数学六年级教案(优秀16篇)
教案是教师进行教学设计和组织教学活动的有力工具。不断反思和改进教学设计和教学方法,促进教学质量的提高。教案的编写需要关注学生的情感体验和学习兴趣,激发他们的学习热情。
数学六年级教案篇一
教学目标:
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
教学重点:
理解百分率的含义,掌握求百分率的方法。
教学难点:
探究百分率的含义。
教学用具:
ppt课件。
教学过程:
一、复习导入(8分)。
1、出示口算题,1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)。
7、根据口算情况,提出数学问题。
(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)。
8、尝试解答修改后的问题。
10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)。
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题。
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)。
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
2、求例1(2)中的发芽率。
四、巩固练习(14分)。
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调。
4、解决问题要注意:看清求什么率?找出对应的量。
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固。
1、说说下面百分率各表示什么意思。(1颗星)。
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)。
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。
(3)把25克盐放入100克水中,盐水的含盐率为25%。
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。
5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。
3、解决问题(3颗星)。
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
课堂总结:
数学六年级教案篇二
教科书第55页例2,课堂活动第2题,练习十五第4~7题。
1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。
2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。
3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。
4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
5.在按比例分配的过程中,感受分配方案的简洁美、理性美。
6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
重点:把两个数比的问题的解题方法推广到三个数连比的问题。
难点:理解三个数连比的问题的解题方法。
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
导入新课
1.填空。(多媒体出示题目)
(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。
(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。
学生回答反馈,说说怎样思考,集体评价。
2.引入谈话:怎样解决按比例分配的问题?
在实际生活中还有哪些问题可以用按比例分配的'方法解决?生举例。(组织学生分组讨论.
反馈.
交流后,老师及时做出评价)
在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。
独立思考再交流方法和结果,集体评价。
举例,分组讨论、反馈、交流。
1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)
2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?
生1:前面所做的题都是两个量的比,这道题是三个量的比。
生2:可以仿照上节所学的按比例分配方法去解。
3.学生尝试解答,教师巡视。
4.展示学生解法,说出解题思路。
方法1:220÷(2+3+6)=20(吨)
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)
答:需要水泥40吨,需要沙子60吨,需要石子120吨。
方法2:总份数:2+3+6=11
需要水泥的吨数:220x2/11=40(吨)
需要沙子的吨数:220x3/11=60(吨)
需要石子的吨数:220×6/11=120(吨)
方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。
解:设每份是x吨.
2x+3x+6x=220
11x=220
x=20
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)
5.议一议:怎样解决按比例分配的问题?
学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。
学生交流获取的信息。
讨论交流异同。
尝试解答,再展示交流解题思路。
独立思考,再小组交流、小结解决按比例分配问题的一般方法。
在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
在按比例分配的过程中,感受分配方案的简洁美、理性美。
1.课堂活动第2题。
根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。
教师组织学生讨论:这道题与前面所做的题有什么区别?
引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。
学生讨论后尝试独立解题。完成后交流解决问题的方法。
再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
学生讨论找到方法。
独立解题,再交流解题方法。
讨论交流得出结论。
经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
想一想,今天学习的知识与昨天有什么不同?又有什么相同?
谈收获。
练习十五第4―7题。
独立完成。
数学六年级教案篇三
掌握解决此类问题的方法。
理解题中的数量关系。
1、把下面各数化成百分数。
0.631.0870.044。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)。
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的`百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。
3、学生自主解决实际早林比计划增加了百分之几的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)。
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)12=2120.167=16.7%。
方法二:14121.167=116.7%116.7%-100%=16.7%。
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?
学生列出算式:(14-12)14。
(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)。
1、独立完成课本第90页做一做的题目。
2、练习二十二第1、2题。
数学六年级教案篇四
义务教育课程标准实验教科书二年级下册第20页辨认方向。
1.知识目标:结合具体的情境给定一个方向,能辨认其余的七个方向,名能用这些词语描述物体所在的位置。
2.技能目标:借助辨认方向,进一步发展空间观念。
3.情感目标:在具体的情境中体验数学与生活的密切联系。
1.重点:结合给定的一个方向辨认其余三个方向。
2.难点:用所学的方向词描绘物体所在的位置。
提问法、讨论法、练习法。
课件、小卡片。
一、复习。
二、新授。
1、引入。
师:在生活中,除了听说过东、南、西、北这四个方向之外,还听说过哪些方向词?(板书:东南、东北、西南、西北。)现在我们就来认识这些方向。
2、认识东南、东北、西南、西北四个方向。
课件出示主题图让学生观察:你看到什么,并说出它们的方向。
让学生将自己置身于学校这个位置,用已经学过的方向知识,说一说体育馆、商店、医院、邮局分别在学校的什么方向。教师先让学生4人一组说一说,再由教师指名让学生自己说一说。
教师让学生观察剩下的4个建筑物所在的方向与以前所认识的方向有什么特别之处。
发现剩下的4个方向分别在学校的斜方向的位置上。也就是在两个方向的中间。如:图书馆在北面和西面的中间。
说一说:少年宫、电影院、动物园所在的方向。
师:这样描述方向真是太麻烦了,请大家分别给这4个方向取名字。
问:你们是如何得出这些名称的?
