高一数学教案免费(优质19篇)
教案通常包含课程目标、教学内容、教学方法、教学步骤、教学资源等重要内容。教案的评价标准要明确,能够客观评估学生的学习效果和教师的教学水平。想要编写一份高质量的教案,可以参考以下范文和教学经验。
高一数学教案免费篇一
活动目标1.引导幼儿通过观察发现事物间的简单规律。2.培养幼儿细致观察的好习惯,训练思维能力。
活动过程。
一、导入。
教师:小朋友,看看你身边的小朋友,今天我们的座位有什么有什么特别的地方吗?
(一个男孩、一个女孩)有一组图形宝宝排列的顺序和我们很相似,我们一起来看看它们是谁。
二、展开。
1.趣味练习—规则[1-100]。
(1)图片有谁?(小猫,公鸡)。
仔细看看,小猫和公鸡是这样排队的呀?小猫-公鸡。
你发现了什么规律吗?小猫-公鸡-小猫-公鸡。
(1)有哪些图形宝宝在排队呀?它们的队伍是怎么排列的?它们的队伍中应该谁排在?的位置呢?3.趣味练习—规则[1-99]引导幼儿发现规律按照排列顺序,球应该是什么颜色的?4.趣味练习--多样的规则[2-60]引导幼儿观察数字,找出规律。在空格处填上相应的数字。5.趣味练习--多样的规则[2-59]仔细观察它们之间的顺序,找出它们的排列规律。
6、引导幼儿说一说生活中有哪些有规律的现象。在我们的生活中还有许多有规律的现象和事情,比如说人的生长规律都是从小慢慢长大,最后变老。
植物也是这样,树从树芽到小树苗慢慢长大,最后变成大树。鼓励幼儿将自己知道的事物的规律和现象与同伴进行交流。
三、结束。
高一数学教案免费篇二
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
高一数学教案免费篇三
3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
一、预习检查。
1、焦点在-轴上,虚轴长为12,离心率为的双曲线的标准方程为.
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.
3、双曲线的渐进线方程为.
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.
二、问题探究。
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.
探究2、双曲线与其渐近线具有怎样的关系.
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.
例1根据以下条件,分别求出双曲线的标准方程.
(1)过点,离心率.
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.
例3(理)求离心率为,且过点的双曲线标准方程.
三、思维训练。
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.
2、椭圆的离心率为,则双曲线的离心率为.
3、双曲线的渐进线方程是,则双曲线的离心率等于=.
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.
四、知识巩固。
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.
高一数学教案免费篇四
联系电话:
承租人(下称乙方):身份证号:
联系电话:
乙方为合法用房之需要,就租用甲方房屋事宜,双方经充分协商,达成如下一致协议条款。
一、租赁物及用途:
甲方愿意将拥有完整所有权及处分权的座落于面积约为平方米的房屋租赁给乙方使用。乙方愿意承租上述房屋,保证在约定范围内使用房屋,并不得进行违法活动及超经营范围从事活动。
二、租赁期间:
乙方租赁甲方房屋的期限为,自_____年_____月_____日起至_____年_____月_____日止。
经双方协商同意后本协议书提前解除或终止的,租赁期间不受前款限制。
三、租赁费用及给付:
乙方租用甲方房屋的年租金为元/年,采取先付租金后使用的原则,按年缴纳。乙方在签订本协议书的同时给付第一年租金。乙方所用水、电、煤气、物管、清洁等相关生活费用由乙方自行承担,并按时缴纳,逾期造成停水停电的,由乙方承担全部责任。
四、甲方的权利和义务:
1、甲方有权按约定收取租赁费用及乙方应承担的费用;。
2、甲方应按约定条件及时将租赁房屋交乙方合理使用;。
五、乙方的权利和义务:
1、乙方应按约定用途使用所租用的房屋并及时给付租金及其他应承担的费用。
2、乙方对房屋进行任何装修或增设他物可能影响甲方房屋结构或安全的,应事先征得甲方的书面同意,并不得破坏房屋结构。
3、乙方不得用承租房屋进行违规经营或违法活动,损害公共利益。
4、乙方应尽善良管理职责,合理使用甲方的房屋、附属设施及有关财产。
5、乙方不得以甲方名义对外进行活动,不得作出任何有损甲方利益的行为。
6、乙方不得转让、抵押甲方财产,亦不得以甲方财产为他人提供担保。
六、协议的解除、终止及违约责任。
本协议书约定的租赁期限届满时,本协议书自行终止。若经双方协商同意延期的,缴纳相关租金费用后按本协议条款自动延期。
本协议书履行过程中,双方一致同意提前终止履行协议的,本协议书提前解除。
符合本协议书约定的其他条件的,本协议书终止履行。乙方擅自违反本协议书的,甲方有权解除协议提前终止协议履行,且乙方缴纳的房屋押金不予退还。
七、其它约定。
1、协议书履行期间,承租房屋由乙方负责日常维护管理。除乙方正常使用该租赁房屋及屋内家电之外,对于非人为因素造成的租赁房屋及屋内家电的损坏,甲方应及时给予维修完善以保证其正常使用,其相关费用由甲方承担。
2、协议提前解除或终止的,乙方未能在约定的期限内及时办理移交手续的,甲方有权直接接受所出租房屋并清理出乙方财物等,由此引起的一切后果由乙方承担。
3、协议期限内若遇拆迁、改制、破产或其他非甲方原因导致无法继续履行协议的,甲方应提前一个月通知乙方终止本协议书履行,双方互不承担违约责任,双方按实际天数结算租金及乙方应承担的费用。
