苏教版五年级数学第七单元教案(专业18篇)
编写教案需要教师有一定的教学经验和教学理论知识,同时也需要反思和总结自己的教学实践。教案的编写过程中应注重对学生的个体差异和特点的考虑,确保教学过程个性化。请大家逐一查阅这些教案范例,对比自己的教学设计,寻找优化的可能性。
苏教版五年级数学第七单元教案篇一
每个五年级数学老师要做到教师引导与学生思考相结合,静与动相结合,知识理论与实际操作相结合。所有的五年级数学教师都必须知道如何写五年级数学教案,你也来写一篇和我们分享吧。你是否在找正准备撰写“苏教版五年级数学单元教案”,下面小编收集了相关的素材,供大家写文参考!
教学目标:
1、结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体表面积的过程,能够准确的计算长方体和正方体的表面积。
2、能够认识长方体和正方体,具有初步的立体空间想象能力。
3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
能够准确的计算长方体和正方体的表面积。
教学方法:
师生共同归纳和推理。
教学准备:
长方体纸盒。
教学过程:
一、复习导入。
学生举手回答问题。(长方体的表面积由6个面来组成,每组相对的面的面积相等……)。
二、讲授新课。
教师出示例题,一个知道长、宽、高的长方体纸盒,如何才能求出它的表面积?
学生利用手中的长方体纸盒为参照,探究如何才能求出长方体的表面积。学生同组之间相互讨论,教师巡视指导每个小组的讨论活动。
教师提问学生如何求长方体的表面积。
学生回答:(分别求出每个面的面积,再加起来。就是长方体的表面积。)。
教师让学生把长方体的纸盒展开,看一看长、宽、高有什么关系?
组成长方体表面积的6个面,等于(长×宽+长×高+高×宽)×2=长方体的表面积。
教师让学生自己求出长7厘米、宽5厘米、高3厘米的长方体的表面积是多少?
学生列式:(7×5+7×3+5×3)×2。
教师让学生思考正方体的表面积如何求?
学生同桌之间进行交流,教师提问学生。(正方体的表面积=边长×边长×6)。
三、课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)。
板书设计:
长方体的表面积。
长方体的表面积=(长×宽+长×高+高×宽)×2。
正方体的表面积=边长×边长×6。
教学目标:
1、通过动手操作,理解长方体的表面积的意义,由此建立表面积的概念。
2、能根据现实情景和信息,通过动手操作、小组合作、观察思考等方法,去探求长方体的计算方法,初步培养学生的探求意识和探求能力。
3、使学生感受数学与生活的密切联系,培养初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教学重点:
理解长方体的表面积的意义,建立表面积的概念。
教学难点:
掌握长方体的表面积的计算方法。
教学流程:
一、复习旧知,引入新课。
1、复习长方体的特征。
生:长方体有6个面,12条棱,8个顶点,相对的面完全相同(特殊情况有两个相对的面是正方形),相对的棱长度相等。
2、师:同学们说得真好,都已经掌握了长方体的特征。那么今天我们继续来研究长方体,一起来探究一下长方体的面。
二、实践操作、探究新知。
1、教学长方体表面积的概念。
接下来学生动手剪(强调要求)。
师:请同学们仔细观察,展开后,你发现了什么?
生:我发现原来的立体图形变成了平面图形。
生:我发现长方体展开后还是由6个长方形组成的。
师:同学们观察得真仔细!课件演示(实物展开后贴在黑板上)。
生:能。
师:那么请你们在自己的长方体展开图中标出上、下、左、右、前、后。
师:观察长方体展开图,回答下面的问题。
(1)我们知道长方体有6个面,哪些面的面积是相等的?
生:前后面,左右面,上下面是相等的。
师:为什么?
生:长方体相对的面完全相同。
(2)每个面的长和宽与长方体的长、宽、高有什么关系?(同桌合作)。
生:上、下每个面的长和宽是长方体的长和宽,每个面的面积是长x宽;前、后每个面的长和宽是长方体的长和高,每个面的面积是长x高;左、右每个面的长和宽是长方体的高和宽,每个面的面积是宽x高。
师:同学们,像这样我们把长方体6个面的总面积,叫做长方体的表面积。
(板书:表面积)。
(2)计算长方体的表面积。
师:那么怎样求长方体的表面积呢?