教师让学生多说一说这4个建筑物分别在学校的什么方向,最后教师总结。
3.试一试。
(1)利用方向板说一说教室里8个方向分别有什么?
(2)让学生坐在自己的座位上,教师给出班级面朝的方向,小组内说一说自己的东南、东北、西南、西北分别是哪位同学。
(3)使用方向板时,教师应让学生注意方向板中的方向应与现实中面朝的方向相符。
三.练一练。
教师出示地图,问:这是哪个国家的地图,地图的形状像什么?在地图上看到了什么?(教师可适时对学生进行爱国主义教育。学生在观察地图时,教师让学生注意面朝北的方向标。)。
教师说出一个方向,让学生在图中将其指出。
问:你还可以提出哪些数学问题?
四.实践活动。
到操场上看一看,说说校园内各个方向分别有些什么?
观察后,到班级交流观察的结果。
五.你知道吗?
读书中的一段话后,说一说自己对指南针的了解,再让学生回家去找资料,查找有关指南针的知识,增强学生收集信息的能力。
六.小结。
这节课,同学们都学习了哪些数学知识呢?
数学六年级教案篇五
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
如何确定每一条跑道的起跑点。
确定每一条跑道的起跑点。
一、提出研究问题。(出示运动场运动员图片)。
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。
2、各条跑道的起跑线应该向差多少米?
二、收集数据。
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。
三、分析数据。
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论。
1、看书p76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的.直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)。
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5)。
五、课外延伸。
200m跑道如何确定起跑线?
数学六年级教案篇六
1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.
2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.
3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.
棱长为1分米的正方体以及棱长为10厘米的正方体挂图。
一、复习导入。
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?板书:米分米厘米。
(3)我们认识的体积单位有哪些?
板书:立方米立方分米立方厘米。
提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率。
二、自主探索验证猜测。
1、教学例11。
(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2)提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)。
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)。
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)。
(4)根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)。
(5)谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)。
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
三、巩固深化。
1、出示书第30页的“练一练”。
学生先独立完成。
交流你是怎样想的。
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
2、出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、出示练习七的第4题。
学生独立完成后集体交流。
四、课堂总结。
通过这节课的学习,你有什么收获?
数学六年级教案篇七
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:求倒数方法的叙述。
教学过程:
开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
自学书本p19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
0.2的倒数是多少?
请学生说一说这节课学习了哪些内容。
练习五3—8。
数学六年级教案篇八
教科书第2页的例3、例4,做一做中的习题和练习一的第6~11题。
使学生掌握用整十数乘的口算方法。
理解用整十数乘的算理。
用十位上的乘后,在得数的末尾填一个0。
例3、例4的教学挂图。
一、复习。
口算下面各题:
1352732304。
1541621405。
指名让学生说一说135、2304、1404的口算过程。
二、新课。
1.教学例3。
教师出示例3的乒乓球挂图,如下:
用纸盖住最右边的一袋,提问:
这里有几袋乒乓球?每袋几个?要求一共有多少个乒乓球,怎样列式计算?学生回答后,教师板书:59=45。
接着露出盖住的那袋乒乓球,提问:
刚才有9袋乒乓球,一共有45个。再增加1袋,是几袋?一共有多少个乒乓球?怎样列式计算?指名学生回答,教师板书:510=50。
谁能说一说510=50是怎么想的?(因为9个5是45,45+5=50,也就是10个5就是50。)多指几名学生说说。
2.做做一做的第1题。
让学生独立口算,指名回答口算结果和口算过程,教师板书出算式和得数。然后提问:
这些题的得数和被乘数有什么关系?使学生通过观察得出:一个数乘以10,可以在这个数的后面直接添一个0。
3.做做一做的第2题。
让学生把得数写在书上。集体订正。
4.教学例4。
教师出示例4的.皮球图。如下:
提问:
这里有20盒皮球,每盒有6个。求一共有多少个皮球,怎样列式计算?学生回答后,教师板书:620。
620怎样口算呢?
