最新幂函数的教学设计方案范文(13篇)
通过制定和执行方案,我们可以更好地规划和组织工作。与团队成员进行充分的沟通和协作,共同完善方案。方案的有效实施需要全员参与和积极配合,以充分发挥个人和团队的能力。
幂函数的教学设计方案篇一
对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。
在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:
1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。
2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。
3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.
4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。
幂函数的教学设计方案篇二
一、说课内容:
九年级数学下册第27章第一节的二次函数的概念及相关习题(华东师范大学出版社)。
二、教材分析:
1、教材的地位和作用。
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:抽象出实际问题中的二次函数关系。
1、从创设情境入手,通过知识再现,孕伏教学过程。
2、从学生活动出发,通过以旧引新,顺势教学过程。
3、利用探索、研究手段,通过思维深入,领悟教学过程。
四、教学过程:
(一)复习提问。
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)。
2.它们的形式是怎样的?
(y=kx+b,ky=kx,ky=,k0)。
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.
(二)引入新课。
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。
例1、(1)圆的半径是r(cm)时,面积与半径之间的关系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
(三)讲解新课。
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c(a0,a,b,c为常数)的函数叫做二次函数。
1、强调形如,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)。
3、为什么二次函数定义中要求a?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)。
4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;。
若c=0,则y=ax2+bx;。
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是关于x2的二次函数)。
(四)巩固练习。
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;。
(2)设这个直角三角形的面积为scm2,其中一条直角边为xcm,求s关。
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为scm2,体积为vcm3。
(1)分别写出s与x,v与x之间的函数关系式子;。
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
五、评价分析。
本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。
幂函数的教学设计方案篇三
【目标】。
1.借助生活实例,引领学生参与函数概念的形成过程.
2.体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性.
【学习目标】。
1.初步掌握函数概念,判断两个变量间的关系是否能看作函数.
2.初步感受函数表示的三种形式:表格法、图象法、解析式法.根据两个变量间的关系式,给定其中一个量,会相应地求出另一个量的值.
3.经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力.
【教学重点】。
2.判断两个变量之间的关系是否可看作函数.
【教学难点】。
1.准确理解函数概念中“唯一确定”的含义.
2.能把实际问题抽象概括为函数问题.
计意图】。
本节公开课在教师的精心准备之下,按照djp教学模式常规要求,顺利完成了教学目标。现将本节课中具体作以下几点反思:
1.函数对初中生来是第一次接触,在教学设计的时候,充分列举生活中有关变量的例子,让学生去感受两个变量之间的关系,提高学生的学习兴趣.
2.本节课属于概念课,根据djp教学模式下概念课的要求,认真设计教学过程和修改学案,经过教研组多次研讨,最终形成此教学设计.
3.本节课在原有基础上作出了一些调整,在情境引入时,列举生活中的变量,并演示摩天轮模型转动,同时提出问题:在转动过程中,有几个变量?你了解它们之间的关系吗?从而引出本节课的主题――函数的概念,并由此进入情境1的学习,此环节由教师主讲,目的在于为后面学生讲解情境2,3作出示范,特别是在图像中,判断两个变量是否成函数关系时,由于学生还没学习直角坐标系,所以通过ppt多次演示,教会学生判断方法,为后面的练习作好铺垫.
作者简介:冉龙海,男,1980年4月出生,本科,就职于四川省成都市龙泉驿区第十中学校,研究方向:班主任教育工作。
幂函数的教学设计方案篇四
由于每个学生的基础知识、智力水平和学习方法等都存在一定差别,所以本节课采用分层教学。既创设舞台让优秀生表演,又要重视给后进生提供参与的机会,使其增强学习数学的信心。具体题目安排从易到难,形成梯度,符合学生的认知规律,使全体学生都能得到不同程度的提高。
1.掌握二次函数的图像和性质,了解一元二次方程与二次函数的关系,能依据已知条件确定二次函数的关系式。
2.通过研究生活中实际问题,让学生体会建立数学建模的思想.通过学习和探究xxxx考点问题,渗透数形结合思想及分类讨论思想。
3.查漏补缺,采用小组学习使复习更有效,学生在自主探索与合作交流的过程中,全方位“参与”问题的解决,获得广泛的数学活动经验。
探究利用二次函数的最大值(或最小值)解决实际问题的方法。
如何将实际问题转化为二次函数的问题。
[活动1]学生分组处理前置性作业
教师出示习题答案。组织学生合作交流,深入到每个小组,针对不同情况加强指导。
教师重点关注学困生。
针对学生的实际情况,对习题进行分层处理,树立学困生学习数学的信心。
[活动2]师生共同解决作业中存在的问题
学生自主研究,分组讨论后,然后提出问题,教师对学生回答的问题进行评价
教师重点归纳数学思想。
通过对习题的处理,使学生进一步加深对二次函数有关概念及性质的理解,能用函数观点解决实际问题。同时,小组学习也使学生全方位参与问题的解决。
[活动3]习题现中考
例1(xxxx,南宁)
教师结合教材对比、分析
学生小组合作,完成例题
教师归纳:本题考查了二次函数、一元二次方程与梯形的面积等知识。
对于二次函数与其他知识的综合应用,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,从而把握解题的突破口。
[活动4]例题现中考
例2(xxxx,济宁)
例3(xxxx,黔东南州)
学生自学,教师指导,让学生讨论回答这两道题的共同特点。
让学生根据讨论的结果概括、归纳出“每每型”二次函数模型的题型特点和解决这类问题的关键。
[活动5]知识提高阶段
教师给出一组习题,学生讨论完成。
知识再运用有助于知识的巩固。
[活动6]小结、布置作业
问题
本节学了哪些内容?你认为最重要的内容是什么?