小组合作:1,先独立思考,记录下自己的方法。
2,小组内交流,探讨哪种方法更简便。
学生作业展示:长x宽x2+长x高x2+宽x高x2。
或者(长x宽+长x高+宽x高)x2分别解释。
教学例1。
出示例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?(课件出示)。
问题:要求至少要用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
生:实际上就是求这个长方体包装箱的表面积。
根据上面咱们总结出的公式来求一下表面积。
方法一:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2=1.66(平方米)。
方法二:(0.7×0.5+0.7×0.4+0.5×0.4)×2=1.66(平方米)。
三、深化提高,综合应用。
1、完成教材第25页练习六的习题。
先让学生独立完成,再组织交流。
2、完成教材第24页做一做。
(1)指导学生读题,理解题意,让学生发现本题中“没有底面”这条信息很重要。
(2)先让学生独立完成,再组织交流。
四、归纳知识,总结学法。
师:同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算。
教学目标:
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题。
教具运用:
长方体、正方体纸盒,剪刀,投影仪。
教学过程:
一、复习导入。
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授。
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和。
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的面积+左面的面积)×2。
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
板书设计:
教学内容p19例1、做一做、练习五第1—2题。
教学。
目标。
知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。
过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。
体会。
生活中处处有数学,产生对数学的亲切感。
教学重点经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点灵活运用数对知识解决实际问题。
教学方法直观演示法与自主探索、小组合作的方法。
教学准备多媒体课件。
教学过程设计(含各环节中的教师活动和学生活动以及设计意图)。
教学过程一、创设情境,激趣导入。
课件出示主题图,播放动画。
怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步。
学习。
“确定位置”。(板书:确定位置)。
二、探索新知。
1、课件出示例1的内容。
(1)。
学生。
读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
2、认识数对,学会用数对确定具体情境中的位置。
(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)。
大家觉得用这种方法表示一个人的位置,简炼吗?
师:能不能把这种方法再简化一下?
(2)创造、交流。
同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。
这一种是哪个小组创造的?说说你们是怎么想的?
师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!
真好!那这里的2和3各表示什么意思呢?
生:……。
说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。
书:(2,3)。
启发学生思考,引导学生用数对表示位置。
3、游戏中概括提升。
我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?
(1)师出生对。
我说数对,请符合要求的同学快速地站起来。看谁反应最快!
(3,1)(3,2)(3,3)(3,4)(3,5)。
奇怪,怎么就正好站起来这么一排呢?
(2)生出生对。
如果让你来出数对,你能让一排同学站起来吗?谁来试试?
生:……。
师:也不错!有没有谁能说出点不一样的?
生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)。
师:发现什么了?能说说为什么吗?
生:……。
师:也就是说,数对中的第二个数相同,他们就都在同一行。
(3)师再出。
示(4,_)可能是哪些同学?
师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?
生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果_等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)。
师:(__)又可能是哪些同学?(全班同学都站起来了)。
师:全班同学都有可能吗?_、_表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当_=1、2、3、4、5时,看来(__)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19页的做一做。
五、课堂小结。
通过今天的学习,你有哪些收获?
教学。
教学目标:1.理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类.
2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。
教学重点:能准确判断一个数是质数还是合数.
教学难点:找出100以内的质数.
教学过程:。
一、复习导入(加深前面知识的理解,为新知作铺垫)。
下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.
3和154和2449和791和13。
指名回答。
二、小组合作学习质数和合数的的概念。
全班分两组探讨并写出1~20各数的因数。
1、观察各数因数的个数的特点。
2、板前填写师出示的表格。
只有一个因数。
只有1和它本身两个因数。
除了1和它本身还有别的因数。
3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)。
4、举例。
你能举一些质数的例子吗?
你能举一些合数的例子吗?
练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?
5。探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)。
引导学生明确:1既不是质数也不是合数。
练习:自然数中除了质数就是合数吗?
三、给自然数分类。
1、想一想。
生:质数,合数,1。
2、说一说。
既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?
引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。
四、师生学习教材24页的例1。
老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
1、师引导学生找出30以内的质数。
提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)。
(特殊记忆20以内的质数,因为它常用。)。
2。小组探究100以内的质数。
3。
汇报。
100以内的质数。师生共同整理100以内的质数表。
4。应用100以内质数表:
练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?
五、思维训练。
有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。
六、课堂小结。
这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)。
反思:在。
设计。
质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。
时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。
苏教版五年级数学第七单元教案篇二
>三、反馈矫正
第96页试一试:
第97页练一练的第2题。
这一题可以列出两个不同的方程。
第97页练一练的第3题,第4题。
可以让学生先说一说等量关系,再列方程。
学生独立完成,选两题进行板演。
学生看懂图意,说一说等量关系,再列出方程,进行解答。
学生先说一说等量关系,再列方程。
学生独立完成。
运用新知,用方程解决实际问题:
巩固新知。
苏教版五年级数学第七单元教案篇三
教学内容:“鸡兔同笼”问题。课本第112~114页的内容。
教学目标:
1.使学生初步认识“鸡兔同笼”的数学趣题,学习我国传统的数学文化。
2。理解并掌握“鸡兔同笼”问题的集中解题方法,并能解决与之有关的实际问题。
3.培养学生分析问题解决问题的能力。
重点难点:
1.会用列表法、假设法及方程法解答“鸡兔同笼”问题。
2.用合理的方法解答生活中的“鸡兔同笼”问题。
教学用具:实物投影。
教学过程:
一、学前导入:
出示教材第112页的情境图。学生阅读进入课题:“鸡兔同笼”问题。
二、展示学习目标:
学习用列表法、假设法及方程法解答“鸡兔同笼”问题。
三、讨论发现:
出示例题:笼子里有若干鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?(学生读题,分组讨论。)。
1.列表法如何解答?