先让学生说一说自己的想法,然后教师引导学生推想620的口算过程:
从图中我们可以看出每2盒是一摞,20盒是几棵?让学生数一数回答。
求20盒皮球的个数,也就是求几橡皮球的个数?
要求10摞皮球的个数,可以先求几橡皮球的个数?
一摞皮球有多少个?怎样想的?
几乘以几?学生回答后,教师在620的右下方用红粉笔板书:62=12。
一摞是12个,10摞是几个12?是多少?
几乘以几?学生回答后,教师在62=12的下面用红粉笔板书:1210=120。
算出10摞皮球的个数,就是20盒皮球的个数,也就是620等于多少?学生回答后,教师在620后面板书:=120。
最后,教师概括出620的口算过程:620可以先求62=12,再用1210,等于120。
5.做例4下面的做一做的第1题。
让学生先做,做完后,指名说一说各题的得数和口算过程。然后提问;
这几道题和例4的被乘数都是几位数?乘数都是什么数?
一位数乘以整十数在口算时,分了几步?
最后,让学生用这个规律把这道题再口算一遍。
6.做例4下面做一做的第2题。
三、练习。
做练习一的第6~11题。
1.第6、7题,让学生独立做,做完后,指名说得数,每道题抽几个小题让学生说一说口算过程。
2.第8题先让学生填出左边一题方框中的得数,再让学生填出右边一题方框中的得数,然后集体订正。
3.第9题,让学生先自己做,做完后说一说各是怎样列式计算的,为什么用乘法计算。
4.第10题,让学生自己读题,在练习本上解答。订正时,说一说为什么用乘法计算。
5.第11题,先让学生独立做,做完后,教师把学生的不同算法板书出来:205=100520=100。提问:
这两个算式表示的意思一样吗?为什么?(不一样,205是一排一排地算的,一排有20格,5排有205格;520是一行一行地算的,一行有5格,20行有520格。)。
205是怎样口算的?520是怎样口算的?通过分析使学生体会到:无论是205还是520都是把2和5相乘得10,再在后面添写一个0,得100。
数学六年级教案篇九
1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2。初步学会用负数表示一些日常生活中的实际问题。
3。能借助数轴初步理解正数、0和负数之间的关系。
重点难点。
负数的意义和数轴的意义及画法。
教学指导。
1。通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2。把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3。培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
课时安排。
共分3课时。
教学内容。
负数的初步认识。
(1)(教材第2页例1)。
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
重点难点体会负数的重要性。
教学准备多媒体课件。
情景导入。
1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)。
2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)。
3。引出课题并板书:负数的初步认识。
(1)新课讲授教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。
课堂作业。
完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。
答案:—18℃温度低。
课堂小结。
通过这节课的学习,你有什么收获。
课后作业。
完成练习册中本课时的练习。
数学六年级教案篇十
教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。
2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,增强学好数学的信心。
教学过程:
一、应用广角。
1、问:你在生活中发现过哪些数学问题吗?
你能运用所学的数学知识和方法解决这些问题吗?
2、完成第27题。
(1)课前预先布置学生按要求去调查。
(2)课上,让学生分组汇报调查得到的数据。
学生根据数据计算,完成填空。
(3)分析:从这些信息中,你们知道了什么?
用百分数或比表示相关的信息有什么好处?
3、完成第28题。
收集一些用百分数或比表示的信息,在小组里交流。
4、完成第29题。
根据本校一年级的班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。
全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。
5、完成第30题。
(1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板。
读题,思考:剪去的`每个正方形的边长应该是几厘米?
(2)学生动手剪一剪、折一折。
找一找:这个纸盒的长、宽、高各是多少?
(3)算一算:
制作这个纸盒用了多少硬纸板?
这个纸盒的容积是多少立方厘米?
6、完成第31题。
学生先独立思考,再全班交流。
二、自我评价。
1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。
2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。
数学六年级教案篇十一
教学目标:
1、经历自主回顾和整理“数的认识”的过程。
2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。
3、积极参加自主整理的活动,获得成功的学习体验。
课前预习:
小组合作,交流整理:
回顾以前学过那些数,各举五例。分析不同类数之间有何关系。
教学过程:
一、结合实例,引导学生回忆数的认识
1、回顾数的意义。
师:你学过那些数?
(生回答)
师出示卡片,生齐读。师:举例说明这些数可表示什么?
