过难关。教师应通过变式,或前后知识对比,或联系实际情况,或创设思维障碍情境,来散发学生学习兴趣,变枯燥的东西为乐趣。
2.例题课中的变式教学。
有的数学教师在例题讲解方面采用的是“教师讲例题,学生仿例题”的公式化的教学,这种单纯性地讲授和简单地套用阻止了学生思维的发展。而教材中的例题富有典型性和深刻性,在中学数学教学例题变式教学这中,所选用的“源题”应以课本的习题为主,课本习题均是经过专家学者多次筛选后的题目的精品,我们没有理由放弃它。在教学中,我们要精心设计和挖掘课本的习题,也可以是其它的题目,如选自辅导资料的题目或历年高考、中考题等。编制一题多变、一题多解、一题多用和多题一解以提高学生灵活运用知识的能力。选取的范例应具有“四性”:针对性、基础性、灵活性和可变性。即对所学知识的训练有针对性;能用基本知识、基本方法加以解决;解法灵活多变;可以进行题目变式,联题成片。
四、变式教学应注意的问题。
1.变式数量的确定。
数学变式的数量确定是一个首要的问题,原因是:第一,课堂时间有限,这个客观条件促使我们必须考虑问题变式的数量;第二,即使将数学学习时间拓展到课堂以外,我们也不可能提供并且教授学生关于某个特定数学内容的所有变式,因为不可能穷尽所有的变式,我们也没必要提供并且教授学生关于某个特定数学内容的所有变式。所以,数学教学就是教会学生通过体验有限变异这样一个过程学会面对未来变异的本领,其实这种理念在数学教学中早有体现,如学会迁移、举一反三、触类旁通、灵活运用数学知识和数学方法、通过解有限道题的练习获得解无限道题的能力就是这种理念的早期提法和朴素表达。
2.变式问题的合理性。
由于变式数量的有限性,因此必须选择好的问题进行变式,这里所说的好的问题主要是指:一是问题必须包含合理的变异,所谓的合理,既指形式上的,又指内容上的,还指变异数量上的,形式应是有所变化的,内容应是能够接受的,数量应是恰如其分的;二是问题必须包含尽可能多的、不再重复的变异,只有这样,有限的问题才能包含尽可能多的变异,从而就构成有效的问题变式。
总之,在数学课堂教学设计中,遵循学生认知发展规律,根据教学内容和目标设计变式训练,起到巩固基础、培养思维、提高能力的作用。特别是,通过设计变式训练培养学生敢于思考、敢于联想、敢于怀疑的品质,培养学生自主探究能力与创新精神,这应该是一名数学教师努力和不断的追求的远大目标。
教师的数学解方程教学设计篇六
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
理解方程的意义,掌握方程与等式之间的关系。
天平一只,算式卡片若干张,茶叶筒一只。
一、创设情境,自主体验。
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
二、突出重点,自主探索。
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
三、自学思考,获取新知。
在教学解方程和方程的解的概念时,通过出示两道自学思考题。
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
四、使用交流,注重评价。
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
教师的数学解方程教学设计篇七
高三×班现有学生__人,其中男生__人,女生__人,作为文科普通班,学生学习基础较差,行为习惯较差,高二下学期的期末考试中进入文科全年级前50名的学生有__人,总成绩在400分的学生有__人。
二、工作要点。
理想教育——确定学习的具体目标,人生的大目标。
态度教育——敢于吃苦,敢于拼搏(通过学习往届高三毕业生的优秀事例,激发学生学习的主动性与积极性)。
典型教育——向好学生学习,向第一看齐。
信心教育——相信自己一定能行,为自己的人生做最后的拼搏。
2.加强规范训练,即让学生养成:
(1)一丝不苟的学习态度。让学生每页书都要认认真真地读,每节课都要认认真真地听,每道题都要认认真真地做,每个错题要认认真真地改。
(2)一滴不漏的学习要求。培养学生互帮互学,凡是学过的`知识都应该会,凡是做过的题都应该对,凡是要求记住的都应该牢记在心。努力做到四清:堂堂清、日日清、周周清、月月清。不留疑点,不留死角,切实打好基础。
(3)始终如一的学习习惯。严格的学风,不仅应坚持一周、一月、一学期,而且应该坚持几年、十几年甚至几十年。做到“活到老,学到老”。治学严谨的学风应始终如一。
3.加强学法指导。根据“新教材、新大纲、新教法”的特点,依据高考形势的变化,要在总结学习以前教学管理工作的基础上,结合高考最新形式,认真研究教学管理的新对策,着重抓好以下几个方面的工作:
(1)教育学生在突出语数外的同时,综合科目要在应用和学科渗透上下功夫,特长科顺其自然。
(2)加强学法指导并对学生进行分类,实行分层推进。
(3)加强对学生的行为、学法习惯的养成教育,增强学生的规范意识,努力提高学习的主动性、自觉性,提高主动认知的能力。
(4)发挥优秀学生的模范带头作用,提高学生学习的积极性,努力养成一种互帮互学、团结向上的良好班风。(5)当好任课教师和学生的桥梁,搞好师生配合,建设一个师生和谐的班集体,为教学、为学习创造一个良好的环境。
教师的数学解方程教学设计篇八
在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。
整体的把握:
数学概念不仅是局部的,而且是全局的;不仅是静态的.,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:
形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。
发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。
直观具体层面——举出正例或反例。
直觉层面——一种数学的意识、一种方程的感觉。
这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)。
目标的把握:
经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。
渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。
过程的把握:
统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。
本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。
经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
参考文献:
(2)林永伟、叶立军编著.《数学史与数学教育》第65页.方程产生历史的启示意义。
(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。
教师的数学解方程教学设计篇九
一(1)班有学生__人。全部进入学前班,接受过学前教育,但学生的基础参差不齐。有少数几个学生的数学成绩较差。因为学前班学生学习习惯、行为习惯养成不好,因此有待加强养成教育。学生们都活泼可爱,有着强烈的好奇心和求知欲。可塑性强,整体上是一个积极向上的班级。
二、目的要求。
这一册的教学目标是,使学生能够:
1、熟练的数出20以内的物体的.个数,掌握10以内各数的组成,会读,写0~20各数。
2、初步知道加减法的含义、名称,比较熟练的计算一位数的加减法;会解决一些实问题。
3、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形。
4、初步认识钟面,会认识整时和半时。
三、教材分析。
本册教材包括:数一数、比一比,10以内的认识和加减法,认识图形,分类。11—20各数的认识,认识钟表,20以内进位加法,用数学实践活动。
1、根据《标准》调整了教学内容,为学生学习数学提供了更丰富的知识。
2、重视学生的经验和体验。根据学生的已有知识和经验设计活动内容和学习素材。
3、认数和计算相结合,穿插教学,使学生逐步形成数的概念,达到计算熟练。
4、重视学生对数概念的理解,初步建立数感。
5、计算数学、体现算法多样化,允许学生采用自己认为合适的方法进行计算。
6、安排“用数学”的内容,培养学生初步的应用意识和用数学解决实际问题的能力。
7、安排实践活动,使学生体验数学与日常生活的密切关系。
四、教学措施。
1、努力体现自主探索、合作交流的学习方式。
2、尽量注意创设的情境为探索数学问题提供丰富的素材或信息。帮助学生建立学好数学的信心。
3、时常注意强调学生认真做作业、书写整洁的良好的习惯。
4、课堂教学与家庭教学实践相结合。
教师的数学解方程教学设计篇十
《7的乘法口诀》:。
教学内容:教科书第72页的内容。
教学目标:
1、利用学生已有知识经验和类推能力,使学生自主经历口诀的编制过程,了解7的乘法口诀的来源,理解7的乘法口诀的意义。
2、掌握7的乘法口诀的特征,熟记口诀,并逐步提高灵活运用口诀的能力。
3、通过多角度的练习,体会数学就在身边,激发学生学习数学知识的兴趣。
教学过程:
一、自主探索。
1、引入。
教师出示用七巧板拼成的图。
教师:这是同学们用七巧板拼成的图案,都拼成了什么?
教师:拼一个图案要用几块拼板?是几个7?怎样列乘法算式?你能编一句乘法口诀吗?
