正多边形和圆人教版数学九年级教案(通用13篇)
教案是教师在授课过程中灵活使用的教学辅助材料。引导学生进行思考和问题解决,激发学生的思维能力和创造力。这些范文涵盖了不同阶段和不同学科的教学内容,可以满足不同教师的需求和要求。
正多边形和圆人教版数学九年级教案篇一
14.(曲靖中考)将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()。
a.主视图相同b.左视图相同。
c.俯视图相同d.三种视图都不相同。
15.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).
16.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.
综合题。
正多边形和圆人教版数学九年级教案篇二
学习目标:
1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.
2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.
学习重、难点:
1.重点:相似多边形的主要特征与识别.
2.难点:运用相似多边形的特征进行相关的计算.
学法指导或使用说明:利用导学案,采用学生自学和小组讨论的方式进行合作探究式学习。
课前预设。
一、探索新知。
正多边形和圆人教版数学九年级教案篇三
1.在图形旋转中,下列说法错误的是()。
a.图形上的每一点到旋转中心的距离相等。
b.图形上的每一点转动的角度相同。
c.图形上可能存在不动点。
d.图形上任意两点的连线与其对应两点的连线相等。
b、图形上的每一点转动的角度都等于旋转角,正确;。
c、以图形上一点为旋转中心,则这个点不动,正确;。
d、旋转前后两个图形全等,则图形上任意两点的连线与其对应两点的连线相等,正确.
故选a.
正多边形和圆人教版数学九年级教案篇四
本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。
学情分析。
本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。
教学目标。
理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。
教学重点和难点。
重点:方位角的判别与应用。
难点:方位角的画法及变式题。
教学过程(本文来自优秀教育资源网斐.斐.课.件.园)。
教学环节教师活动预设学生行为设计意图。
一、创设情境,导入新课。
二、讲授新课。
三、巩固练习。
四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解。
1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。
2.师示范方位角的画法。
3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题。
生观察图并理解老师的讲解。
生观察并独立完成书中的例题。
生先独立思考然后与同学合作完成。激发学生的学习兴趣。
通辽具体图形使学生初步认识方位角的表示方法。
使学生通辽具体操作掌握画方位角的方法。
进一步掌握方位角的有关知识,达到知识提升。
板书设计。
4.3.3余角和补角(二)——方位角。
学生学习活动评价设计。
我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。
教学反思。
本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。出现的问题是有个别同学对于a看b是北偏东30度,则b看a是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。
正多边形和圆人教版数学九年级教案篇五
1.理解正多边形的性质.
2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.
教学重点。
教学难点。
对正n边形中泛指“n”的理解.
教学步骤。
一、导入新课。
复习上节内容,导入新课的教学.
二、新课教学。
实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.
1.等分圆周.
正多边形和圆人教版数学九年级教案篇六
证明(二)。
判定定理及相关结论的证明,利用尺规作已知角的平分线。
判定定理及相关结论的证明。
知识点。
1、三角形相关定理。
推论两角及其中一角的对边对应相等的两个三角形全等.(aas)。
定理等腰三角形的两个底角相等.(等边对等角)。
推论等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(三线合一)。
定理有两个角相等的三角形是等腰三角形.(等角对等边)。
定理有一个角等于60º的等腰三角形是等边三角形.
2、直角三角形。
定理在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半.
角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半.)。
定理直角三角形两条直角边的平方和等于斜边的平方.(勾股定理)。
定理如果三角形两边的平方和等于第三方的平方,那么这个三角形是直角三角形.
互逆命题逆命题互逆定理逆定理。
定理斜边和一条直角边对应的两个直角三角形全等.(hl)。
3、线段的垂直平分线直线与射线有垂线,但无垂直平分线。
定理线段垂直平分线上的点到这条线段两个端点的距离相等。
定理到一条线段两端点距离相等的点,在这条线段的垂直平分线上。(线段垂直平分线逆定理)。
定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(如图1所示,ao=bo=co)。
cc。
e图1图2。
4、角平分线。
定理角平分线上的点到这个角的两边的距离相等。(角平分线是到角的两边距离相等的所有点的集合。)定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。(角平分线逆定理)。
定理三角形的三条角平分线相交于一点,并且这个点到三边距离相等.(交点为三角形的内心.如图2,od=oe=of)。
正多边形和圆人教版数学九年级教案篇七
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的`实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
ppt课件圆柱等分模型。
教学过程:
正多边形和圆人教版数学九年级教案篇八
一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
正多边形和圆人教版数学九年级教案篇九
1、通过复习,加强统计观念的培养。
2、使学生能对数据进行简单分析,根据分析结果作出简单的判断与预测。
3、进一步理解平均数的意义,会求简单数据的平均数。
4、进一步体会小数的含义,掌握小数的读写法,并能进行简单的小数加、减法运算。
正多边形和圆人教版数学九年级教案篇十
二、基本练习。
1、填空。
(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。
(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。
(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。
(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。
2、判断。
(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()。
(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()。
(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()。
三、综合应用。
1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?
2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?
第八课时教学反思。
教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。
教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。
教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。
[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。
正多边形和圆人教版数学九年级教案篇十一
从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程______________________。
学生分组探讨、交流,列出方程.
正多边形和圆人教版数学九年级教案篇十二
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求。
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求。
使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人.
正多边形和圆人教版数学九年级教案篇十三
这一节课,我花了十分钟的时间已经让学生通过看书感知了中心、中心角、半径、边心距的定义,这节的教学重点是特殊的正多边形和圆中边心距、边长、半径的关系。
我先给了学生五分钟看书上正六边形的例题,在黑板上画了半径为r的正四边形、正六边形、正三角形及其外接圆,点拨例题后我以表格的形式给出学生的第一个问题是:分别用r表示正四边形、正六边形、正三角形的边长、周长、边心距和面积。以前一直习惯于我讲学生听,这节我试着让学生讲,学生在黑边前的讲解的时候我发现其他学生听的更认真,虽然讲解的学生还存在着声音小、讲解不是太透彻等缺点,但整体还可以,多给学生机会肯定会有提高。整节课我围绕这个问题花了很长的时间,目的是让更多的学生体会并且学会这种构造直角三角形的思想。其中我给学生补充的知识有:有一个角是30度的直角三角形的三边比和等腰直角三角形的三边比的推导及结论,我觉得这样可以为学生的运算节省时间。
这节课的第二个问题是:探究正三角形的外接圆半径r和内切圆的半径r的数量关系,以及它们与正三角形的高之间的数量关系。在这个过程由两个同学去讲解,田礼厚同学通过连接半径转化r构造直角三角形,而郑文豪同学通过构造弦心距转化r构造直角三角形,同样都是转化,但转化的不一样,我觉得学生的思维表现的很活跃。
整节课设计的问题较少,重点在于让学生体会构造思想和转化思想,学生表现很积极,但是没有练习以及反馈的时间,在接下来的练习课上我觉得困扰学生的不是构造直角三角形的思想而是计算的速度及准确性,但快速准确运算又不是一天两天的功夫,我认为对于我的学生而言,每节课还得给适当的运算来锻炼学生。