布置作业
把错题整理到作业本上。
师生共同小结,加深对本节课知识的理解。
让学生参与小结并有不同的答案,可以增强学生学习的积极性和主动性,培养学生对所学知识回顾思考的习惯。
幂函数的教学设计方案篇五
这节课,我们来学习二次函数的三种表达方式。
二、师生共同研究形成概念
1、用函数表达式表示
做一做书本p56矩形的周长与边长、面积的关系
鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。
比较全面、完整、简单地表示出变量之间的关系
2、用表格表示
做一做书本p56填表
由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。
表格表示可以清楚、直接地表示出变量之间的数值对应关系
3、用图象表示
议一议书本p56议一议
关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。
可以直观地表示出函数的变化过程和变化趋势
做一做书本p57
4、三种方法对比
议一议书本p58议一议
函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。
在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。
幂函数的教学设计方案篇六
一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。
先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。
练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!
反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。
2、本节课讲到第三个性质。
3、练习题要精而且少,难易适中。
4、注意课前准备,上课注意语言。函数教学反思反比例函数教学反思。
将本文的word文档下载到电脑,方便收藏和打印。
幂函数的教学设计方案篇七
1.能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.
2.能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.
3.经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.
4.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
幂函数的教学设计方案篇八
“指数函数及性质”的教学共分两个课时完成,这是第一课时。本节课主要学习了指数函数的定义,研究了指数函数的图像及相关的性质。回顾这节课,心中有很多感想,也有下面一些思考:
1.这节课是在学生系统的学习了指数概念、函数概念,基本掌握了函数性质的基础上进行学习的,具有初步的函数知识,但是对于研究具体的初等函数的性质的基本方法和步骤还比较陌生,对于指数函数要怎么样进行较为系统的研究对学生来说是有困难的,因此这节课的每一个环节以我引导,以学生的自主探究为主来完成是符合学情的。
2.设计“指数函数的图象及性质”,“y=ax的图象和y=(1/a)x的图象间的关系”.“a的大小对函数图象的影响”三个问题,让学生通过几何画板软件动手画图操作、自主探究、主动思考来达到对知识的发现和接受,改变过去机械接受和死记结论的状况,符合新课改的理念,同时也完成了这节课的主要教学任务。
3.在对底数a的范围的思考及三个探究性问题后都设置了练习,能及时反馈学生对所探求到的知识的掌握程度,便于及时调整课堂教学行为。从课后看学生对这些知识的掌握应该是比较好的。
4.这节课的学习及对函数研究方法和步骤的总结对后续学习新的函数起到了重要的示范作用。
在整个的教学过程中,始终体现以学生为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。
在教学的过程中,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固旧有知识,又为新知识提供了附着点,充分体现学生的主体地位。
三.存在的问题。
1.没有充分调动学生的积极性,课堂气氛显得沉闷。
2.尽量放手让学生自己去解决问题,教师自己讲得偏多,学生的主体作用体现得不够。
3.指数函数概念部分的教学时间稍多,后面教学过程稍显仓促,学生自主探究的时间不够,因此违背了教学设计的初衷。当然我会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的目标掌握和能力发展。
幂函数的教学设计方案篇九
时,函数值变化情况的区分.(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.二.学情分析:学生在学习了函数概念和函数性质基础上对函数有了初步认识,但我所教班时平行班,学生学习兴趣不浓,积极性高,针对这种情况,教学时要总层层设问降低难度,用几何画板直观演示提高学生学习积极性,时学生主动学习。
三.教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
投影仪。
六.教学方法。
启发讨论研究式。
七.教学过程。
(一)创设情景。
学生回答:y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答:y与x之间的关系式,可以表示为y=0.84x。
(二)导入新课。
引导学生观察,两个函数中,底数是常数,指数是自变量。设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y=0.84x分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
一般地,函数是r。
叫做指数函数,其中x是自变量,函数的定义域的含义:
”如果不这样规定会出现什么情况?问题:指数函数定义中,为什么规定“设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
对于底数的分类,可将问题分解为:
(1)若a。
则在实数范围内相应的函数值不存在)都无意义)。
在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是r;并为学习对数函数,认识指数与对数函数关系打基础。
教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
1:指出下列函数那些是指数函数:
在同一平面直角坐标系内画出下列指数函数的图象。
画函数图象的步骤:列表、描点、连线思考如何列表取值?教师与学生共同作出。
图像。
时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
利用几何画板演示函数特征。由特殊到一般,得出指数函数。
的图象,观察分析图像的共同。
的图象特征,进一步得出图象性质:
教师组织学生结合图像讨论指数函数的性质。
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。3.简单应用(板书)。
1.利用指数函数单调性比大小.(板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1.比较下列各组数的大小。
(1)与;(2)与;。
(3)与1.(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
幂函数的教学设计方案篇十
“指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。
幂函数的教学设计方案篇十一
教学目标:
2、能较熟练地运用指数函数的性质解决指数函数的平移问题。
教学重点:
教学难点:
教学过程:
一、情境创设。
二、数学应用与建构。
例1、解不等式:
小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围。
例2、说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的`示意图。
小结:指数函数的平移规律:y=f(x)左右平移,y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移)。
练习:
(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数x的图象。
(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数y的图象。
(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是。
(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是(),函数y=a2x—1的图象恒过的定点的坐标是()。
小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口。
(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?