教师随学生回答板书如下:
1个7是71×7=77×1=7一七得七。
教师:拼两个图案要用几块拼板?是几个7?对应的乘法算式或乘法口诀是什么?
教师继续完成相应板书。
教师:像这样,同学们能根据这7个图案试着编出其他的7的乘法口诀吗?
2、编制口诀。
打开课本72页,尝试在书上填写。
3、全班交流。
(1)汇报,并上黑板写。
(2)根据学生汇报,课件出示7的乘法口诀。
(3)检查学生学习情况。
说一说哪个算式可以表示拼4个图案所用的拼板的块数?相对应的乘法口诀是哪一句?
“五七三十五”这句口诀表示什么意思?
“七七四十九”这句口诀为什么只能计算一道乘法式题?
二、记忆口诀。
1、刚才经过我们共同的努力,大家编出了7的乘法口诀,下面请大家拍手齐读口诀,读后让学生自己记忆口诀。
教师:你认为7的乘法口诀中哪句容易记?为什么?
教师讲述动画片中的情境,让学生寻找7的乘法口诀,并运用联想记忆口诀。
教师:看,这些故事和生活中的俗语也能帮助我们联想到乘法口诀。
2、7的乘法口诀还有什么特点?
从上往下观察,口诀中的第一个数依次多1,第二个数都是7,积依次多7。
教师:为什么积依次多7?
让学生利用发现再次记忆口诀,之后再进行对口令的游戏。
三、灵活运用。
1、看算式说口诀。
7×3=7×5=7×6=3×7+7=。
7×4=7×7=7×2=7×1=7×7-7=。
2、想一想,在我们的身边有哪些事物、现象和故事与7有关呢?
(1)算七星瓢虫身上的点。
(2)算诗的字数。
绝句。
两个黄鹂鸣翠柳,
一行白鹭上青天。
窗含西岭千秋雪,
门泊东吴万里船。
这首诗是本周经典诵读古诗,你们会背吗?学生齐背。
这里有7吗?你们知道诗中一共有多少个字吗?怎么想的?
教师:每句7个字,所以又叫“七言诗”。
教师:加上题目一共有几个字?怎样列式?
(3)编一编。
1个矮人1顶帽,7个矮人7顶帽;。
1个矮人2件衣,7个矮人()件衣;。
1个矮人3条裤,7个矮人()条裤;。
1个矮人()双鞋,7个矮人()双鞋。
教师的数学解方程教学设计篇十一
2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的`形式.
3.会检验一对数值是不是某个二元一次方程组的解.
(二)能力训练点
培养学生分析问题、解决问题的能力和计算能力.
(三)德育渗透点
培养学生严格认真的学习态度.
(四)美育渗透点
1.教学方法:讨论法、练习法、尝试指导法.
(-)重点
(二)难点
了解二元一次方程组的解的含义.
(三)疑点及解决办法
一课时.
电脑或投影仪、自制胶片.
教师的数学解方程教学设计篇十二
1、地位及作用:
“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2、教学目标:
根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b)培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3、重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1、学生状况分析及对策:
2、教材内容的组织和安排:
本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问。
(2)引入新课。
(3)新课讲解。
(4)反馈练习。
(5)归纳总结。
(6)布置作业。
1、为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。
2、利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
教学过程。
设计意图。
复习提问。
(1)轴对称图形,如何建立适当的坐标系?
(2)曲线方程一般步骤?
加深学生对上节知识的理解,为下一步椭圆的标准方程推导奠定良好的基础。
新课导入。
实例之后给出——。
激发学生学习兴趣。
讲授新课。
(一)椭圆的定义。
(二)标准方程的推导。
椭圆的定义。
首先电脑演示,让学生观察,发现结论,表述定义:
(板书略)。
加深定义理解:
(1)平面内与两定点f1,f2距离的和为常数|f1f2|的点的轨迹是什么图形?
(2)平面内与两定点f1,f2距离的和小于|f1f2|的点的轨迹是什么图形?