2.假设法如何解答?
3.方程法又如何解答?
明确:
1.学生讨论得:有5只兔和3只鸡。
鸡8765432…。
兔0123456…。
脚16182022242628…。
2.师生共同完成:
如果笼子里都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。一只兔比一只鸡多2只脚,也就是有10÷2=5只兔,所以笼子里有3只鸡和5只兔。
3.根据鸡脚分只数+兔脚的只数=脚的总数。
(学生板书演示)解:设有x只兔,那么就有(8-x)只鸡。
4x+2×(8-x)=26。
2x+16=26。
x=5。
8-5=3(只)。
答:兔有5只,鸡有3只。
四、巩固练习:
完成课本第115页“做一做”。
五、作业安排:
课本练习二十六第1、2、3题。
苏教版五年级数学第七单元教案篇四
4、综合计算法。
注:数格子时,先数完整的格子,再数能拼接的格子,如果几个格子可以拼接成一个完整的格子,就可以算作一个整格;不能拼接的格子,如果接近半格,按半格算;如果只多一点点的,可以忽略不计;如果超过半格,接近一格的,按一格计算。
苏教版五年级数学第七单元教案篇五
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习??
2、实践活动:面积是多少第10—11页。
教学目标:
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
教学重点:正数、负数的意义。
教学难点:理解0既不是正数也不是负数。
课时安排:3课时。
(1)认识负数的意义。
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题。
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等。
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)。
说我们以前认识过哪些数?(自然数、小数、分数)。
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)。
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)。
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5。
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
四、认识正负数的意义:
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
五、全课小结:(略)。
(2)认识负数的应用。
教学内容:p.3、4的例3、例4,完成第5页的练一练和练习一的第7~10题。
教学目标:
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切两观,激发学生对数学的兴趣。
教学重点:应用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学准备:直尺等。
教学过程:
一、谈话导入:
上节课我们认识了负数,请你用自己的话书说怎样的数是负数?
正和负是一对反义词,生活中也有很多正好相反的变化,它们也可以分别用正负数来表示。学生举例(可能有的情况):
2、转入与转出:这个新学期,我们班转出1人,转进3人,怎么表示?
4、上楼与下楼:??
如果+10表示的是向南走10米,那么,—10米表示什么?你是怎么想的?
小结:生活中很多具有相反的意思可以分别用正负数表示。
二、学生自学课本,把书上有关的练习完成,并可与同桌交流。
老师选巡视中发现问题较多的题全班交流。
(3)实践活动面积是多少。
教学内容:p.10~11。
教学目标:
1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2、让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算做比较充分的知识准备和思想准备。
3、体验数学与生活的练习和数学的实用价值。
教学重点、难点:对图形进行分解与组合、分割与移拼的转化方法。
教学准备:学生课前剪好图上的三个不规则图形。
教学过程:
一、复习面积:
你知道这节课学什么么?我们以前学过哪几种图形的面积?
板书:长方形面积=长×宽。
正方形面积=边长×边长。
二、分一分、数一数:
方法一:数方格。一起数一数,数得74格。
方法二:分割法。指名折一折,并指出所折出的形状。注意有两种折法。
折好之后,在每一块长方形上写出求面积的算式。最后再相加求得总面积。
比较两种方法求的结果。
用类似的方法求出图2的面积。学生完成后交流。
小结:复杂的图形,可以分割成几个长方形或正方形,分别求出面积后再求出总面积。
2、移一移,数一数:
观察后说说你能把它变成长方形吗?
剪一剪、拼一拼。你能算出这个拼成的长方形的面积是多少吗?
3、数一数,算一算:
方法:先数整格,可以按顺序标出数字;再把不满整格的当作半格数,最后再相加。学生数,数完后交流结果。发现会有一定的误差。
指出:由曲线围成的图形,在求其面积的时候会出现一定的误差,这是很正常的。
(2)、观察树叶图,它有什么特点?你能利用它的特点来更方便地数面积吗?
学生数完后再校对答案。
4、估一估,算一算。
在第126页上的方格纸上,描画出自己的左手,然后再用刚才的方法估算出自己手掌的面积。交流,得到:通常我们学生的手掌面积是80多到90多平方厘米。
三、全课小结:
现在你知道怎么求一些较复杂图形的面积了么?
