人教版数学五年级教案(专业16篇)
教案可以帮助教师合理分配教学时间,确保教学进度。教案的编写需要根据不同知识层次和认知水平,合理选择教学策略和评价方法。参考教案范文可以提供教师对教学目标和评价标准的参考。
人教版数学五年级教案篇一
在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。
2、能同时被2、5、3整除的最小两位数是(),最大三位数是()。
3、选择题。
(1)一个合数的约数有()。
a)1个b)2个c)3个d)4个。
(2)如果a和b是互质数,那么它们的最小公倍数是()。
a)ab)bc)abd)1。
4、判断题。
(1)整除一定是除尽,除尽不一定整除。()。
(2)相邻的两个自然数一定互质。()。
(3)所有偶数都是合数。()。
(4)24分解质因数24=22231。()。
(5)一个自然数的最大约数一定等于它的最小公倍数。()。
5、把下面的数按照不同的标准分成两类,你能想到几种?
21581720。
人教版数学五年级教案篇二
教学内容:
人教版五年级数学上册第六单元《中位数》教材第105页例4、第106页例5及部分习题。
教学目标:
1、知识与技能:通过教学使学生理解中位数在统计学的意义,学会求中位数的方法。了解中位数与平均数的联系与区别,会根据数据的具体情况合理选择统计量。
2、过程与方法经历中位数的认识计算过程,体验合作探讨,理解认识的学习方法,培养学生全面多角度分析问题的意识和初步的统计观念。
3、情感态度价值观在学习活动中,感受数学知识在现实生活中广泛应用,激发学习兴趣,增强学生在生活中的数学意识,培养学生热爱体育运动的良好情感。
教学重点:
理解中位数的意义,掌握中位数的计算方法。
教学难点:
掌握求偶数个数据的中位数的方法。
教法学法:
创设情境、质疑引导、引导与讲解相结合。小组合作探究,自主实践体验。
教学准备:
多媒体课件。
教学过程:
一、复习准备。
1、师生谈话导入。
2、课件出示。
王丽同学1分钟跳绳比赛成绩如下表。
次数第一次第二次第三次第四次。
成绩124108136132。
她这四次测试的平均成绩是多少?
理解题意,让学生独立解答、汇报。
二、创设情境,生成问题。
下面让咱们去看看五(1)班7名同学正在进行的掷沙包比赛,他们的成绩如何呢?(出示教材第105页例4情景图)。
三、探索交流,解决问题。
1、出示五(1)班7名同学掷沙包成绩统计表。
姓名李明陈东刘云马刚王朋张炎赵丽。
成绩/m36.834.725.824.724.624.123.2。
引导学生观察,小组内交流。
师:这组数据中,只有两个数比平均数大,有五个数都比平均数小,用平均数表示他们掷沙包的一般水平合适吗?(不合适)想想办法:从这组数据中挑出一个数代表他们掷沙包的水平,自己找一找,和同桌说一说。
学生这是可能有些困难,教师适时引导学生认识中位数。
设计意图(创设问题情景,激发学生学习兴趣,通过估计,计算比较,发现用平均数表示一般水平不合适,从而引入新的内容——中位数,符合学生认知规律,进一步激发学生的求知欲望)。
2、介绍中位数。
平均数与一组数据中的每个数据都有直接关系,任意一个数据大小的变化都会对平均数值都会产生影响,为弥补平均数在描述某数据组的不足,下面就让我们一起来认识一位新朋友——中位数。顾名思义,中位数就是把一组数据按大小顺序排列后,位置居最中间的数据它的优点是不受偏大偏小数据的影响。
师:那么,五(1)班7名同学掷沙包成绩的这组数据中的中位数是多少呢?
生动手尝试,按大小排列找出中位数24.7。
师小结求中位数的方法。
a、按大小顺序排列b、最中间的数据。
设计意图(让学生认识理解,体验求中位数的过程,掌握求中位数的方法,并理解中位数在统计学中的意义。)。
3、小结:平均数和中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,选用中位数来表示这组数据的一般水平。
4、教学例5。
出示例5:五(2)班7名男同学的跳远成绩表。
姓名-强陈文王文贤赵军张鹏刘卫华于国庆。
成绩/m3.062.902.743.522.832.892.78。
师问:用什么数来表示这一组数的一般水平呢?
