最新圆柱表面积和体积计算公式 圆柱的表面积教案(优质13篇)
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
圆柱表面积和体积计算公式篇一
教材40页、41页例1、例2、例3及做一做,练习十第2-5题。
素质教育目标
(一)知识教学点
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力训练点
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学步骤
一、铺垫孕伏
1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?
(2)圆的直径是3分米,周长是多少?面积是多少?
2.长方形的面积计算公式是什么?
3.教师出示圆柱体模型,指同学说出它有什么特征?
二、探究新知
1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。
(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的'长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1
(1)出示例1,指同学读题,找出已知条件和所求问题。
学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3。14×0。5×1。8
=1。75×1。8
≈2。83(平方米)
答:它的侧面积约是2。83平方米。
(2)反馈练习:完成做一做41页第1题。
学生独立解答,然后订正。
3.教学
(1)教师说明:圆柱的侧面积加上两个底面积就是。
(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
4.教学例2
(1)投影片出示例题2、圆柱的几何图形和表面积的展图。
(2)指同学读题,找出已知条件和所求问题。
(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。
(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。
教师巡视指导,注意检查学生的计算结果和计量单位是否正确。
做完后订正,订正时让学生说出有关的计算公式。
(5)反馈练习:完成做一做第2题。
指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。
5.教学例3
(1)出示例3,指名读题,找出已知条件和所求问题。
(2)教师提示:解答这道题应注意什么?
启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。
(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。
(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。
(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。
(6)“四舍五入”法与“进一法”有什么不同。
圆柱表面积和体积计算公式篇二
(一)教材分析
《圆柱体的表面积》是九年义务教育六年制小学数学第十二册第二单元的学习内容,它是在学生掌握长方形以及圆的面积计算的基础上进行教学的,为今后进一步学习立体几何知识及培养学生的空间观念打下基础。是一节数学探讨课,与生活密切联系。
(二)教学目标知识目标:通过多种形式的感知,认识圆柱体,理解圆柱体的表面积概念,初步形成空间观念。
能力目标:培养学生观察、想象、分析的能力,掌握圆柱体的表面积计算。
情感目标:通过探究合作学习,激发学生学习热情以及培养学生的合作探究意识,渗透数学来源于生活。
(三)重点、难点重点:圆柱体表面积的概念。难点:圆柱体表面积的计算。
(四)教学具准备: 圆柱体实物
《新课标》指出:数学教学应联系现实生活,使学生从中获得学习数学的情感体验,感受数学的力量。同时,通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作精神。因此,在本节课中,我认为运用活动教学形式,采取“引导-合作-自主探究”的教学方法,使每个学生都能参与到学习中,感受学习的乐趣。
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,让学生通过自己摸一摸、剪一剪、拼一拼等系列活动认识形式,采用小组合作,自主探究的学习。
(一)开门见山,由面到体
1、新课导入:同学们,请大家回忆一下以前学过的平面图形;你还记得怎么样计算它们的面积吗?(出示长方形、正方形、平行四边形和圆)2、实物出示茶叶筒、易拉罐等立体图形,从而得出立体图形概念。3、板书揭题:圆柱体的表面积,从研究平面图形到立体图形,是学生空间形成发展中的一次飞跃。因此,在引入前,首先让学生对以前平面图形知识进行系统性回顾。然后,再出示立体图形实物,在学生头脑上建立立体图形表象,并得出立体图形概念,从而点明本节课学习内容和目标,激发学生的强烈的求知欲和学习兴趣。
(二)教师引导、自主探究
1、引导学生认识圆柱体各个“面”的形状和面积计算。(小组合作完成)
(1)摸一摸,数一数;圆柱体它有几个面?(引导学生按顺序观察,可按方位给每个面标上名称。如:上面、下面和侧面。)
(2)看一看,议一议;圆柱体每个面是什么形状?
(4)指一指,说一说;从不同位置展开圆柱体的侧面,不断变换,引导学生认识。
圆柱表面积和体积计算公式篇三
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件
教学重点:
圆柱侧面积的计算方法推导。
教学过程:
一、猜测面积大小,激发情趣导入
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法
师:怎么计算圆柱的表面积呢?