第二单元多边形面积的计算。
教学内容:
1、平行四边形面积的计算(第12—14页)。
2、三角形面积的计算(第15—18页)。
3、梯形面积的计算(第19—21页)。
4、实践活动:校园的绿化面积(第26—27页)。
教学目标:
1、使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。
2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。
3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。
4、使学生在操作、思考的过程中,提高对“空间与图形”内容的学习兴趣,逐步形成积极的数学情感。
教学重点:平行四边形、三角形、梯形的面积计算公式。
(1)平行四边形面积的计算。
教学内容:p.12~14。
教学目标:
1、在学生理解的基础上,掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
4、培养学生对数学的兴趣、探究意识与合作的意识。
教学重点:理解并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形公式的推导过程。
教学准备:剪刀、例题的图形。
教学过程:
一、教学例题:
(学生操作。)交流:转化成了一个正方形。
完成板书:复杂转化成简单(正方形)。
比较:这两个图形面积有变化吗?为什么?
(没变。因为格子数没变;或说成纸片没有增加或减少??)。
如果要你算出面积,你会先算哪一个?是多少?
(复习:正方形面积=边长×边长)。
2、拿图2,请你用刚才的方法,也把它剪拼成一个简单的图形。(学生操作)问:这回你得到的是一个什么图形?(板书:长方形)。
算出它的面积。(复习长方形面积=长×宽)。
小结:通过剪、拼,我们可以把一个较复杂的图形转化成简单的图形,如长方形、正方形,它们的面积是一样的。长方形面积等于长乘宽,正方形面积等于边长乘边长。
3、拿图3:这是一个平行四边形,它的边叫什么?(底)。
分别摸摸它的两组底。
还有什么?(高)。
问:在现在这个方格纸剪成的平行四边形上,你能找到这组底的几条高?
观察:你能剪一剪、拼一拼,拼成长方形么?你有几种剪法?它们有什么共同的地方?交流:只要沿着它的高剪,都可以拼成长方形。
举不同剪法的例子,让大家观察。
板书:长方形面积:长×宽(要求学生对号入座,说出算式)。
平行四边形面积呢?为什么也是7×4=28平方厘米呢?
发现:平行四边形的底也就是长方形的长,平行四边形的高也就是长方形的宽。所以可以用。
苏教版五年级数学第七单元教案篇六
教材第134页的例1及136页的1-3题。
二教学目标。
1.通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
三重点难点。
尝试用数学方法解决实际生活中的简单实际问题。
四教具准备。
五教学过程。
(一)导入。
学生介绍自己对天平的了解,阐述天平的工作原理和特点。
天平大家都见过吗?有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会……轻的一端就会……,老师在学生发言的基础上,进一步阐述天平的工作原理。
2.创设情景,自主探索。
(2)独立思考。老师鼓励学生大胆设想,积极发言。
全班汇报。老师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么秤来称)、用天平称(老师不急于让学生说出最佳方案,给全班留出思考空间。)。
3.自主探索用天平找次品的基本方法。
老师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用祛码称出每瓶的质量再进行比较。还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的;如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端是少的。
4.揭示课题。
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称……),哪一种更加快速、准确?(天平)在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。
(二)教学实施。
1.出示例1:这里有5瓶钙片,其中1瓶少了3片,设法把它找出来。
2.让学生思考后,说出自己的想法。
(2)独立思考,有一定思维结果的时候组织小组交流。老师指导学生在交流中比较方法。
(5)老师小结:在天平的帮助下找到这瓶钙片有多种方法,可以……还可以……。除了利用学具,还可以画出示意图来帮助我们思考。
5.完成教材第136、137页练习二十六的第1-3题。学生独立完成,集体交流。
(l)第1题,因总数为9筐,故可平均分成3份,只称2次就能保证把吃过的那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就能称出来的,也不能保证2次就能称出来,只能保证称3次就一定能称出来,故该方法不是最优的。
(2)第2题,把15盒平均分成3份,至多3次就可能保证找出较轻的那盒饼干。
苏教版五年级数学第七单元教案篇七
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、5的倍数的特点:个位是5或0.
2的倍数的特点:个位上是2,4,6,8,0.