(生回答)
2、数的分类。
完成问题(1)。
师:把上面的数填到合适的位置
(生回答)
师:每种类型的数,除了上面几种类型,你还能举出其它的吗?
(生回答)
3、数的互化
呈现表格,完成数的互化,交流做法。
4、数的大小比较。
学生自主完成。
5、适时小结。
师:通过刚才的练习,我们复习到数的哪些知识?
(生回答)
二、整理回顾有关倍数和因数的知识
1、引出问题。
(生回答)
以上问题,我们运用了哪些数学知识呢?(倍数和因数)
明确:我们一起回顾和整理倍数和因数。
2、小组合作,梳理知识。
师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的`更加完整、科学合理。全班交流。
整理完善知识结构。
师:在这一部分中我们为什么先学因数和倍数?
组织学生讨论和交流
师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。
三、复习正数和负数
师出示亮亮家4月份收支情况记录。
学生阅读题目内容。
出示问题(1)。
提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)
出示问题(2)。
让学生举例说明什么是正数和负数。
学生自主完成问题(2)。
全班交流。
交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。
四、人民币上的号码
1、让学生拿出自己身上的人民币。
2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。
五、课堂小结
这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?
六、课堂作业
教学目标
1、经历自主回顾和整理整数、小数、分数四则运算的过程。
2、能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。
3、体验自主整理数学知识的乐趣,提高计算能力。
课前回顾:
我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。
教学过程:
一、引导学生回顾和整理四则运算
1、师:回想一下我们学过哪些计算?
生回答。
小组长汇报本组在课前练习中出现的问题。
2、议一议
出示问题(1)生归纳整理。
出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。
生整理汇报。(注意提示0不能做除数)
3、各部分间的关系。
师:加法各部分间有什么关系?
生回答。
引导学生自己总结减法各部分间的关系。
师归纳出加减法互为逆运算。
同样的方法总结乘除法的关系。
说一说
师:上述关系在计算中有哪些应用?
启发学生回答,(进行验算、解方程等)
二、复习四则运算和运算律
1、师:我们学过的运算律有哪些?
小组讨论,自主总结,并写出字母表达式。
先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。
3、估算。
先让生独立思考并判断,再回答是如何判断的。
师生共同讨论怎样想,需要几个步骤。
计算问题(2)时可用竞赛的方式,看谁算得又对又快。
三、课堂总结
师:这节课我们整理和回顾了什么内容?需要注意什么?
数学六年级教案篇十二
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:×3=)。
数学六年级教案篇十三
1、使学生初步了解归总应用题的基本结构和数量关系,能够正确地解答这种应用题。
2、进一步提高学生分析问题和解决实际问题的能力。
使学生掌握乘、除应用题的数量关系,结构特征和解答方法。
学画线段图,并借助线段图分析题中数量关系。
投影片或教学课件。
1、学习例5(为了贴近学生生活,便于学生理解、计算,将例题进行了改编)。
(1)教师说:小华读一本书,如果每天读9页,几天可以读完?(学生各抒已见)。
(3)小组展开讨论,并独立列式试做。(教师注意巡视,及时发现学生出现的问题。)
(4)小组汇报自己的想法,教师点拨,小组间相互质疑问难。
(5)教师根据小组的汇报情况,边小结边进行必要的板书:
先求这本书一共多少页?126=72(页)
再求几天能读完?729=8(天)
(6)让学生根据分步算式,独立列出综合算式。
2、改编例题,引出题目:(如果小华8天读完,他每天读几页?)
(1)学生独立思考,并试着列式解答出来。
(2)请一名学生汇报。通过学生之间的质疑问难,教师根据出现的情况,及时进行小结:要求每天读几页?首先知道这本书一共有多少页?遇到问题,一定要分析清楚先求什么、再求什么。
(3)学生独立列出综合算式。
3、比较例题和改编的问题有什么相同点和不同点?
让学生说一说自己的想法,教师根据学生的回答,小结。相同点:都是先求这本书的总页数。不同点:例题是求几天读完,改编后的问题是求每天读几页。
4、教科书第112页做一做的第2题和例5,让学生独立完成。
1、做练习二十五的第1题。
让学生认真读题,独立完成,并找出两个小题的异同点。
让学生说一说想法,然后独立列式解答。
3、做练习二十五的第3、4题。
让学生独立列式解答。做完后,集体订正。
通过师生交流,突出两步应用题的数量关系。
板书设计:
两步应用题
(1)先求这本书一共多少页?(2)先求这本书一共多少页?