圆柱的表面积=侧面积+两个底面的面积(板书)
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
………
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)
底面积:3.14×5×5=78.5(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+78.5×2=748.576(平方厘米)
情况二:半径:18.84÷3.14÷2=3(cm)
底面积:3.14×3×3=28.26(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+28.26×2=648.096(平方厘米)
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)
所以圆柱体表面积=长方形面积=底面周长×(高+半径)
用字母表示:s=c×(h+r)
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)
圆柱表面积和体积计算公式篇四
教学内容:
小学数学第十二册教材p33~p34
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件
教学重点:
圆柱侧面积的计算方法推导。
教学过程:
一、猜测面积大小,激发情趣导入
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法
师:怎么计算圆柱的表面积呢?
圆柱的表面积=侧面积+两个底面的面积(板书)
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)
底面积:3.14×5×5=78.5(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+78.5×2=748.576(平方厘米)
情况二:半径:18.84÷3.14÷2=3(cm)
底面积:3.14×3×3=28.26(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+28.26×2=648.096(平方厘米)
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)
所以圆柱体表面积=长方形面积=底面周长×(高+半径)
用字母表示:s=c×(h+r)
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、分组闯关练习
多媒体出示题目。
汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、质疑(同学们还有什么疑问吗?)
五、反馈小结:
教学反思
1、自主探究,体验学习乐趣
以解决问题为主线,打破了“例题、习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
圆柱表面积和体积计算公式篇五
1.认识表面积计算方法。
(1)请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。
(2)教师演示。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
(3)得出公式。
2.教学例2。
出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。
3.组织练习。
做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。
4.教学例3。
出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。
5.组织练习。
(1)下面的数用进一法保留整数,各是多少?(口答)
162.329.43.842.6
(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。
圆柱表面积和体积计算公式篇六
本节课的教学内容是九年义务教育六年制小学数学第十二册,它是学生初次接触圆柱这个几何形体,要求学生认识掌握圆柱的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法,教材是在学生掌握长方形面积、圆的面积计算方法的基础上安排的,因而要以上述知识为基础,运用迁移规律使圆柱体的侧面积、表面积的计算方法,这一新知识纳入学生原有的认知结构中。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。
几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径。大纲明确指出:教学是要通过学生的多种感官的参与,掌握形体的特征,培养学生的空间观念。结合本课概念抽象,知识点多的特点和学生的空间想象力不够丰富等实际情况,现拟如下目标:
(1)知识教学
使学生认识圆柱体,掌握圆柱体的特征及各部分名称的同时理解并掌握圆柱体的侧面积、表面积的计算方法。
(2)能力训练
培养学生的观察、操作、想象能力,发展学生空间观念,渗透“认识来源于实践”和“全面看问题”的唯物主义观点,以及事物间的相互联系和相互转化的观点。
(3)素质培养
培养学生的合作能力和尝试精神,养成敢于质疑问难的习惯,唤起学生的竞争意识和创新意识。
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础,所以本课的重点是:掌握圆柱体侧面积、表面积的计算方法,由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:圆柱体侧面积公式的推导。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
本课由于概念抽象,知识难懂,易使学生感到枯燥无味或产生畏难情绪。我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,以“学生发展为本,以尝试学习为主线,以创新能力为主旨”。采用微机辅助教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法等,让学生全面、全程的参与教学的每一个环节,充分调动学生学习的积极性,培养学生的观察力、动手操作和想象力,发展学生的空间观念,总结出圆柱的侧面积、表面积的计算方法。
本课非常注重培养学生的空间观念和想象力。以教师设计的导思题为依托,以小组合作学习为形式,创设平等、民主、和谐、安全的教学环境,通过学生的动手操作、观察、比较等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。
(一)温故引新,巧妙入境
开课提问,我们都认识了哪几种立体图形?学生回答长方体和正方体。然后教师拿出圆柱体模型问,这个物体的形状是不是长方体?为什么?让学生讨论后回答,得出这个物体的形状不是长方体,它是一种新的形体——圆柱体。在日常生活中有很多物体的形状是圆柱体,如:药瓶、铅笔、墨盒等。(这样以旧引新,通过讨论唤起学生的学习兴趣和求知欲望,使学生对圆柱体表象有了深刻的认识。)教师由此引出新课,圆柱体的侧面积和表面积怎样计算呢?这就是我们这节课所要研究的内容。板书:圆柱体的表面积以上设计能让学生充分体验到数学与生活的联系,教师的巧妙设疑把学生引入一个心求通而未得,口欲言而无能的愤悱境地,较好地激发学生的求知欲,巧妙的揭示课题。)
(二)探求尝试,明确概念
1、动手操作,引导发现圆柱体侧面积的计算方法。这是本节课的难点,了解决这一难点,我设计如下:
(1)把圆柱体的侧面沿高剪开得到一个什么图形?