3的倍数的特点:它各位上数的和一定是3的倍数。
3、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。也就是个位上是2,4,6,8,0的数叫偶数,个位上是1,3,5,7,9的数叫奇数。
4、只有1和它本身两个因数,像这样的数叫做质数(或素数)。除了1和它本身外还有别的因数,像这样的数叫做合数。
1既不是质数也不是合数。
5、100以内的素数有:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。
6、两个素数的积一定是合数。举例:3×5=15,15是合数。
7、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,),如12和18的最大公因数是6,可以表示为(12,18)=6,两个数的公因数也是有限的。
8、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[,]表示,如12和18的最小公倍数是36,可以表示为[12,18]=6,几个数的公倍数也是无限的。
9、求最大公因数和最小公倍数的方法:
互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:(3,7)=1,[3,7]=21。
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。(5,8)=1,[5,8]=40。
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用短除法。
苏教版五年级数学第七单元教案篇八
教学目标:1.理解质数和合数的概念,并能判断一个数是质数还是合数,,会把自然数按因数的个数进行分类.
2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。
教学重点:能准确判断一个数是质数还是合数.
教学难点:找出100以内的质数.
教学过程:。
一、复习导入(加深前面知识的理解,为新知作铺垫)。
下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.
3和154和2449和791和13。
指名回答。
二、小组合作学习质数和合数的的概念。
全班分两组探讨并写出1~20各数的因数。
1、观察各数因数的个数的特点。
2、板前填写师出示的表格。
只有一个因数。
只有1和它本身两个因数。
除了1和它本身还有别的因数。
3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)。
4、举例。
你能举一些质数的例子吗?
你能举一些合数的例子吗?
练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?
5。探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)。
引导学生明确:1既不是质数也不是合数。
练习:自然数中除了质数就是合数吗?
三、给自然数分类。
1、想一想。
生:质数,合数,1。
2、说一说。
既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?
引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。
四、师生学习教材24页的例1。
老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
1、师引导学生找出30以内的质数。
提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)。
(特殊记忆20以内的质数,因为它常用。)。
2。小组探究100以内的质数。
3。汇报100以内的质数。师生共同整理100以内的质数表。
4。应用100以内质数表:
练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?
五、思维训练。
有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。
六、课堂小结。
这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)。
反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。
在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。
将本文的word文档下载到电脑,方便收藏和打印。
苏教版五年级数学第七单元教案篇九
教学目标:
1、通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:尝试用数学方法解决实际生活中的简单实际问题。
教学难点:尝试用数学方法解决实际生活中的简单实际问题。
课时安排:约2课时。
课时1找次品。
教学目标:
1、让学生初步认识“找次品”这类问题的基本解决手段和方法。
2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学准备:课件。
教学过程:
一、情境导入。
电脑出示图片:美国第二架航天飞机,再出示它爆炸的图片。
电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。
师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。
师:下面我们一齐来研究找次品。
出示课题:找次品。
二、初步认识“找次品”的基本原理。
1、自主探索。
师:对,我们可以用天平来帮忙找出次品。
让生根据讨论题同桌互相说说方法:
b学生汇报方案并上台边讲边在天平演示。
师据生回答板:3(1,1,1)1次。
让生根据讨论题在学习小组讨论交流,把自己的想法说给小组其他成员听。
b学生在投影上演示,边演示边讲。
师据生回答板:5(2,2,1)2次。
5(1,1,1,1,1)2次。
三、从多种方法中,寻找“找次品”的最佳方案“9”“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?”
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。
2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。
然后让生说说方法,师据生回答板:
零件个数分成的份数保证能找出次品的次数。
93(4,4,1)平。
不平4(2,2)不平2(1,1)3次。
93(3,3,3)平3(1,1,1)。
不平3(1,1,1)2次。
95(2,2,2,2,1)平(2,2)平不平2(1,1)。
不平2(1,1)3次。
99(1,1,1,1,1,1,1,1,1)4次。
2、观察分析,寻找规律。
“好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”
“同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”
“那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)。
“是否所有“找次品”的问题中,都可以将物品平均分成三份呢?”(不是)。
“对,有的数能平均分成3份,如:6、9、12、27等。有的数不能均分成3份,如5。”
“我们看看前面的5的例子,(师指板5(2,2,1)),我们要分成三份时要分得尽量怎样?”(要分得尽量平均)。
然后再让学生小组讨论:找次品的最好方法是怎样?
(1)把待测物品分成几份?
(2)假如待测物品不能平均分,怎么办?
据生回答出示:最好方法:一是把待测物品分成三份;。
二是要分得尽量平均。
3、练习:如果零件是10个,你认为怎样分最好?
让生思考后回答,师电出:10(3,3,4)。
如果零件是11个呢?11(4,4,3)。
四、看书质疑。
五、练习:书本第136页的第2题。
六、小结。
“这节课你学会了什么?请跟同桌交流交流。”
师全课小结:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?