4、财产移交清单为本协议书的组成部分;乙方的有关身份证明文件影印件为本协议书的附件。
5、其他:
八、若因本协议书履行产生争议的,由双方协商解决;协商不成的,由房屋所在地人民法院诉讼解决。
九、本协议书经双方签字或盖章后生效。
十、本协议书一式二份,双方各执一份。
甲方:乙方:
高一数学教案免费篇五
3.会求抛物线的标准方程。
一、预习检查。
1.完成下表:。
标准方程。
图形。
焦点坐标。
准线方程。
开口方向。
2.求抛物线的焦点坐标和准线方程.
3.求经过点的抛物线的标准方程.
二、问题探究。
探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?
探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.
例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.
例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.
例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.
三、思维训练。
1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.
2.抛物线的焦点到其准线的距离是.
3.设为抛物线的焦点,为该抛物线上三点,若,则=.
4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.
5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。
四、课后巩固。
1.抛物线的准线方程是.
2.抛物线上一点到焦点的距离为,则点到轴的距离为.
3.已知抛物线,焦点到准线的距离为,则.
4.经过点的抛物线的标准方程为.
5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.
6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.
7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。
高一数学教案免费篇六
本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.
本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.
教法建议
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题
1)、、各等于什么?
2)、、各等于什么?
启发、引导学生猜想出
(2)从算术平方根的意义引入.
2.性质的巩固有两个方面需要注意:
(1)注意与性质进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.
(第1课时)
1.掌握二次根式的性质
2.能够利用二次根式的性质化简二次根式
3.通过本节的学习渗透分类讨论的数学思想和方法
对比、归纳、总结
1.重点:理解并掌握二次根式的性质
2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.
1课时
五、教b具学具准备
投影仪、胶片、多媒体
复习对比,归纳整理,应用提高,以学生活动为主
一、导入新课
我们知道,式子()表示非负数的算术平方根.
问:式子的意义是什么?被开方数中的表示的是什么数?
答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.
二、新课
计算下列各题,并回答以下问题:
(1);(2);(3);
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.
高一数学教案免费篇七
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。
二、确定每部分的答题时间。
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时。
1、你可以先用“直觉”最快的找到解题思路;。
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;。
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节。
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
高一数学教案免费篇八
(6)在知识学习的基础上,培养学生简单推理的技能.。
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.。
1.新课导入。
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)。
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)。
学生举例:平行四边形的对角线互相平.……(1)。
两直线平行,同位角相等.…………(2)。
教师提问:“……相等的角是对顶角”是不是命题?……(3)。
(同学议论结果,答案是肯定的.)。
教师提问:什么是命题?
(学生进行回忆、思考.)。
概念总结:对一件事情作出了判断的语句叫做命题.。
(教师肯定了同学的回答,并作板书.)。
(教师利用投影片,和学生讨论以下问题.)。
例1判断以下各语句是不是命题,若是,判断其真假:
2.讲授新课。
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)。
(1)什么叫做命题?