126=72(页)126=72(页)
再求几天能读完?再求每天读几页?
729=8(天)728=9(页)
答:8天可以读完。答:每天读9页。
数学六年级教案篇十四
2.使学生能利用正、反比例的意义正确解答应用题.。
3.培养学生的判断推理能力和分析能力.。
教学重点。
教学难点。
利用正反比例的意义正确列出等式.。
教学过程。
一、复习准备.(课件演示:比例的应用)。
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.。
2.路程一定,速度和时间.。
3.单价一定,总价和数量.。
4.每小时耕地的'公顷数一定,耕地的总公顷数和时间.。
5.全校学生做操,每行站的人数和站的行数.。
(二)引入新课。
教师板书:比例的应用。
二、新授教学.。
(一)教学例1(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
14025。
=705。
=350(千米)。
2.利用比例的知识解答.。
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例。
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长千米.。
答:两地之间的公路长350千米.。
3.怎样检验这道题做得是否正确?
4.变式练习。
(二)教学例2(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)。
3.如果设每小时需要行驶千米,根据反比例的意义,谁能列出方程?
数学六年级教案篇十五
教学内容:
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。
四、巩固练习
3.练习十七2(机动)
――替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
数学六年级教案篇十六
分数乘法的计算法则和分数乘法的意义是分数乘除法的基础,也是整个六年级应用题学习的基础和关键。而在人教版第5页的例3中,它是从分数乘分数的意义着手进行理解和分析,在经过繁杂的把单位1按分数意义平分再平分,还要借助画图让学生发现其实就是把单位1平均分成十份,而这个十份就是把分母相乘而得来的。法则的证明过程对于小学生来说非常的复杂的。纵观教材的编排思路与意图,它是按照成人的思维能力从最正统的思路按部就班着手进行分析与解释,它忽略了这个年龄段的大多数学生的接受能力。
有没有学生比较容易理解而又不难得出分数计算法则的方法?其实在学生学习分数乘法的过程中,特别是分数乘法的'计算法则的学习,到了后面的计算对于学生来说记得的只是它的计算法则了,我们大可以撇开分数乘法的意义,换个角度去进行思考。大家都知道学生在五年级时学过分数化小数的知识,不妨在这节里拿出来用用,从小数乘法着手进行推导,学生会很快接受和掌握。
可以这样进行,先讲例3,把例3里的分数改成可以化成有限小数的分数,如。
1、一台拖拉机每小时耕地3/5公顷,3小时可耕地多少公顷?
学生列式:3/5*3=?
2、一台拖拉机每小时耕地3/5公顷,3/4小时可耕地多少公顷?
引导学生想数量关系:
每小时耕地的公顷数*小时数=一共可耕地的公顷数。
列式:3/5*3/4=。
1、让学生尝试计算并自由发言自己的想法。
师生齐小结:3/5*3表示有3个3/5相加即。
3/5+3/5+3/5=3*3/5=9/5(公顷)。
2、而3/5*3/4则可以化成小数进行计算。
3/5*3/4=0.6*0.75=0.45即。
3/5*3/4==9/20(把小数的结果化成分数)。
让学生猜猜,中间的计算过程是可以怎样填写。
补充完整:3/5*3/4=3*3/5*4=9/20。
学生尝试完成并板书:1/2*1/5=1*1/2*5=1/10。
5/8*1/4=5*1/8*4=5/32(这道题稍繁杂)。
通过对以上式子的观察从而得出结论:分数乘分数用分子相乘的积作分子,用分母相乘的积作分母。
如例题中的3/5*3,其实也可以用以上法则进行计算。
过程如下:3/5*3=3/5*3/1=3*3/5*1=9/5。
把整数3化成分数形式3/1就可以用以上法则进行计算了。
如:3/9*2/7=。
让学生用两种方法去做,
第一种方法:是把分数化成小数(保留两位小数)。
3/9*2/7=033*0286=009438。
第二种方法:是用分数乘法的法则去做。
3/9*2/7=3*2/9*7=6/63=00952。
这样进行教学虽然有其局限性,如分类数的选择就有讲究,必须是能化成有限小数的,二是化成小数然后再化成分数这个过程不是每个小数化分数都很容易。故而这样的分数也不是很随意的能找到,而对于不能化成有限小数的分数乘法就很难用这样的方法去进行有效的验证,当然这里使用的是不完全归纳法,举一知十进行推理,从而得出计算法则。这样做的基础是从学生最近发展区出发,从学生最容易接受的旧知出发正向迁移至新的知识中去。这是可行的。