(6)如何利用函数f(x)=2x的图象,作出函数y=|2x—1|的图象?
小结:函数图象的对称变换规律。
例3、已知函数y=f(x)是定义在r上的奇函数,且x0时,f(x)=1—2x,试画出此函数的图象。
例4、求函数的最小值以及取得最小值时的x值。
小结:复合函数常常需要换元来求解其最值。
练习:
(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于();。
(2)函数y=2x的值域为();。
(4)当x0时,函数f(x)=(a2—1)x的值总大于1,求实数a的取值范围。
三、小结。
四、作业:
课本p55—6、7。
五、课后探究。
(1)函数f(x)的定义域为(0,1),则函数f(x)的定义域为?
(2)对于任意的x1,x2r,若函数f(x)=2x,试比较函数的大小。
幂函数的教学设计方案篇十二
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。
2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。
幂函数的教学设计方案篇十三
结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下教学目标:
(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型。
(2)能画出具体对数函数的图象,学生通过自己动手作图,分组讨论对数函数的性质,提高动手能力、合作学习能力以及分析解决问题的能力。
难点:难点是探究底数对对数函数图象及性质变化的影响。
二、学生学习情况分析。
刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。尤其作为对数函数的第一课时,教师在教学中要控制难度,关注学生学习过程的体验。
三、设计思想。
本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生现有的认知水平,对数函数的教学首先要挖掘其知识背景贴近学生实际,让学生充分体验到数学的应用价值;其次,激发学生的学习热情,引导他们找到学习对数函数的思路(类比学习指数函数的思路),然后把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,改以前满堂教的方式为让学生满堂学,让学生学会学习。
四、教学基本流程:
五、教学过程:
根据新课标的要求我将本节课分为五个环节:创设情境,形成概念。
(一)创设情境,形成概念。
本节课我是从课本中给出的“考古实例”和学生熟悉的“细胞分裂”实例这样两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点。我的引入材料是这样的:1.请同学们认真阅读材料,解决材料中提出的问题:材料1:考古实例(材料1给出后面的观察提供必要的感性材料)材料2:细胞分裂实例。
过程,既化解难点,又为第一问引导学生有目的用生成细胞个数x表示出细胞分裂次数y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个y是否都有唯一的x与之相对应,为了帮助学生理解,可以借助指数函数图像加以解释,从而得到x=log2y是一个函数,但它又和我们平时所见过的函数形式不一样,我们习惯上用x来表示自变量,y表示函数,所以将其改写成y=log2x,这样的函数称之为对数函数,引出本节课题。
2.这两个函数有什么共同特征?(引导学生观察这两个函数的特征)有了学习指数函数的经验,再结合以上两个实例,学生不难归纳总结出对数函数的一般定义。
3.给出对数函数的定义(提炼出对数函数的概念,明确对数函数的结构特征)想一想:字母a、x、y的含义及取值范围。
1.你能类比指数函数的研究思路,说说对数函数的研究思路吗?
引导学生回顾指数函数的研究思路,强调数形结合,强调函数图象在研究性质中的作用。
关于如何得到对数函数图像我的想法是这样的:一方面描点法画图是学生需要掌握的一类重要的画图方法,而且让学生去亲身经历画出对数函数图像的过程,这样记忆会更深刻,所以我决定将课堂交给学生,让他们自主探究,然后通过实物投影全班同学一起交流,对学生们的共同问题集中解决。2.在同一坐标系中作出下列对数函数的图象:
(1)(2)(3)(4)。
我们估计学生可能遇到的困难是对数运算,所以我们坐标纸上附了列表(列表的用意:多描点,使图像更准确;便于底数分部规律、对称性等的发现.)请完成x,y的对应值表,并用描点法画出函数图像.