由已知到未知,由感性认识到理性认识层层深入,既增强了学生的学习兴趣,又很好的培养了学生的观察问题和解决问题的能力。
结合定义和图形分析,把“形”转化为“数”来研究,建立坐标系,并列出p={m||mf1|+|mf2|=2a}。
(学生自己完成方程的化简和推导,教者启发学生抓住“方程中的根式”,让学生代着求知的欲望去推导方程,加深对方程的理解,最后用电脑显示标准步骤。)。
(2)建立数形结合思想。
(3)培养逻辑思维能力及准确的运算的能力。
(4)调动学生积极参与课堂活动的意识。
分析讨论方程。
得到方程之后,让学生注意以下几方面内容:
(1)ab0。
(2)焦点的位置。
(3)焦点坐标。
(4)a,b为椭圆的定型条件,与坐标系的选取无关。
使学生学会分析法,类比法研究数学问题,并能准确的概括出两种不同情况,它们的相同之处。
为研究圆锥曲线打好基础。
例题示范与反馈练习。
1、平面内两个定点的距离是8,写出到两个的距离的和是10的点的轨迹方程。
2、求经过一个点m(-3,16/5)并且以点a(-3,0)b(3,0)为焦点的椭圆的方程。
3、设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。
例1属基础,主要反馈学生掌握基本知识的程度。
例2可强化基本技能训练和基本知识的灵活运用。
小结。
为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。
3、求椭圆方程常用方法和基本思路。
通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。
布置作业。
(1)77页——78页1,2,3。
79页11。
(2)预习下节内容。
巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。
教师的数学解方程教学设计篇十三
新课程改革实施以来,教学模式发生了重大的改变,由以往的“一言堂”形式向多种“开放式”教学模式进行转变,在教育观念的不断转变下,对于我们的一线老师也提出了更高的要求,新形势下,要想成为一名合格的老师,就需要不断的加强自己的业务能力,使自己能够变成一名受学生尊重和喜爱的老师,从而更好的提高学生的教学成绩。
本节课是《全日制普通高中课程标准实验教科书》(选修1-1)(人民教育出版社课程教材研究所中学数学教材实验研究组编著)第二章《圆锥曲线与方程》第一节《椭圆》的第一课时。在学习本课之前,我们已经学习了直接和圆的相关内容,使学生对于曲线和方程的概念有了一定的了解,同时,对于利用坐标法来研究几何也有了一定的认识,对于数形结合思想也有了一定的了解,从根本上来讲,本节课也属于曲线方程的一个延伸,也是利用坐标法来研究几何图形的进一步加强,本节课的掌握情况的好坏,将直接影响后面双曲线和抛物线的学习。对于学好圆锥曲线也有重要的意义。
椭圆这一节课体现出来的一些学习方法对于后面双曲线和抛物线的学习有一个重要的引导作用,但是本节课也难度较大,对于缺乏数形结合能力,不爱作图的学生来廛,学习起来是非常困难的,尤其是我所要教授的是一群普通高中的学生,更是难上加难的。
1.学习对象。
本节课重点讲解内容是椭圆,经过上一节课的学习,学生有了一些求点的轨迹问题的知识基础和能力,但是由于我们的学生作为普通高中的一名学生,在高中招走700名学生后,才进入到我们学校的学生来讲,他们的起点低,学习习惯不好,导致了我们的教学难度的加大,所以,从研究圆,跨越到椭圆,学生会存在一定学习上的障碍,教学过程中更要注意这方面的教学。对于学生的抽象思维,分析能力都是一个较大的考验。
2.知识基础。
上课前,要对学生对于直线和圆的方程,以及曲线和方程部分知识点进行适当的回顾,将学生拉到利用坐标法来解决实际问题的过程中来。对于当初圆的标准方程的得出过程让学生重新整理一下思路。
3.能力基础。
对于学生培养起利用坐标法研究几何图形,充分锻炼学生的抽象能力和数形结合思想,使学生能够学以致用,将来更好地应用到学习中去。对于我的学生来讲,这些都是比较难做到的,在教学过程中,更应该有足够的耐心。
根据新课程标准的要求,以及我们学校学生的实际学习情况,将本节课的教学目标确定为知识与技能目标、过程与方法目标、情感态度与价值观目标,具体如下:
1.知识与能力目标。