(2)展开后的图形各部分与圆柱体的各部分有什么关系?
(3)你想怎么求圆柱体的侧面积?
学生讨论后,接着教师引导学生回答上述思考题,并且用电脑演示,指出把圆柱体的侧面展开后得到一个长方形。这个长方形的长等于圆柱体的底面周长,宽等于圆柱体的高。再引导学生根据长方形的面积=长×宽,推导出圆柱体的侧面积=底面周长×高,最后引导学生利用公式计算。师问:要求圆柱体的侧面积必须知道哪些条件?这是及时出一道尝试题:
已知圆柱体的底面直径是3厘米,高是5厘米,求圆柱的侧面积。
做完后让学生分组说说解题思路。再让学生自学课本中的例1。使学生体验到尝试学习新知的乐趣。(这一环节,使学生的眼、手脑等多种感官参与感知活动,做到了在合作学习和动手操作中,思维、讨论、抽象概括出计算方法,这样能够更好的突破难点。)
2、引导学生独立推导出圆柱体表面积的计算方法。
(1)师提问:什么是圆柱体的表面积?
(2)验证表面积,让学生运用手中的.学具拆一拆,摆一摆,看一看圆柱体的表面积是由哪几部分组成的?然后教师用电脑演示圆柱表面积的组成。
(3)由学生分组讨论,独立发现计算方法,再向老师汇报:
(4)提问:要求圆柱的表面积,必须知道哪些条件,引导学生独立运用公式计算。例2:师巡视指导,共同订正。(这一步骤的设计是在前一步教师扶的基础上充分放手引导学生独立推导出计算方法。这样充分发挥了学生的主体作用,也培养了学生独立思考的能力和初步的逻辑思维能力。)
3、教师小结,师强调重难点。
4、质疑问难,生问生答或师答。
(三)巩固练习,培养能力
这一环节是内化知识,训练思维培养能力。形成技能的重要环节,因而我设计的练习题在注重基本练习的前提下,首先在形式上注意新颖、多样、采取、辨析、填空、判断、选择、列式、口答,笔算练习等形式。其次在内容上注意采取秩序渐进的原则,由易到难,这样即符合儿童的认识特点,又能兼顾大多数学生。
(四)全课总结,促进构建
结合板书,让学生说说本课学到的知识,并说出是怎样学到的,(目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到会学之目的。)那么在实际中要计算一只水桶的用料面积是多少,又怎样计算呢?我们下一课再研究。(这样的结尾既承接了本节课的内容,又为学习新知识高下悬念。有利于激发学生的学习兴趣。)
圆柱表面积和体积计算公式篇七
1、教材分析
本节课的教学内容是在学生认识掌握圆柱基本的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。教材是在学生掌握长方形面积、圆的周长和面积计算方法的基础上安排的,因而要以上述知识为基础,运用转化、迁移的方法理解和掌握圆柱体的侧面积、表面积的计算方法,并且能运用这一知识解决一些简单的实际问题。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。本课教材分圆柱表面积的含义,计算方法和表面积的实际应用三部分内容。
2、学情分析:
为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行了调研,这是课前调研的内容和统计的结果:从调研结果可以看出学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积指的是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过奥数的。由此可知,学生对圆柱的表面积了解的比较少,存在着一定的困难。
因此,依据教材和学情,我制定了如下教学目标。
知识目标:在探究活动中,使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
能力目标:培养学生观察、操作、概括的能力,以及利用知识合理灵活地分析、解决实际问题的能力。
情感目标:培养学生初步的逻辑思维能力和空间观念,向学生渗透事物间的相互联系和相互转化的观点。
能应用圆柱体侧面积、表面积的计算方法解决实际问题。
探究圆柱体侧面积、表面积的计算方法。
每组一套学具(包括能组成圆柱体的长方形、正方形、平行四边形和多个圆及其他图形)