“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”
七、板书设计:
找次品。
最好方法:一是把待测物品分成三份;。
二是要分得尽量平均。
3(1,1,1)1次零件个数分成的份数保证能找出次品的次数。
5(2,2,1)2次93(4,4,1)平。
5(1,1,1,1,1)2次不平4(2,2)不平2(1,1)3次。
93(3,3,3)平3(1,1,1)。
10(3,3,4)不平3(1,1,1)2次。
95(2,2,2,2,1)平(2,2)平不平2(1,1)。
11(4,4,3)不平2(1,1)3次。
99(1,1,1,1,1,1,1,1,1)4次。
苏教版五年级数学第七单元教案篇十
教学目标:
1、知识与能力:理解倒数意义,会求一个数的倒数。
2、过程与方法:让学生主动通过参与观察、猜测、交流等活动,经历探索求倒数的方法的过程,培养学生发现问题、解决问题的意识和自主学习的能力。
3、情感态度价值观:向学生渗透现象与本质的辨证思想,激发学生积极参与、团结合作、主动探究的学习精神。
教学重点:
快速找到一个数的倒数教学重点。
教学难点:
理解倒数的意义。
二、教法学法。
1、指导思想:本着用教材而不是教教材的指导思想,以内容定学法,以学法定教法,以教法导学法。
2、学法:指导学生会观察、会思考、会交流。
3、教法:发现式教学法、启发式教学法和小组讨论法相结合。
三、教学流程。
1、情境引入,激趣揭题。
(1)“学生做倒立”引入:“谁来说一说,这位同学的倒立的姿势和刚才正立时有什么不同?”
设计目的:学生很容易进入学习状态,同时也增加了课堂的趣味性,倒立在暗示本课的倒数的特征,为下一步教学埋下伏笔。
(2)口算练习。根据学生回答,引出课题:《倒数》。
2、自主探究,合作交流。
(1)什么是倒数?a:分子分母倒过来的数是倒数。就像刚才做倒立一样。
b:只要乘起来得数是1,就叫倒数。
设计目的:根据学生产生不的同意见,让他们进行小组讨论,必要时适当引导,得出倒数的真实意义:乘积为1的两个数互为倒数。
(2)倒数关系:生:×=1。引导学生说出:的倒数是,的倒数是,和互为倒数。(同桌互说)。
设计目的:充分发挥学生的主体地位,运用小组讨论交流的学习方法,生生互动,调动所有学生参与热情,强化学生对倒数的理解,从而突破了理解倒数意义的难点。
(3)判断题:
设计目的:分别根据倒数意义中“乘积”“两个”“互为”三个关键词设计,深化理解倒数意义。
(4)求倒数方法:依次给出真分数、假分数、整数1,0及带分数,小数,必要时进行小组讨论,得出求一个数倒数的方法:求一个数的倒数(0除外),只要把它的分子分母交换位置。
设计目的:真分数、假分数、整数、1,0,及带分数、小数,层层深入,由易到难,一般到特殊,在学生碰到问题时进行小组讨论,做一定量练习后再总结出求倒数的方法,水到渠成,这是本节课处理教学重点的特色设计。
3、巩固与提高。
“你说我写”活动方案:学生两人一小组,甲任意说一个数,乙写出它的倒数,然后调换过来,乙任意说一个数,甲写出它的倒数。
设计目的:再次把所有学生调动起来,课堂气氛达到,巩固求一个数的倒数,突出重点。
四、板书:倒数。
乘积为1的两个数互为倒数。
1的倒数是1,0没有倒数。
求一个数的倒数(0除外),只要把它的分子分母交换位置。
设计目的:简单,明了,既帮助学生理解倒数的意义,又加深学生的印象。
苏教版五年级数学第七单元教案篇十一
3、几倍多(少)问题。
(1)学校有足球5个,比篮球的2倍少1个,篮球有多少个?
(2)李红的爷爷今年75岁,比李红年龄的5倍还大10岁。李红今年多少岁?
4、综合问题。
(2)食堂有一堆煤共重1.78吨,烧了一周还剩下0.38吨。平均每天烧多少吨?
五年级数学解决问题(多边形面积的解决问题)。
4、一个三角形的面积是18dm,底长是4.5dm,它的高是多少dm?
5、有一台收割机每小时可以收割3750m。
6、靠墙边围成一个菜园,围菜园的篱笆长36m,这个菜地的面积是多少m。
2、张老师带100元去为学校图书室买新词典,每本词典8.5元,他可以买几本词典?
苏教版五年级数学第七单元教案篇十二
一、引入新课:前面我们学习了小数除法的计算,那么你会解决下面的问题吗?(板书课题)。
二、自主探索(出示例11)。
1、先独立思考解答。
2、小组内交流,可以先算什么?