(1)掌握椭圆的定义(理解椭圆、椭圆的焦点和椭圆的焦距的定义)及其标准方程,教会学生如何在整理过程中准确,快速得到我们所要整理代数式的答案。
(2)通过对于椭圆标准方程的整理过程,进一步加强学生的计算能力,增强学生利用坐标系分析解决问题的能力,体会数形结合思想的应用。
(3)能够根据所给条件,准确快速写出椭圆的标准方程(包括焦点坐标、焦距)。
2.过程与方法目标。
(1)利用布置给学生需要带的强子,两人合作作出椭圆,使学生带有愉悦的心情,完成椭圆的绘制过程,提高了学生的动手能力和合作学习能力。
(2)通过两名同学的绘制过程,让学生体会到点的运动规律,培养学生将抽象转变为具体,归纳知识等能力的提高。让学生通过椭圆的绘制,给出椭圆的定义,完成教学的第一个难点内容。并通过些种方法,激发学生的学习兴趣,帮助他们重新树立信心,完成本节课的教学。
根据以上的教学分析,将本节课的重点、难点确定为:
1.学习重点。
突破重点的关键:运用多媒体手段,制作椭圆形成过程的动太图,通过图形的形成过程,引导学生给出椭圆的定义。使学生对于椭圆的认识从感觉性认识上升到理性认识。
2.学习难点。
通过对于教材的分析及本节课的实际内容需要,椭圆的标准议程的推导过程(如何建系)是本小节的难点所在,在推导过程中应该注意:
(1)如何建系,好的坐标系的建立,可以帮助我们先解决至少一半的难点。
(2)焦点位置的选择,(两种状态)。
突破难点的关键:掌握建立坐标系的方法及化简根式的方法(快速而准确)恰当的展示建立坐标系的方法,合理分配根式的化简步骤,引导学生一步步给出正确的整理过程,得出正确的椭圆的标准方程。在此过程中,老师必须要有足够的耐心,给学生充足的时间,适时点拨,也可以让学生进行分组讨论,共同研究出解决问题的方法,这些都有利于我们化解难点、突破难点。
(1)师生共同用绳做出椭圆,使学生相信原来他们也可以做出如此优美的曲线,再通过课件展示椭圆的形成过程,使学生认识到科技的重要性,进行适当的科学教育。
(2)进一步加强师生互动,加深学生与老师的感情培养,更好的利用教学相长这一特点。
能过对新课标的学习,在现行教学手段下,结合现代教育技能对于本节课进行教学设计,对于学习目标的确定,具体如下:
1.利用先进的科学技术手段,对学生灌输正能量,转化为动力,更好地投入到学习中去。
2.课件展示椭圆的形成过程,对于学生对于椭圆的理解是有很大的帮助的,也能够更好地帮助学生理解椭圆。
3.教学方法的设计。
(1)教法。
新课标要求以“学生发展为核心”,老师是学生的组织都、促进者、合作者,在教学过程中要注意以学生为主体,让学生真正地动起来,体现出学生的主体作用,让学生动手作图,使学生能够真正地参与到教学中来,激发学生的学习兴趣。学生现阶段对于一切新鲜事物都有好奇心,这样做,使他们能够以极大的热情参与到我们的教学过程中来,才能更好地提高他们的学习成绩,更好地完成我们的教学过程。
(2)学法。
在学法方面,增强学生的自主性、互动性、探究性的学习,让学生以一种自主探索、合作交流的方式参与到学习过程中来,会有事半功倍的效果的。只有这样做,才能使他们对于所学的内容有了更深层次的认识,只有学生积极主动的参与到了学习过程中来,我们老师才能更好地完成我们的教学过程。
(3)本节课时:
一、创设情境,引入课题。
二、实验探究,研究概念。
三、研究探讨,推导程。
四、归纳概括,
五、应用举例,变式巩固。
六、课堂小节,布置作业。
七.课堂准备本课时,需要学生自己动手绘制椭圆,安排学生提前准备好一要细绳(不带弹力)。
九、学习设计。
(一),创设情境,引入课题。
1,创设情境。
课件展示行星围绕太阳旋转的gif图,引导学生观察行运行轨迹,通过学生的讲述,得到我们本节课的课题:椭圆及其标准方程。
设计意图:根本图片上绚丽的色彩,及星空的美丽,引发学生的求知遇。也许有一天,他们也会飞向太空,通过这样的方式,使学生明确本节课的学习目标。
2,引入课题。
课件展示利用平面去截取对顶圆锥所能到的截面的形状,给出课题,适当回顾前面所学过的圆的知识及圆的标准方程。
设计意图:再次激发出学生的学习兴趣及求知欲。学生活动:对老师提出的问题,进行思考回答。
(二)实验探究,形成概念。
1.实验探究。
动手实验:以学生为中心,安排两名学生黑板演示椭圆的形成过程,(老师引导学生完成),展示完毕后,让下面的同学,同桌之间相互合作,完成椭圆的制作过程。并在学生实验过程中提出如下问题:
(1)椭圆是一些什么样的点所围成的图形?