(1)让学生分别求出这一组数据的平均数和中位数。
(2)同桌之间议一议,说一说。
2.96比这一组数据中大多数数据都高,用它来表示这组数据的一般水平不合适,应选中位数。
(3)如果再增加一个同学杨东的成绩2.94m,这组数据中的中位数是多少?
小组内讨论,全班交流。
得出结论:一组数据中有偶数个数的时候,中位数是最中间两个数的平均数。
5、知识小结。
设计意图(学生在小这合作中自主探究发现知识规律,并动实践求平均数,中位数,培养学生自主学习的能力,同时使学生进一步理解中位数的意义。)。
三、巩固应用,内化提高。
1、基本练习。
2、教材第107页练习二十三第1题。
生读题,小组讨论,共同解答,汇报交流。
3、教材第107页练习二十三第2题。
学生讨论自由解答。
四、回顾整理,反思提升。
通过这节课的学习你学会了什么?你有哪些收获?
板书设计:
中位数。
例4例5。
中位数24.72.89(2.89+2.90)/2=2.895。
按大小顺序排列。
数据个数奇数:最中间的数据数据个数偶数:最中间两数的平均数。
教后反思:
教材中通过结合生活实际来比较平均数,从而产生中位数的教学的必要性。本人循着教材的思路和自身的理解设计了“平均数有时不能正确反映中等水平,有时能——发现概括平均数时候不能正确反映中等水平——该用什么数表示,学习中位数——中位数与平均数的关系,——在练习中分散难点,进一步理解为什么有时候平均数不能正确反映中等水平,而中位数则可以,深入理解中位数的稳定性。
人教版数学五年级教案篇三
2、出示统计图:引导学生收集信息。
3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
教师带领学生共同理解平均数的计算过程以及其中蕴涵的意义。
6、小结。
师:同学们,电视上比赛评分时,为何要去掉一最高分,去掉一最低分?你能说说理由吗?
引起了学生的激烈讨论。学生通过讨论解决实际问题,对平均数的理解又上升到一个高度,明白平均数不是一个实在的数,去掉最高分和最低分是为了让最后得分不会偏离平均分太远。
人教版数学五年级教案篇四
1.第3题:呈现了从不同方向观察一个立体图形得到的三个图形,让学生用正方体搭出相应的立体图形。教师可以放手让学生自主探究,然后组织全班同学讨论并流拼搭的方法。注意引导学生有步骤、简洁地进行操作。
2.第4题:先让学生独立解决问题,再组织交流。
对于第(2)小题,学生完成练习后,教师让学生展示不同的摆法,通过交流,使学生进一步体会只看到一面是无法确定物体的形状。
3.第5题:可以让学生先直接作出判断,再组织交流。
教师可以让学生说一说或在方格纸上画出,从不同的方向观察自己所搭的立体图形得到的图形;还可以让学生小组活动,由一名学生增加所给的条件,使其他人能准确地摆出这个立体图形。
5.第7题:先让学生独立思考,并根据题意要求动手摆一摆,以此来验证自己的想法。在学生独立思考的基础上,教师组织学生进行全班交流。
人教版数学五年级教案篇五
教学目标:
1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;。
2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;。
3、培养学生的观察、概括能力。教学。
教学重点:
掌握正方体的特征。
教学难点:
正方体与长方体的比较。
课前准备:
教法学法实践法、讨论法。
教学过程:
一、复习导入。
1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?
2、口答:说出每个图形的长、宽、高各是多少。
3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。
(揭示课题:正方体的认识)。
二、概括特征。
1、以小组为单位发学具。
2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。
3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。
4、汇报交流。
(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。
(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。
(3)让生说说有几个顶点?你是怎么验证的?
5、提问:谁能完整地说一说正方体有什么样的特征?