为有效的落实教学目标,突破教学重、难点,在本节课中,我共设计了四个环节。
(一)激趣导入,初步感受
(二)动手操作,探求新知
(三)巩固应用,拓展提高
(四)回顾整理,总结收获
第一环节:激趣导入,初步感受
平面图形的面积学生已经会求了,而圆柱的侧面是个“曲面”,怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。
这样一来,把学生理解上的难点“由曲变直”,转化为“由直变曲”,根据学生的生活经验,“由直变曲”会容易的多。通过他们自己制作圆柱,直观了解曲面和平面之间的关系,有利于突破教学难点。同时提高了学生的学习兴趣。
学生带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。
第二环节:动手操作,探求新知:这是本节课的核心,也是重、难点所在,我主要通过4个层次来完成,使学生在小组探究的活动中,归纳圆柱体表面积的计算方法。
第一层次:小组探究,自主发现
学生在操作过程中很容易想到用长方形或正方形卷起来做成圆柱的侧面,然后选择合适的圆作为两个底,但对于学生能否想到利用平行四边形做侧面,学生的认识可能仍不清晰。因此,在小组探究时,我会到小组中巡视了解学生制作情况,及时对学生进行适时的启发引导,在这样的小组活动中,学生不仅对圆柱体有了更加准确的认识,也提高了合作、探究的能力及观察、概括的能力。
第二层次:小组汇报,总结归纳
在小组探究的基础上,分组汇报讨论结果,共分三种情况
分别选择长方形、正方形、平行四边形作为圆柱体的侧面把它卷成圆筒,再选正好能和圆筒对上的同样大小的两个圆。
通过动手操作,让学生从感官上加深对表面积的认识,为总结圆柱表面积公式打下基础。
然后,我直接提出问题:你会求它的侧面积吗?你是怎么推导出来的?这里还是让学生自主探究,学生很有可能无从下手去思考,我及时点拨学生引导他们发现长方形的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。通过老师的点拨,学生能够找到这两者的内在关系,学生汇报时,由课件配合,让学生从视觉上进一步感受到长方形的长就是圆柱的底面周长,宽是圆柱的高。如果展开是平行四边形,平行四边形的底就是圆柱的底面周长,高是圆柱的高;如果展开的是正方形,正方形的一个边长就是圆柱的底面周长,另一个边长就是圆柱的高。从而推导出圆柱的侧面积公式就是底面周长×高。这一教学过程学生亲自参与知识的获取中,真正理解了公式的由来,感受到重新创造数学的乐趣,增强了学好数学的信心。
在研究完圆柱侧面积的推导后,我又让学生来摸摸这个圆柱的表面,然后小结:我们摸过的所有这些面的面积和就是这个圆柱体的表面积。这里让学生摸的过程就是学生对表面积的认识过程,由于前面已经做了足够的铺垫,在学生理解了侧面积计算方法的基础上,我让学生独立想办法求出圆柱体的表面积。在学生活动的过程中,我巡视、指导,帮助有困难的学生。
在本环节中,在学生的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在学生的亲历探究实践中得到了突破。
第三层次:及时巩固,内化知识
在教学重难点基本突破后,让学生根据材料中给出的信息,计算本组制作的圆柱体的表面积,然后全班交流,因为学生利用的材料不同,因此涉及到的信息比较全面,侧面展开图有长方形,有正方形,还有平行四边形。这样就使学生巩固了对圆柱体表面积的理解。
第四层次:尝试应用,解决问题
由于本课的教学重点是能应用圆柱体侧面积、表面积的计算方法来解决实际问题,生活中不仅有不缺面的圆柱体,而且还有只有侧面的圆柱体和只有一个底面的圆柱体。能够准确的判断所求圆柱的表面积共几个面对于学生来说是个难点。因此我利用学生手中的圆柱体进行了一系列的拓展练习,首先我拿出一个学生做好的圆柱,把其中一个底拿走,引导学生思考怎样求这个圆柱的表面积?为什么?通过观察,学生很容易发现这个圆柱体的表面积就用侧面积加一个底面积就可以了。接着再引导学生思考生活中哪些物体跟这个圆柱类似?(如水桶、圆柱体的笔筒)在这里我安排的一道求水桶表面积的练习。