(2)它们满足什么规律(什么是不变的)?
2.形成概念。
老师课件展示椭圆的形成过程,(通过不断的变化引导学生喜欢上椭圆),引导学生给出椭圆的定义:平面内到两个定点的距离的等于常数的点的轨迹叫椭圆。教师给出焦点,焦距的概念。再具体给学生分析定长与两点间距离的关系,加深学生对于椭圆的定义的理解与掌握。
设计意图:通过以上形式,引导学生进入本节课的学习情境,完成本节课的教学。
(三)研讨探究、推导方程。
1.研讨探究。
老师活动:通过刚才的课件展示,引导学生对于前面所学知识的回顾,并使学生尝试推导椭圆的标准方程:
(1)如何建立平面直角坐标系?
(2)不同的建系方法,哪种形式看起来更为方便?
设计意图:通过回顾前面所学的知识,使学生能更快的理解并掌握椭圆的方程的推导过程。
2.推导方程课件展示椭圆并提问。
师:如何将椭圆放置到平面直角坐标系中?生:经过讨论给出应该以焦点所有直线做为x轴,以线段中点为坐标原点的建系方法。
师:对于学生的回答给予肯定,夸奖一下,使学生能够乐呵呵地投入到接下来让人头疼的化简过程中来。
课件展示椭圆方程整理过程中的部分重点步骤,起到一个引导作用,并及时纠正学生所出现的错误,使学生能够顺利准备的完成椭圆标准方程的整理过程。
(四)归纳概括。
师:通过前面的学习,得到了椭圆的标准方程,那么我们能否转变一下焦点所在的位置,换一种方法,得到焦点在y轴上的椭圆的标准方程。让学生分组讨论,整理出另一种椭圆的标准方程。课件展示椭圆的两种标准方程。
(五)应用举例,变式巩固。
课件展示例题:
(2)两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点(3,5);
引导学生独立完成这两道例题,老师适当给予充分和肯定。幻灯展示解题的过程。
(六)课堂小结,布置作业1,课堂小结。
(1)椭圆是一种优美的曲线,通过本节学习认识到几何图形的美感。
教材p43习题2-1a第1题。
设计意图:加强学生对于椭圆的理解与掌握。
教师的数学解方程教学设计篇十四
晚上,我读《初中数学创新教学设计》一书对我很有帮助,感想很多。
教学设计作为教师进行教学的主要工作之一,对教学起着先导作用,它往往决定着教学工作的方向;同时教学设计的技能作为教师专业发展的重要内容,已成为教师从师任教必备的基本功。所以教师了解初中数学教学设计的内容很有必要。新理念下的初中数学教学设计的内容可以包括:。
(1)教学目标。
在新理念下,教学目标一般包括过程性目标和结果性目标两个方面,也可以进一步细分为知识技能,数学思考,解决问题,情感态度等多方面。
(2)任务分析。
进行任务分析的重点在于关注几个要点:
一是关注学生的起点;二是关注学生主要的认知障碍和可能的认知途径;三是分析教学内容的重点、难点和关键;四是研究达成目标的主要途径和方法。
在这里,有两个问题十分重要:第一,要关注学生的经验基础,第二,要正确认识教材,
对于前者,意味着不仅要考虑学科自身的特点,更应遵循学生学科学习的心理规律;要把学生的个人知识、直接经验和现实世界作为初中数学教学的重要资源。对于后者,意味着要“用教材教,而不是教教材”。创造性的使用教材是本次新课程对我们提出的新要求,教材是极其宏观性的一个蓝本,覆盖着非常广阔的时空,主要对教师教什么、学生学什么起到指向作用。但教材仅仅是教师组织数学课堂教学活动的'素材,使学生进行数学学习的平台。新理念下的教材给教师留下了比较大的创造空间,进行任务分析,就必须改变“以教材为本处理教材”的现象,根据学生实际、教学实际和当地实际,模拟教材,重组教材,编制教材,消减技巧性训练,增加其探索性、思考性和现实性的成分,为实施开放式、活动式的探究、合作、参与等新型学习方式创造条件。事实上,对初中生来说,喜好数学问题,对有关的数学活动充满好奇心,这是进一步学习数学的首要前提和发展动力。
(3)教学思路。
主要考虑具体的教学过程,包括创设的情景、活动的线索、学生可能提出的问题,可能的情况下必须附设计说明。
(4)教学反思。
主要针对如下一些问题开展反思:
了解了教学设计的内容,为我们以后教学设计具有很重要的指导意义。
更多精彩的读书笔记尽在unjs读书笔记网!
教师的数学解方程教学设计篇十五
(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.
(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.
(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.
探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.
多媒体课件和自制教具:绘图板、图钉、细绳.
(一)设置情景,引出课题:。
1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实。
物和图片,让学生从感性上认识椭圆.
2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定规律运动的轨迹。
提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?
下面请同学们在绘图板上作图,思考绘图板上提出的问题:
2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?
3.当绳长小于两图钉之间的距离时,还能画出图形吗?
(二)研讨探究,推导方程。
1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?
教师的数学解方程教学设计篇十六
为了提高全体数学教师的教材钻研能力,培养教学骨干,更深入的开展课题(数学优质课堂中培养学生学习兴趣与教学技艺运用的研究)研究,提高数学教学质量,使教师们能一展自己的风采,学校特举行此次数学教学设计比赛。
1、参赛对象:以个人为单位,40岁以内青年教师参与。
2、比赛内容:为做到公平公正,参赛教师将抽取现任年级本册教学内容作为参赛内容。内容由评委选择确定,即从每个年级选择五至六个教学内容,再由各年级备课组长抽签确定本年级具体内容。
3、比赛时间定于第八周星期二下午2:00开始,地点阶梯教室,比赛时间为一小时。
本次比赛设一等奖2名、二等奖3名、三等奖3名。
教师的数学解方程教学设计篇十七
1、在具体的生活情境中,使学生感受并认识质量单位克和千克,初步建立1克和1千克的概念,知道1千克=1000克。
2、使学生知道用秤称物体的方法。
3、在建立质量概念的基础上,让学生形成估量物体质量的意识。
重点:建立克和千克的概念,知道它们的关系。
难点:克和千克质量概念的建立。
课件,2分的硬币,黄豆,天平,两袋500克的盐,台秤,自己带来的小物品等。
一、问题情境:
师:同学们,想知道今天在超市里发现了什么数学知识吗?仔细看看。(课件出示:教材第100页情景图)。
生1:他们都在讨论跟质量有关的话题。
生2:从图中知道5个苹果重1千克,一壶豆油重5千克,一包饼干重110克……。
师:生活中物体的质量经常用到,我们国家过去常用的质量单位是“斤”和“两”,现在国际上通用的质量单位是“克”和“千克”,这也是今天我们要共同研究的问题。
设计意图:从常见的生活场景中,引导学生发现物体的质量与生活联系密切。
二、自主探究:
1、教学例1。
师:仔细观察,说一说你发现了什么?(课件出示:教材第101页例1)。
生1:我知道了一盒口香糖重3克,一袋菊花茶重12克,一包美味瓜子重100克。
生2:我发现这些比较轻的物品都是用“克”作单位的。
师:是啊,我们一般用“克”作单位来计量比较轻的物品。“克”是国际通用的质量单位,用字母“g”来表示。
学生在小组里测量较轻物品的质量,寻找重1克的物品,教师巡视了解情况。
组织学生交流,说一说小组测量的结果。
(1个2分的硬币重约1克)。
师:估一估下面的物品哪些比1克轻?(课件出示:教材第101页“做一做”)。
指定学生回答,并适时作出评价。
师:生活中还有哪些物品比1克轻?