多指名几个同学说特征。
6、结合直观图小结:正方体6个面是完全相同的正方形,它有12。
条棱,每条棱的长度都相等。它还有8个顶点。
7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?
8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。
三、观察比较,体会异同。
1、提问:长方体和正方体有哪些相同点,有哪些不同点?
2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。
3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。
4、根据比较结果,想一想正方体和长方体有什么关系?
不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。
练习完成p20做一做。
总结今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?
作业布置。
板书设计:
正方体的认识。
6个面(完全相同,都是正方形)。
立体图形正方体12条棱(长度相等)。
8个顶点。
人教版数学五年级教案篇六
3、培养和发展学生的实验操作能力,发现美和创造美的能力。
会利用轴对称的知识画对称图形。
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
1、欣赏p1的图片,你发现了这些图形有什么相同点和不同点?
2、同桌互相说说什么样的图形叫作轴对称图形?
3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?
4、试着在例2的格子图片上画一画。
5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?
一、复习引入。
1、轴对称图形的概念。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
2、通过例题探究轴对称图形的性质。
二、例题1。
你能发现什么规律。
三、交流。
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
四、教学画对称图形。
例题2。
1、在研究的基础上,让学生用铅笔试画。
2、通过课件演示画的全过程,帮助学生纠正不足。
五、练习。
1、欣赏下面的图形,并找出各个图形的对称轴。
2、学生相互交流。
你们还见过哪些轴对称图形?
用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,
(1)思考。
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
3、课内练习一-----第1、2题。
5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数。
学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。
轴对称。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
人教版数学五年级教案篇七
教学内容:《义务教育课程标准实验教科书数学五年级上册》第92~94页。
教学目标:
1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。
2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
3.培养学生的认真观察、独立思考的能力。
教具准备:课件、图片等。
教学过程:
一、展示汇报建立概念
师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)
生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
……
师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?
(设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。)
师:老师也搜集了一些生活中物品的图片,(课件出示:房子、队旗、风筝、空心方砖、指示牌、火箭模型)这些物品的表面,都有哪些图形?谁来选一个说说。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。……
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?
生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
……
师小结:组合图形是由几个简单的图形组合而成的。
说一说,生活中有哪些地方的表面有组合图形? (学生自由回答)
师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?
生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。
……
这节课我们重点学习组合图形的面积。(设计意图:唤起学生学习数学的好奇心和积极的探究态度,鼓励学生自己提出问题,使学生认知活动中的智力因素和非智力因素都处于状态,形成强烈的求知欲。)
二、自主探索计算方法
(课件出示)下图表示的是一间房子侧面墙的形状。
认真观察这个组合图形,怎样计算出面积呢?
大家在图上先分一分,再算一算。
然后,在小组里互相说说自己的想法。
(学生活动,教师进行巡视指导)
指名汇报:
生:把组合图形分成一个三角形和一个正方形。(教师用课件演示:三角形和正方形分别闪动。)先分别算出三角形和正方形的面积,再相加。
教师边听边列式板演:5×5+5×2÷2
=25+5
=30(平方米)
师:还有不同的算法吗?
生:把这个组合图形分成两个完全一样的梯形。(教师用课件演示:两个完全一样的梯形闪动)先算出一个梯形的面积,再乘2就可以了。
学生说算式教师进行板演:(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2
=30(平方米)
师:你认为那种方法比较简便呢?
学生说自己的想法。
师:在计算组合图形的面积时有多种算法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。
(设计意图:在学生解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立思考、培养了能力。这时,为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法,实现方法的化。通过学生的试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念。)
师:通过学习,你认为怎样计算组合图形的面积?
学生回答。
师小结:在计算面积时,先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。
在计算面积时,还要注意些什么?(学生根据自己的想法回答)
三、反馈练习及时巩固
1.(课件出示:队旗)要做一面这样的队旗,需要多少布呢?认真观察图,选择有用的数据,你想怎样计算?把你的算法在小组里交流。
指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。
2.(课件出示:空心方砖)它的实际占地面积是多少?自己独立思考并计算,说说自己的想法。
3.(课件出示:火箭模型的平面图)选择有用的数据,独立完成,师生共同订正。
4.同学们刚才计算的是老师搜集的组合图形的面积,你们想不想算一算自己搜集的组合图形的面积呢?选择一个简单的图形,量出有用的数据,算一算组合图形在纸上的面积。先指名汇报,再互相检查算得对不对。
5.出示题目:(单位:厘米)计算下面图形的面积。你有不同的算法吗?