3、小组汇报,全班交流,说说不同的思路。再指名说说。
苏教版五年级数学第七单元教案篇十三
1.认识正方体,掌握正方体的特征。
2.理解长方体与正方体的联系与区别。
3.发展空间观念。
二、过程与方法。
经历观察实物和动手操作等活动,掌握正方体的特征。
三、情感态度与价值观。
体验合作探究的乐趣,感受数学与生活的联系,培养学生的创新意识。
教学重点掌握正方体的特征。
教学难点理解长方体和正方体的关系。
教学准备正方体纸盒、长方体和正方体对比教具、多媒体课件。
课时安排1课时。
教学过程。
一、复习导入。
1.回忆长方体的特征,请学生用语言进行描述。
师:今天这节课,我们继续学习一种特殊的立体图形。
二、新课讲授。
1.探索正方体的特征。
学生拿出准备好的正方体纸盒,观察并思考。
师:这些都叫什么立体图形?
生:都是正方体。
师:要探究正方体具有什么特征,我们应该从哪方面去思考?
生:从面、棱、顶点这三个方面。
2.合作学习。
学生根据手中的正方体学具,小组合作探究。
3.集体交流。
(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。
(2)组:正方体有12条棱,正方体的12条棱的长度相等。
(3)组:正方体有8个顶点。
请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。
师:怎样判断一个图形是不是正方体?
4.教学正方体和长方体的联系与区别:
老师出示一个正方体教具。请学生讨论:它是不是一个长方体?
学生充分讨论,集体交换意见。
学生甲组:这个物体的六个面都是正方形,它不是长方体。
学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。
学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。
师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。
三、课堂作业。
1.教材第20页的“做一做”。
2.教材第21~22练习五的第4、5、8、9题。
四、课堂小结。
今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)。
苏教版五年级数学第七单元教案篇十四
1、理解小数除法的意义。
2、掌握小数除以整数(恰好除尽)的计算方法。
(二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。
(三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。
苏教版五年级数学第七单元教案篇十五
含有未知数的等式,叫做方程。
2、方程和等式的关系。
3、方程的解和解方程的区别。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤。
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式。
加数=和-另一个加数减数=被减数–差被减数=差+减数。
因数=积另一个因数除数=被除数商被除数=商除数。
五年级上册数学《小数乘法》练习知识点。
一、填空。
1、小数乘以整数的意义与整数乘法的意义相同:就是求几个()加数的和的简便运算。
2、小数乘以小数的方法是,先把小数看成()。再按整数乘法算出积,然后看因数有几位小数,就从积的右边数几位,点上(),并去掉小数点后末尾的零。
3、3.8扩大()倍是38.78缩小()倍是0.078.90缩小1000倍是(),()缩小10倍是4.6.13个0.25是(),0.25的8倍是()。
4、0.24×15运算时先把0.24看作,第一个因数就扩大了(),运算结果必须缩小(),才能得到0.24×15的积。
5、0.8平方米=()平方分米。
2.4分钟=()秒。
2.5升=()亳升。
0.37公顷=()平方米。
6、根据56×125=7000,写出下面各题的积。
0.56×125=()5.6×1.25=()。
560×12.5=()5600×0.125=()。
7、一个长方形的长是4.1,比宽长0.5米,周长是()米,面积是()平方米。
8、一个三位小数用四舍五入法取近似值是7.3,这个数可能是(),最小可能是()。
9、一个平行四边形花圃,底3.5米,高2.6米。如果每平方米能培植鲜花20枝,这个花圃一共大约可培植鲜花()枝。
10、南京地铁一期工程分高架线和地下线两部分,其中高架线大约长8.5千米,地下线的长度是高架线的1.6倍,第一期工程全线大约长()千米。
11、甲、乙、丙三名同学的平均身高为1.48米,已知甲、乙两人的平均身高1.51米,则丙的身高为()厘米。
12、148×23=3404。
那么:
14.8×23=148×0.23=。
148×2.3=1.48×23=。
13、(1)3个1.7列式是()。
(2)15个0.18的和是()。
(3)已知32×9=288,那么3.2×9=(),32×0.9=()。
(4)0.7的32倍列式是(),结果是()位小数。
二、不计算,把乘积相等的算式用线连起来。
570×165.7×160。
0.057×160057×1600。
57×165.7×16。
0.57×1600005.7×1600。
三、列竖式计算。
0.26×73.105×1863.08×25。
11.4×193.8×50.59×4。
4.3×280.08×12525×0.125。
4.87×10028×1.50.82×2。
3.95×422.073×15。
第一,树立自信,培养毅力。小学数学特别是高年级小学数学练习常有繁杂的计算,比较难懂和不易推理的证明,学生对此应有充足的信心,顽强的毅力和认真仔细的良好习惯,做到善始善终。
第二,端正学生的学习态度,明确学习目的。让学生充分认识到数学课后练习的重要性。不论是预习练习,课堂练习,还是课后作业,复习练习,告知学生不能只满足于找到解题方法,或是简单的得到答案就好,而不动手具体练习一练,学生应避免犯“眼高手低”的毛病。课后实际联系不仅可以提高解答速度。掌握解题的技能技巧,而且,许多的新问题往往常在练习中出现,这样既能巩固知识要点,而且对我们整个数学学习过程是一个最有效地检验。
第三,养成勤思考、先思考,后解答,再检查的良好习惯。例如遇到一个题,特别是拿起来还没有具体解题思路的题目,学生不能盲目地进行练习和解答,无效计算只是徒劳无功,特别是在考试中就是浪费时间和精力,首先应深入领会题意,分清题意。弄清题目的已知条件、隐含条件和需要解决的问题,认真思考,抓住题目中的关键字眼,最后再作解答。要切记的是,题目解答完毕后,必须进行反复的检查与验算。
第四,善观察,用技巧。对于一些创新性的题目,学生应该大胆联想,灵活运用公式,寻找解题规律和解题技巧,转具体为抽象,则可得巧解,似有“山穷水复疑无路,柳暗花明又一村”的感觉。
苏教版五年级数学第七单元教案篇十六
1、“做一做”
独立完成,全班交流。再指名说说不同的解题思路。
2、完成p343。
师:你从此题中收集到了哪些信息?要解决什么问题?如何思考?