可以判断真假的语句叫做命题.。
(2)介绍逻辑联结词“或”、“且”、“非”.。
命题可分为简单命题和复合命题.。
(4)命题的表示:用p,q,r,s,……来表示.。
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)。
对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.。
3.巩固新课。
(1)5;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0,则a=0.。
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)。
高一数学教案免费篇九
突出重点.培养能力.。
三、课堂练习。
教材第13页练习1、2、3、4.。
【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图:
凡有阴影部分即为所求.。
四、小结。
提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同.。
五、作业。
习题1至8.。
笔练结合板书.。
倾听.修改练习.掌握方法.。
观察.思考.倾听.理解.记忆.。
倾听.理解.记忆.。
回忆、再现内容.。
落实。
介绍解题技能技巧.。
内容条理化.。
课堂教学设计说明。
2.反演律可根据学生实际酌情使用.。
高一数学教案免费篇十
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
向量的性质及相关知识的综合应用。
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略。
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的`知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
高一数学教案免费篇十一
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1)全体自然数0,1,2,3,4,5,
2)代数式.
3)抛物线上所有的点。
4)今年本校高一(1)(或(2))班的全体学生。
5)本校实验室的所有天平。
6)本班级全体高个子同学。
7)著名的科学家。
上述每组语句所描述的对象是否是确定的?
二、1)集合:
2)集合的元素:
3)集合按元素的个数分,可分为1)__________2)_________。
三、集合中元素的'三个性质:
四、元素与集合的关系:1)____________2)____________。
五、特殊数集专用记号:
4)有理数集______5)实数集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例题讲解:
例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是()。
a,直角三角形b,锐角三角形c,钝角三角形d,等腰三角形。
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;。
2)函数的全体值的集合;。
3)函数的全体自变量的集合;。
4)方程组解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇数组成的集合;。
8)所有正偶数组成的集合;。
例3、用符号或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)设,,则。
例4、用列举法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的数。
2.图中阴影部分点(含边界)的坐标的集合。
课堂练习:。
例7、已知:,若中元素至多只有一个,求的取值范围。
思考题:数集a满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合a不可能是单元素集合。
小结:
作业班级姓名学号。
1.下列集合中,表示同一个集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.则()。
a.b.c.d.
3.方程组的解集是____________________.
4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.
5.设集合a=,b=,
c=,d=,e=。
其中有限集的个数是____________.
6.设,则集合中所有元素的和为。
7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,试用列举法表示集合b=。
9.把下列集合用另一种方法表示出来:
(1)(2)。
(3)(4)。
10.设a,b为整数,把形如a+b的一切数构成的集合记为m,设,试判断x+y,x-y,xy是否属于m,说明理由。
11.已知集合a=。
(1)若a中只有一个元素,求a的值,并求出这个元素;。
(2)若a中至多只有一个元素,求a的取值集合。
12.若-3,求实数a的值。
【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文:集合含义及其表示能给您带来帮助!
高一数学教案免费篇十二
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
高一数学教案免费篇十三
1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。
2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。
二、教学重点:画出简单几何体、简单组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:观察、动手实践、讨论、类比。
四、教学过程。
(一)创设情景,揭开课题。
展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课。
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照射下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面向后面正投影,得到的投影图;
侧视图:光线从几何体的左面向右面正投影,得到的投影图;
俯视图:光线从几何体的上面向下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规则:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习。
课本p15练习1、2;p20习题1.2[a组]2。
(四)归纳整理。
请学生回顾发表如何作好空间几何体的三视图。
(五)布置作业。
课本p20习题1.2[a组]1。
高一数学教案免费篇十四
(2)理解任意角的三角函数不同的定义方法;。
(4)掌握并能初步运用公式一;。
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.
任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.
本节利用单位圆上点的`坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.
教学重难点。
重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
高一数学教案免费篇十五
复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练。
a、511b、512c、1023d、1024。
2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为。
a、b、
c、d、
二、典型例题。
例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。
高一数学教案免费篇十六
1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质。
2、掌握标准方程中的几何意义。
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例3(理)求离心率为,且过点的双曲线标准方程、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
高一数学教案免费篇十七
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的`知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的,能受到大家的欢迎!
高一数学教案免费篇十八
1、导致全球变暖的主要原因是气体的排放。
2、全球变暖对人类的不利影响主要是:的,对动植物的影响,对农业的影响和对人类的影响等。
3、缺水已是一个世界性的普遍现象,我国属于(缺水国或严重缺水国)。水资源,是地球上每一个人义不容辞的责任。
4、面对严重的缺水、水污染问题,我们应该采取的措施有:采取、、等,合理利用和保护水资源。
高一数学教案免费篇十九
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路。
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本p8,习题1.1a组第1题。
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
由学生整理学习了哪些内容六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。