(设计意图:这组习题形式多样、难易适度,既巩固了本课所学的知识,又培养了学生的学习能力。体现了数学来源于生活,有应用于生活的教育理念。)
四、课后小结:这节课你学会了什么?有什么收获?
人教版数学五年级教案篇八
分数数的加法和减法异分母分数加、减法。
分数加减混合运算。
1.理解分数加、减法的算理,掌握分数加、减法的计算方法,并能正确计算出结果。
2.理解整数加法的运算定律对分数加法仍然适用,并会运用这些运算定律进行一些分数加法的简便运算,进一步提高简算能力。
3.体会分数加、减法运算在生活、生产中的广泛应用。
1.加强直观,凸显过程,培养数感。
学习分数加、减法的关键是让学生理解“只有相同单位的数才可直接相加、减”的算理。为了帮助学生理解,在教学过程中,一方面应注意充分利用数形结合的方法,加强直观认识,借助直观图的演示或学具操作,建立表象,理解算理;另一方面要为学生创设参与、探索、概括计算法则的空间,让学生经历观察、操作、猜想、验证的过程,鼓励学生有条理地表达自己的思考过程,揭示算理,概括法则,培养数感。
2.加强对比,沟通联系,促进迁移。
本单元中教材从同分母分数加、减法的法则推导到异分母分数加、减法的法则推导,从整数和小数加、减法的意义,计算法则,加减混合运算顺序到分数加、减法的'计算法则、加减混合运算顺序直至加、减法运算定律和性质的推广,无一不体现着知识之间的内在联系。教学中,应充分利用这种内在联系,注意对比和沟通,利用学生已有的知识和经验,感悟新旧知识之间的共同点,让学生通过自己的探索学习新知,这样不仅省时、突出重点,还培养了学生学习过程中的迁移、类推能力。重视口算,强化关键,培养能力。本单元中,分数加、减法中的分子、分母一般都不大,很多计算题可以直接口算出来,因此在计算正确的基础上,提倡能口算的尽量口算,以便提高学生的计算熟练程度和口算能力。
除重视口算训练外,还应注意练习的针对性,抓住分数加、减法的重点、难点和关键进行练习。当学生计算熟练后,要注意指导学生的计算法则,适当省略式题计算的思考步骤,简缩思维过程,培养求简思维。同时根据计算式题的具体特点,鼓励学生选择灵活的算法或进行简便运算,培养学生的计算能力及思维的灵活性。
4.认真审题,自觉检查,培养习惯。
在教学过程中,老师要重点关注学生审题能力的培养,要引导学生整体感知算式的特点,确定题目的运算顺序。教学中还应重视教给学生险验的方法,培养学生良好的检验习惯。
人教版数学五年级教案篇九
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4.1教学过程。
4.1.1教学活动。
活动1【讲授】用数对确定位置。
一、探讨描述位置两要素。
师:今天,谢老师的好朋友带来一份神奇的礼物。有请x先生。
第一关:找地鼠。
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)。
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(x先生录音)。
二、从列和行引出数对确定位置。
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(23)什么意思?(2表示第2列,3表示第3行)还可以怎么说(32)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)。
师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。
师:剩下的三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(x先生评价)。
三、点子图中的位置表示。
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出x先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)。
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?x表示几,y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用。
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)。
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)。
五、拓展总结。
师:同学们我们还差一块拼图了,听听x先生带来了什么问题:第五关:确定位置,需要几个数?)。
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
师:听听x先生对大家的最终评价吧。
师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。
人教版数学五年级教案篇十
第2课时整数四则混合运算(含有小括号的三步计算)
教学内容:
教材第71、72页。
教学目标
1、学生掌握三步混合运算(含有小括号的)运算顺序,提高计算的正确率。
2、提高分析解决实际问题的能力,能根据一些常见的基本数量关系式进行分析、列式。
教学重难点:
体会小括号有改变原来运算顺序的作用,理解含有小括号的混合运算的运算顺序。
教学过程:
一、混合运算的运算顺序复习:
1、学生练习:300-120+25×4
强调混合运算顺序。
二、添上括号,新课引入
计算300-(120+25×4)
提问:这道算式有什么特点?算式里有小括号,应该怎样计算?