这样一来,使学生在丰富的感性认识的基础上,自主解决了只有一个底面的圆柱体类型的实际问题。
然后用同样的方法,解决只有侧面的圆柱体这一类型的实际问题。同样还是拿出一个学生做好的圆柱,把其中两个底都拿走,问学生求这个圆柱的表面积怎么求?生活中哪些物体跟这个圆柱类似?(烟囱,钢管内、外部的表面积)我也安排了一道求烟囱表面积的练习。
在前面的学习中,学生经历了自主观察并解决了生活中的一些实际问题,为了便于学生更好的区分他们,于是我引导学生按照圆柱体的面给圆柱体分分类:第一类是不缺面的圆柱体、第二类是缺一个底面的圆柱体、第三类是缺两个底面的圆柱体。为了更好区分,更好记忆,我又引导学生分别给它们起个名字:不缺面的就叫它全面圆柱体,缺一个底面的最典型物体就是水桶,我们就叫他水桶圆柱体,缺两面的最典型物体是烟囱,我们就叫他烟囱圆柱体。最后引导学生归纳出这三种圆柱体的表面积的求法:
在这一系列的总结、概括、归纳中,学生完善了认识,全面了解了各类圆柱体的区别及表面积的计算方法,进而提高学生的总结、归纳的能力。
第三环节:巩固应用,拓展提高
根据以上内容,我准备在实践练习中安排四个层次的内容。
1.一组已知底面半径、直径、周长和高求侧面积、表面积的对比习题,加深学生对圆柱表面积的理解,提高求表面积的技能。
2.一道求烟囱圆柱体表面积的习题。学生进行练习后,追问:为什么只求侧面积就可以了。
3.求一个用塑料薄膜覆盖的蔬菜大棚表面积的习题,追问:为什么求完全面圆柱体表面积后还要除以2。使学生养成灵活计算圆柱的表面积的习惯,培养实际应用的能力。
4最后安排的是一个拓展题,求帽子的表面积。这个表面积是由一个水桶型的圆柱体和一个环形的表面积组成的。把圆柱体表面积和我们以前学过的环形面积及组合图形的知识揉和在一起,培养了学生多角度思考问题的能力。
第四环节:回顾整理,总结收获
在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用的数学思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有所收获,使学生感受到学习数学的快乐和价值。
以上就是我对这一部分内容的理解与分析,谢谢各位老师!
圆柱表面积和体积计算公式篇八
学案导学课
年 级
六年级
教 师
学
习
内
容
习
目
标
点
难
点
习
过
程
学 案
导 案
独
立
尝
试
工学
习
过
程
学 案
导 案
点
拨
自
学
流
解
惑
作
考
试
我
总
结
教学反思:
本节课通过交流、问答、推理等形式,调动学生学习的积极性,激发学生强烈的探究欲望,教学中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,理解求圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。学生学得轻松、愉快。
圆柱表面积和体积计算公式篇九
主备人:高向红
教学内容:圆柱的侧面积和表面积练习(第23~24页上第5~9题)
教学目标:
1、进一步掌握圆柱侧面积的计算方法;
2、进一步掌握圆柱表面积的计算方法,能根据实际情况正确计算,培养学生解决简单的实际问题。
3、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教学重点
巩固圆柱的侧面积和表面积的计算方法,提高解决实际问题的能力。
教学难点
根据实际情况正确计算圆柱物体的侧面积和表面积。
对策:
加强数学问题与生活问题的沟通与转化。 教学预设:
一、回忆整理圆柱的侧面积和表面积的计算方法
1、
提问:上节课我们学习了圆柱的侧面积和表面积。(板书课题:圆柱的侧面积和表面积)怎样求圆柱的侧面积?(板书:圆柱的侧面积=底面周长乘高)
如果底面周长没有直接告诉我们,还可以告诉我们什么条件也能求侧面积?怎样求? 再引导学生体会:如果不知道底面周长而告诉我们半径或直径,也需先求出底面周长后才能求侧面积。
2、
怎样求圆柱的表面积?(板书:圆柱的表面积=侧面积+2个底面积)
告诉我们什么条件可以求圆柱的表面积?怎样求?