生先独立思考,再小组交流,汇报分析过程。
师小结,解答问题时要找准有直接关系的条件或信息。
3、独立完成p341、2、4,教师巡视,辅导学困生。
苏教版五年级数学第七单元教案篇十七
我开始时,引出对立的一组矛盾,用一个数无法表达两种相反意义的量,怎么办?学生利用已有的生活经验解决矛盾,在数前用不同符号表达两种相反意义的量,使这对矛盾在符号化的思想下得到统一,让学生感受到符号的作用。
数学活动需要通过学生的操作实验、思考讨论、合作交流等一定的形式来完成,恰当的活动形式有利于数学活动的开展,有利于学生感悟数学思想与方法。但是,数学活动不是教学形式的“花样翻新”,更不是“作秀”。课堂让学生通过对话、倾听、欣赏、互动和共享,实现了数学活动的有效性。
数学教学是数学活动的教学。数学活动必须关注全体学生,充分调动他们主动参与数学活动的积极性,使他们真切地体验、感悟和理解数学,引发数学思考,有效地建构数学知识。这样的活动才是数学课堂所需要的有效活动,才能全面地实现数学教学的目标。
实践让我深深体会到:教学的真境界应是“朴实无华、真实有效”的。它是真实、真效、真智慧的生动过程,是师生智慧共生的乐园!
苏教版五年级数学第七单元教案篇十八
教学内容:
最小公倍数。
教学目标:
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
学习目标:
1、理解最小公倍数的意义。
2、初步学会求两个数的最小公倍数。
学习任务:
任务一理解最小公倍数的意义。
任务二求两个数的最小公倍数。
教学过程:
一、激情导课。
1、师:同学们,看今天我们要学习什么?(最小公倍数)。
看到这个题目,你会想到我们以前学过的什么知识?(倍数)。
2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。
3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。
二、民主导学。
任务一。
一、任务呈现。
要求:先独立思考,不会的小组商量。
提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天。
二、自主学习。
教师巡视学习情况。
三、展示交流。
1、师:他们可选那几日外出?(12、24)。
你是怎样选出来的?根据回答板书;。
妈妈的休息日:481216202428----4的倍数。
爸爸的休息日:612182430-----6的倍数。
共同的休息日:1224-----4和6的公倍数。
最近的一天:12------4和6的最小公倍数。
还可以用集合图来表示,
2、仔细观察两组数据有什么特征?
3、再次强调4的公倍数就是妈妈的休息日。
6的公倍数就是爸爸的休息日。
4和6的公倍数就是爸爸和妈妈的共同休息日。
4、最近是哪一天?12。
12也是这公倍数中最小的一个,叫做最小公倍数。
5、集合图还可以这样表示出示课件。
问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)。
你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?
这样我们可以一眼看出4和6的公倍数是12、24.
6、谁能用一句话说说什么是公倍数?什么是最小公倍数?
7、89页做一做。
二、那如何求最小公倍数呢?
任务二。
求两个数的最小公倍数。
一、任务呈现。
1、求6和8的最小公倍数。
2、想一想。
1.你还能想出几种求法?
2.公倍数有多少个?你能找出的公倍数吗?
3.两个数的公倍数和最小公倍数之间有什么关系?
二、自主学习。
三、展示交流。
1、把不同求法板书。
2、交流以上三个问题。
(三)检测导结。
1、目标检测。
求下列每组数的最小公倍数(要求5分钟)。
2和74和8。
3和56和15。
2、结果反馈。
一次正确5分,自己改正4分,帮助改正3分,
3、反思总结谈谈收获和不足。