明确:这题含有小括号,那第一步就应该算小括号里的;其他的步骤还轮不到算,只能把它们移下来。如果小括号里既有乘、除法,又有加、减法,也要先算乘、除法,再算加、减法。
学生尝试计算,教师巡视,并指名板演。
指名说说,你是按怎样的顺序计算的。
计算时要注意什么?
强调混合运算的三个等级:(1)小括号;(2)乘或除;(3)加或减。
小结:混合运算一定要先观察算式的特点,考虑它的运算顺序,然后再开始计算。
三、练习
1、完成“练一练”。
先让学生说说每一道题的运算顺序,再独立完成计算。组织反馈与交流。
2、做练习十一第5题。
(1)先出示左边的一组题,比较第一、二小题,说一说它们有什么相同和不同的地方;再比较第二、三小题,说一说小括号的位置有什么变化,运算顺序有什么不同。
学生独立完成,反馈评价。
(2)出示右边的一组题,让学生在小组里进行比较和交流。
学生独立完成计算,反馈评价。
3、做练习十一第6题。
先让学生独立完成计算,再说说每道题的运算顺序,以及计算的过程和结果
4、做练习十一第7题。
学生自由读题,说说题目中的条件和问题。
整理条件和问题,在小组里讨论题目中的数量关系。
列综合算式解答。
反馈不同的解题方法。
说说分析数量关系的思考过程和列式的依据。
四、课堂总结
通过今天的学习,你有什么收获呢?
教学反思:
四则运算
教学内容:
加、减法的意义和各部分间的关系p2p3
教学目标:
1、通过观察比较,进一步理解加、减法的意义,掌握加、减法之间的关系。
2、在经历探索发现加与减的互逆关系及加、减法各部分之间的关系的过程中,培养学生的比较、概括、归纳、判断推理能力。
3、运用加、减法的关系解决简单的实际问题。
教学重点:
进一步理解加、减法的意义,掌握加、减法之间的关系。
教学难点:
理解并掌握加法与减法之间的互逆关系。
教学准备:
实物投影、课件
教学过程:
一、导入新授
加法和减法是一对好朋友,他们之间有什么秘密呢?今天就来研究加、减法的意义和各部分之间的关系。板书课题。
二、探索发现
1、探究加、减法的意义。
(1)教学加法的意义
出示教材p2例1主题图
学生独立思考后独立列式:814+1142=1956(千米)并展示线段图。
结合加法算式,说一说加法算式的意义。
教师总结:把两个数合并成一个数的运算,叫做加法。
你知道加法各部分名称吗?
教师总结:相加的两个数叫做加数,加得的数叫做和。
(2)教学减法的意义
人教版数学五年级教案篇十一
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
1、在具体情境中进一步理解分数,体会分数的相对性。
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质。
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
人教版数学五年级教案篇十二
:教材第24―25页例1、例2及“做一做”。
练习七的第1―4题。
1.初步学会列方程解比较容易的两步应用题。
2.知道列方程解应用题的关键是找应用题中相等的数量关系。
1. 使学生能用方程的方法解较简单的两步计算应用题。
2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。
3.能独立用列方程的方法解答此类应用题。
1.培养学生用不同的方法解决问题的思维方式。
2.渗透在多种方法中选择最简单的方法解决问题。
:列方程解应用题的方法步骤。
:根据题意分析数量间的相等关系。
1.口头解下列方程(卡片出示)
x-35=40 x-5×7=40
15x-35=40 20-4x=10
2.出示复习题
(1)读题,理解题意。
(2)引导学生用学过的方法解答
(3)要求用两种方法解答。
(4)集体订正:解法一:35+40=75(千克)
解法二:设原来有x千克饺子粉。
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
1.教学例1
(1)读题理解题意。
(2)提问:通过读题你都知道了什么?