生1:一块小橡皮比1克轻。
生2:一根头发比1克轻。……。
2、教学例2。
师:其实生活中有更多物品的质量超过1克,甚至更重,那么对于比较重的物品,我们常用什么作单位呢?大家一看就知道了。(课件出示:教材第102页例2上面的图)。
生1:一桶洗衣液重5千克,我觉得应该是用“千克”作单位称量比较重的物品。
生2:一箱苹果重25千克,我也认为是用“千克”作单位计量比较重的物品。
师:“千克”也是国际上通用的质量单位,用字母“kg”来表示。
师:仔细看看,苹果的箱子上写的是“净含量”,什么是“净含量”呢?
生:“净含量”是指这箱苹果的质量,不包括箱子的质量。
师:对,生活中经常用到“净含量”这个词,它是指桶里、箱子里的物品的实际质量。
想一想,1000克有多重?举例说一说。
生:生活中常用的食盐一包重500克,两包食盐的质量就是1000克。
师:那你觉得“千克”和“克”之间有什么关系呢?
生:1千克=1000克。
师:谁知道在生活中用“千克”作单位的秤有哪几种?
生1:我在超市里、菜摊上见过的有电子秤、台秤。
生2:我在体检的时候见过测体重的体重秤。
生3:我在实验室里见过弹簧秤。
师:如果你是个有心人,就会发现生活中的秤太多了。仔细看看图中这些指针分别指着几,告诉大家所称物品有多重。(课件出示第102页例2下面的图)。
生1:一袋洗衣粉重1千克。
生2:小朋友的体重是23千克。
师:请在小组里合作交流,称出质量是1千克的物品,用手掂一掂,想想生活中哪些物品是重1千克的。
学生在小组里合作交流,教师巡视了解情况。
3、在里填上“”“”或“=”。
2千克20xx克5千克4900克。
800克1千克2500克3千克。
4、判断对错。
一个鸡蛋约重50克。()。
小明今年7岁,约重20xx克。()。
1千克铁比1千克棉花重。()。
一袋盐500克,两袋这样的盐重1千克。()。
三、总结提升:
转载自 xUeFeN.COM.cn
师:同学们,通过今天的学习,你们知道了什么?
四、作业布置:
教材第105页练习二十第3题和第106页第8题。
教师的数学解方程教学设计篇十八
本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。
学情分析。
1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。
2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。
3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的`探究方式。
教学目标。
知识与技能:
1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
过程与方法:
1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。
情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。
教学重点和难点。
重点:利用增长率问题中的数量关系,列出方程解决问题。
难点:理清增长率问题中的数量关系。
教师的数学解方程教学设计篇十九
知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。
过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。
情感与态度:增强应用数学的意识,激发学习数学的热情。
教学重点:从实际问题中寻找相等关系。
教学难点:从实际问题中寻找相等关系。
教师的数学解方程教学设计篇二十
教学目标。
知识技能。
教学思考。
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。
3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。
解决问题。
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感态度。
1、培养学生主动探究知识、自主学习和合作交流的意识。
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。
重点。
难点。
1、由实际问题向数学问题的.转化过程。
2、正确识别一般式中的“项”及“系数”。
教学流程安排。
活动流程图。
活动内容和目的。
活动1。
创设情境引入新课。
活动2。
启发探究获得新知。
活动3。
运用新知体验成功。
活动4。
归纳小结拓展提高。
活动5。
布置作业分层落实。
复习一元一次方程有关概念;通过实际问题引入新知。
通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。
回顾梳理本节内容,拓展提高学生对知识的理解。
分层次布置作业,提高学生学习数学的兴趣。