还可以告诉我们什么条件也能求表面积?怎样求?
1、
第24页上第5题:读题后,请学生分析:题中已知什么,要求的是什么?独立思考解题方法,指名说解题方法,体会要结合生活实际情况来确定要计算的是什么,本题中的灯笼在生活中是只要计算一个底面积的。(多请几个学生说,说到基本上掌握方法为止,去年教这个内容时先让学生计算再理解解题思路的,结果有不少学生解题思路错误,在计算上浪费了很长时间)再要求计算:指名板演,集体练习,评析校对,指导学生计算时分几大步完成,计算步骤不要分得太细,也不要列一个大综合算式。
2、
第24页上第6题:处理方法基本同第5题,但要结合第5题的教学引导学生注意:1、题中关键词“无盖”,否则会方法错误;2、计算结果的处理有后续要求。教育学生对这样的细节问题要细心、敏感。
3、
第24页上第7题:引导学生读题后可出示纸做的博士帽教具,帮助学生理解解题思路,请学生独立思考后指名交流并解答。最后提醒学生注意其中的单位变化情况。
4、
第24页上第8、9题:读题后独立思考,分析交流解题思路,说明想法,引导学生学习将生活问题转化为数学问题。再独立完成在作业本上。
5、
补充:填空:
给一块边长是6.28分米的正方形铁皮配上一个底面,做成一个圆柱形铁皮水桶。
(1)6.28÷3.14÷2求的是( )
(2)12×3.14求的是( )
(3)6.28×6.28求的是( )
(4)6.28×6.28+12×3.14求的是( )
6、
(如学生有困难可用粉笔操作演示) 三、全课总结
圆柱表面积和体积计算公式篇十
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,我改变了传统的先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3d=4c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7h=6h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
1、培养了学生的合作意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。
2、培养了学生的实践能力。
新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系。
圆柱表面积和体积计算公式篇十一
1)把圆柱形纸筒的侧面沿着它的一条高展开是一个( )形,它的长是圆柱的( ),它的宽是圆柱的( )。如果长6.28厘米,宽3.14厘米,那么纸筒的侧面积是( )。
2) 一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是( ),表面积是( )
3)一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是( )厘米。
4)圆柱体底面半径扩大2倍,高不变,圆柱体的侧面积就扩大( )倍。
2、一个圆柱形水池,直径是20米,高6米,水深2米。
a、这个水池占地面积是多少?
b、在池内侧面和池底抹一层水泥,需要抹水泥的面积是多少?
圆柱表面积和体积计算公式篇十二
“圆柱的表面积”历来是学生学习的难点。观察发现:
难点三:计算难度大,无论是圆的周长和面积计算中都涉及圆周率;
难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。
如何有效组织教学,谈谈自己的粗浅的看法。
在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。
圆柱表面积和体积计算公式篇十三
教学内容:p21-22页例3-例4,完成“做一做”及练习四的部分习题。
教学目标:
1、在初步认识圆柱的基础上理解圆柱表面积的含义,掌握圆柱表面积的计算方法,会正确计算圆柱表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的.能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学重点:掌握圆柱表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教法:启发引导法
学法:自主探究法
教具:课件
教学过程:
一、定向导学(5分)
(一)导学
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)怎样求圆的周长与面积?
(2)怎样求圆柱的侧面积?
3、导入课题
(二)定向
揭示学习目标
1、理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2、会正确计算圆柱表面积,能解决一些有关实际生活的问题。
二、自主探究(10分)
(一)填空
1、因为圆柱体有两个()和一个(),所以