(3)引导学生知道:已知条件和所求问题;题中涉及到“原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:
原有的重量-卖出的重量=剩下的重量
(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)
(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)把上面的等式改为:
原有的重量-每袋的重量×卖出的袋数=剩下的重量
(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。
(7)引导学生根据等量关系式列出方程。
(8)让学生分组解答,集体订正时板书如下:
解:设原来有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。
小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)
2.教学例2
小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
(1) 读题,理解题意。结合生活实际帮助学生理解“付出”、“找回”等词的含义。
(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)
(3)组织学生分组讨论。
(4)学生自己解答,教师巡视,个别指导。
(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。
(6)教师总结订正。如果发现有列:2x=6-0.4和2x+0.4=6两种
方程的,教师要引导学生比较那种方法简单,并强调用较简单的方法解答。
3.学生自己学26页上面一段话,回顾上边的解题过程,总结列方程解应用题的一般步骤,总结后投影出示:
(1)弄清题意,找出未知数,并用x表示;
(2)找出应用题中数量间的相等关系;
(3)解方程;
(4)检验,写出答案。
4.完成26页的“做一做”
(1)学生独立解答
(2)集体订正,强化解题思路。
1.口答:列方程解应用题的关键是什么?
2.完成练习七第1题,在书上填写,集体订正。
3.按列方程解应用题的方法步骤学生独立做练习七4题,集体订正结果。
:引导学生总结本节课学习了什么知识。
练习七第2题、3题。
列方程解应用题
解:设原有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
例2 小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
解:设每节五号电池的价钱是x元。
8.5-4x =0.1
4x = 8.5-0.1
4x = 8.4
x = 2.1
答:第节五号电池的价钱是2.1元。
说课稿:
本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。
1.初步学会列方程解比较容易的两步应用题。
2.知道列方程解应用题的关键是找应用题中相等的数量关系。
1. 使学生能用方程的方法解较简单的.两步计算应用题。
2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。
3.能独立用列方程的方法解答此类应用题。
1.培养学生用不同的方法解决问题的思维方式。
2.渗透在多种方法中选择最简单的方法解决问题。
列方程解应用题的方法步骤。
:根据题意分析数量间的相等关系。
要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法――用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。
人教版数学五年级教案篇十三
教学内容:教材p58例4及练习十三第1、2、4、9第题。
教学目标:
知识与技能:
1.使学生认识用字母表示数的意义和作用,能用字母表示数。
2.使学生在具体情境中感受用字母表示数的必要性,向学生渗透符号化思想。
过程与方法:经历用字母表示数来解决实际问题的过程,掌握用字母表示数量关系的方法。
情感、态度与价值观:在学习活动中,感受生活中处处都有数学,体验数学知识的应用价值,培养学生解决实际问题的能力,增强学习的信心。
教学重点:能熟练地用字母表示简单数量关系,解决实际问题。
教学难点:理解应用题的意图和解题思路。
教学方法:设置数学问题,引导学生练习。在练习中体验、交流、感悟。
教学准备:多媒体。
学生发言,猜一猜老师的年龄。
师:你们已经猜了老师的年龄,现在,让我来猜猜大家的年龄吧。(11岁)老师告诉你一条重要的信息。(出示老师比同学大22岁)你们说我几岁了?你是怎样想的?(板书:学生的岁数:11岁老师的岁数:11+22)。
(一)用含有字母的式子表示加减关系。
1.师:现在让我们进入时空隧道,回忆过去,展望未来。
想一想,当同学们1岁时,老师几岁?你是怎么知道的?
当同学们2岁时,老师几岁?你是怎么想的?
2.师:还可以说下去吗?想想当你几岁时,老师几岁,用一个算式表示。在纸上写写看。(一生板演)。
3.师:感觉怎样?还能写出更多的算式吗?能把你写的算式跟同学们交流一下吗?
学生发言,说说自己的算式与感想。
4.学生先独立尝试,然后四人小组交流。
5.汇报、交流、评价。
师:这么多算式,你最欣赏哪一个?说说理由是什么。
6.优化。aa+22表示什么?还表示什么?
7.预设:bb+22xx+22这三个式子有什么相同的地方?(a、b、x都是表示不确定的数,a+22b+22x+22不仅表示老师的年龄,还表示老师比同学大22岁这个关系)。
8.师:这些算式真的可以表示老师任何一年的年龄吗?让我们来试试。
9.想一想,当a=1时,表示同学几岁,老师几岁?
当a=33时,表示同学几岁,老师几岁?
11.师:用a表示自己的岁数,那么你最喜欢的人的岁数怎么表示?试试看。(解读一下自己写的.式子)。
1.出示教材第58页例4。
一小杯的容量是xg,那3小杯的容量是3xg,还剩下多少克呢?
列出式子:1200-3x。(学生齐答,教师板书)。
3当x等于200时,还剩下:1200-3×200=600(克)。
4.x最大可以是多少?
组织学生分小组进行讨论,得出结论后派出代表做课堂汇报。
已知总量是1200g,倒完3小杯后,还有剩余,那意味着1200-3x会大于o,得出结论x小于400。(板书)。
5.想一想:式子中的字母可以表示哪些数?
学生思考,小组交流,指名学生回答。
6.提问:解决上面的例题需要注意什么?
要注意总量和已使用的量的关系,理解题目的意思,才能正确列出算式。
7.你还能根据题目的信息提出哪些问题?小组交流一下,收集问题并解答。
学生独立思考,并进行小组合作。
1.完成教材第58页“做一做”。
先让学生独立思考,并汇报结果,最后集体订正。
(1)120+loa。
(2)把a=25代入120+loa中,得120+10×25=370(kg)。所以当a=25时,商店一共有370kg苹果。
2.完成教材第58页“做一做”的第2题。
先由学生独立解决,再指名回答,最后集体订正。
(3)这里的b可以表示1,2,3,4,5,6,7,8。
3.完成教材第60页练习十三第1题。
学生理解题意,再独立完成,并在小组中交流检查。
4.完成教材第61页练习十三第9题。
(1)指名学生读题,理解题意,引导学生区分“离开重庆有多远”和“到宜昌还有多元”。
(2)组织学生独立完成,全班集体订正。
通过这节课,你有什么新的收获。
作业:教材第60页练习十三第2、4题。
板书设计。
用字母表示数的应用。
学生的岁数:11岁老师的岁数:11+22。
1200-3x。
1200-3x会大于o,得出结论x小于400。
当x等于200时,还剩下:1200-3×200=600(克)。
批注。
人教版数学五年级教案篇十四
1.在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考的能力。
2.在1-100的自然数中,能找出某个自然数的所有因数。
3. 在探索中,感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。
学生在乘法算式中对乘数已经有比较熟练的理解,学习因数可以在乘法算式的基础上让学生理解和掌握。
(一)创境导入。
师:同学们喜欢做拼图的游戏吗?(学生回答)
师:这节课我们就通过拼图来学习一个新知识。
(设计意图:拼图游戏学生很喜欢,创设拼图的情境来激发学生的学习积极性和探究的欲望。)
(二)探索新知。(课件)
1. 师:请拿出准备好的正方形,在你们的小组里用你们准备的12个小正方形拼成一个长方形,有哪几种拼法?也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录。然后,把你拼摆的过程和你的伙伴说说。
2. 班内展示交流。(请学生演示自己摆的成果)
(设计意图:通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与因数的关系。学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。)
3. 师:你能把这些摆法用算式表示出来吗?(根据学生的回答,教师板书:1×12=12 2×6=12 12×1=12 6×2=12 3×4=12 4×3=12 )
4. 师:请同学们观察一下,哪两道算式的因数一样? 12的因数有哪些呢? 请学生按顺序说出来。(1、2、3、4、6、12。)
(设计意图:学生观察算式,发现找因数的方法和写乘法算式有一定的关系,体会了“想乘法算式”找因数的方法,为下面的思考找因数的方法奠定了基础。)
5. 思考问题:
(1)怎么样找出一个数的全部因数?
(2)有什么方法可以将全部因数找齐,一个都不漏?
小组交流,全班交流。
学生想到的方法可能是:从小到大找;一对一对找
6. 找出9的全部因数
(1)试一试,看谁能挑战成功。(学生独立找9的因数)
(2)交流找的方法。
板书:9的因数有:1、3、9
观察9的全部因数,你有什么发现吗?(9最小的因数是1,最大的是9,??)
(设计意图:教给学生找因数的方法,引导学生关注“有序思考”的方法,进行了学习方法的指导。)
8. 小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。
(三)练习深化。
1. 师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们把课本第9页的1、2题做出来。
学生独立完成。
投影展示一名学生1、2题的结果,让学生说一说,集体评价。
2. 师:同学们已经学会了用拼长方形找因数的方法,现在能不能在小方格中画出长方形找因数呢?请把第3题做出来。
学生独立完成。
教师让1名学生到黑板上的小方格中画,并把因数找出来。
学生做完后,看看到黑板上做题的同学做得对不对,引导学生进行评价。 (设计意图:通过练一练活动,利用数形结合进一步体会找因数的方法。)
3. 投影:48名学生排队,要求每行的人数相同,可以排成几行?
请同学们先独立思考,然后小组内交流一下。
班内交流:(每行8人可以排成6行,也可以每行6人排成8行。每行12人可以排成4行,也可以每行4人排成12行。每行24人可以排成2行,也可以每行2人排成24行。每行48人可以排成1行,每行1人排成48行。还有一种,每行16人可以排成3行,也可以每行3人排成16行。)
思考:同学们想一想,这种排队法与找因数有什么关系呢?(教师对学生及时提出表扬:同学们说得很好,我们利用找因数的方法可以解决很多实际问题 。)
(设计意图:运用知识解决实际问题,进一步体会找因数的方法。)
4. 游戏:好朋友互报学号,分别找出对方学号数的全部因数,比比谁能有对有快!
(四)当堂检测。
1、找一找,填一填。
1 2 4 7 8 12 16 24 32
24的全部因数 32的全部因数 既是24的因数也是32的因数
2、说一说下面的数各有几个因数。
()个( )个()个 ()个 ( )个 ( )个
(设计意图:当堂检测,了解目标达成情况。)
(五)总结与评价。
这节课你什么收获?
教学反思:本节课注重了孩子的动手动脑能力,让学生体会到找一个数的因数的方法,培养了有条理思考的习惯。找因数的方法一般是按乘法算式来找的,可是在找的过程中容易漏掉几个,所以必须强调要有序思考。
人教版数学五年级教案篇十五
1、能够认识长方体和正方体,具有初步的立体空间想象能力。
2、结合具体的多个长方体和正方体的堆放情景,经历探究多个长方体和正方体堆放时露在外面表面积的过程,能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。
3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。
师生共同归纳和推理。
多个正方体盒子。
一、复习导入。
教师让学生顾回上一节课学习的长方体和正方体的表面积,并对学生进行提问。
学生回答:长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)。
二、讲授新课。
学生观察图片并计算露在外面的面积是多少平方厘米?
教师提问学生回答这个问题。(露在外面的面有3个;露在外面的面积是50×50×3=750(平方厘米)。
教师提问学生回答这个问题,(有9个面露在外面,露在外面的面积是50×50×9)。
教师让学生用自己的4个正方体学具换一种堆放方式来试一试,露在外面的面积是否有变化,同桌之间相互讨论交流。
三、课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)。
板书设计:
露在外面的面。
从正面、侧面、上面看一看,一共有几个面露在外面?
人教版数学五年级教案篇十六
教学目标:
使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。
教学过程:
练习四
一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。
二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。
三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。
四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。
五、针对学生在学习过程中出现的问题适当的进行补充和强化。